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Structural Time Series Models

In economics, it is traditional to decompose time series into a variety of
components, some or all of which may be present in a particular instance.

One is liable to assume that the relative proportions of the components of
an aggregate index are maintained, approximately, in spite of the variations
in their levels. Therefore, the basic model of an economic index is a mul-
tiplicative one; and, if Y (t) is the sequence of values of an economic index,
then it can be expressed as

Y (t) = L(t) × C(t) × S(t) × H(t), (1)

where

L(t) is the global trend,

C(t) is a secular cycle,

S(t) is the seasonal variation and

H(t) is an irregular component.

Many of the more prominent macroeconomic indicators are amenable to a
decomposition of this sort. One can imagine, for example, a quarterly index
of Gross Domestic Product which appears to be following an exponential
growth trend L(t).

The trend might be obscured, to some extent, by a superimposed cycle
C(t) with a period of roughly four and a half years, which happens to corre-
spond, more or less, to the average lifetime of the legislative assembly. The
reasons for this curious coincidence need not concern us here.

The ghost of an annual cycle S(t) might also be apparent in the index;
and this could be a reflection of the fact that some economic activities, such
as building construction, are affected significantly by the weather and by the
duration of sunlight.

When the foregoing components—the trend, the secular cycle and the
seasonal cycle—have been extracted from the index, the residue should cor-
respond to an irregular component H(t) for which no unique explanation can
be offered.
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The logarithms y(t) = ln Y (t) of the aggregate index are amenable to an
additive decomposition. Thus, equation (1) gives rise to

y(t) = {λ(t) + γ(t)} + σ(t) + η(t) (2)

= τ(t) + σ(t) + η(t),

where λ(t) = ln L(y), γ(t) = ln C(t), σ(t) = ln S(t) and η(t) = ln H(t).
Since the trend and the cycles are not easily separable, there is a case for
combining them in a component T (t) = L(t) × C(t), of which the logarithm
is ln T (t) = τ(t).

In the structural time-series model, the additive components are modelled
by independent ARMA or ARIMA process. Thus

y(z) = τ(z) + σ(z) + η(z) (3)

=
θτ (z)

φτ (z)
ζτ (z) +

θσ(z)

φσ(z)
ζσ(z) + η(z),

where ζτ (z), ζσ(z) and η(z) are the z-transforms of statistically independent
white-noise processes. Within the autoregressive polynomial φτ (z) of the
trend component will be found the unit-root factor (1 − z)p, whereas the
autoregressive polynomial φσ(z) of the seasonal component will contain the
factor (1 + z + · · ·+ zs−1)D, wherein s stands for the number of periods in a
seasonal cycle.

The sum of a set of ARIMA processes is itself and ARIMA process. There-
fore, y(t) can be expressed as a univariate ARIMA process which is described
as the reduced form of the time-series model:

y(z) =
θ(z)

φ(z)
ε(z) =

θ(z)

φσ(z)φτ (z)
ε(z). (4)

Here, ε(z) stands for the z-transform of a synthetic white-noise process.
There are two alternative approaches to the business of estimating the

structural model and of extracting its components. The first approach,
which is described as the canonical approach, is to estimate the parameters
of the reduced-form ARIMA model. From these parameters, the Wiener–
Kolmogorov filters that are appropriate for extracting the components can
be constructed.

Canonical Decompositions

On the assumption that the degree of the moving-average polynomial θ(z)
is at least equal to that of the autoregressive polynomial φ(z), there is a
partial-fraction decomposition of the autocovariance generating function of
the model into three components, which correspond to the trend effect, the
seasonal effect and an irregular influence. Thus

θ(z)θ(z−1)

φσ(z)φτ (z)φτ (z−1)φσ(z−1)
=

Qτ (z)

φτ (z)φτ (z−1)
+

Qσ(z)

φσ(z)φσ(z−1)
+ R(z). (5)
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Here, the first two components on the RHS represent proper rational frac-
tions, whereas the irregular component R(z) is an ordinary polynomial. If
the degree of the moving-average polynomial in the reduced form is less than
that of the autoregressive polynomial, then the irregular component is miss-
ing from the decomposition in the first instance.

To obtain the spectral density function f(ω) of y(t) and of its components,
we set z = e−iω in (5). (This function is more properly described as a pseudo-
spectrum in view of the singularities occasioned by the unit roots in the
denominators of the first two components.) The spectral decomposition can
be written as

f(ω) = fτ (ω) + fσ(ω) + fR(ω). (6)

Let ντ = min{fτ (ω)} and νσ = min{fσ(ω)}. These are the elements
of white noise embedded in fτ (ω) and fσ(ω). The principle of canonical
decomposition is that the white-noise elements should be reassigned to the
residual component. (The principle of canonical decompositions has been
expounded, for example, by Hillmer and Tiao (1982), Maravall and Pierce
(1987), and, more recently, Kaiser and Maravall (2001).) On defining

γτ (z)γτ (z
−1) = Qτ (z) − ντφτ (z)φτ (z

−1), (7)

γσ(z)γσ(z−1) = Qσ(z) − νσφσ(z)φσ(z−1),

and ρ(z)ρ(z−1) = R(z) + ντ + νσ,

the canonical decomposition of the generating function can be represented
by

θ(z)θ(z−1)

φ(z)φ(z−1)
=

γτ (z)γτ (z
−1)

φτ (z)φτ (z−1)
+

γσ(z)γσ(z−1)

φσ(z)φσ(z−1)
+ ρ(z)ρ(z−1). (8)

There are now two improper rational functions on the RHS, which have equal
degrees in their numerators and denominators.

According to Wiener–Kolmogorov theory, the optimal signal-extraction
filter for the trend component is

βτ (z) =
γτ (z)γτ (z

−1)

φτ (z)φτ (z−1)
× φσ(z)φτ (z)φτ (z

−1)φσ(z−1)

θ(z)θ(z−1)
(9)

=
γτ (z)γτ (z

−1)φσ(z)φσ(z−1)

θ(z)θ(z−1)
.

This has the form of the ratio of the autocovariance generating function of
the trend component to the autocovariance generating function of the process
y(t).

Observe that, in the process of forming this filter, the factor φτ (z)φτ (z
−1)

is cancelled out. With the consequent removal of the unit-root factor (1 −
z)p(1 − z−1)p from the denominator, the basis of a stable filter is created
which, with the provision of appropriate starting values, can be applied to
nonstationary data. This filter would also serve to extract a differenced
version of the component τ(t) from the differenced data. The filter that
serves to extract the seasonal component is of a similar construction.
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These formulations presuppose a doubly-infinite data sequence; and they
must be translated into a form that can be implemented with finite sequences.
The various ways of achieving this have been described in he accompanying
paper; In the TRAMO–SEATS program of Gómez and Maravall (1996) and
of Caporello and Maravall (2004), a contragrade method of Burman (1980)
has been adopted, which entails a unique treatment of the start-up problem.

The alternative method of estimating the parameters of the structural
model and of extracting the unobserved components makes use of the fact
that a univariate autoregressive moving-average model can be expressed as a
first-order multivariate Markov model, which constitutes a state-space repre-
sentation of the model. This allows the structural parameters to be estimated
directly, as opposed to being inferred indirectly from the parameters of the
reduced-form model.

The state-space approach to the structural time-series model was pio-
neered by Harrison and Stevens (1971, 1976). An extensive account of the
approach has been provided by Harvey (1989). Other important references
are the books of West and Harrison (1997) and Kitagawa and Gersch (1996).
Proietti (2002) has also provided a brief but thorough account. A brief in-
troductory survey has been provided by West (1997), and an interesting
biomedical application has been demonstrated by West et al. (1999).

The methods may be illustrated by considering the so-called basic struc-
tural model, which has been popularised by Harvey (1989). The model,
which lacks a non-seasonal cyclical component, can be subsumed under the
second of the equations of (2).

The trend or levels component τ(t) of this model is described by a stochas-
tic process that generates a trajectory that is approximately linear within a
limited locality. Thus

τ(t) = τ(t − 1) + β(t − 1) + υ(t) or, equivalently, (10)

∇(z)τ(z) = zβ(z) + υ(z),

where ∇(z) = 1 − z is the difference operator. That is to say, the change
in the level of the trend is compounded from the slope parameter β(t − 1),
generated in the previous period, and a small white-noise disturbance υ(t).
The slope parameter follows a random walk. Thus

β(t) = β(t − 1) + ζ(t) or, equivalently, ∇(z)β(z) = ζ(z), (11)

where ζ(t) denotes a white-noise process that is independent of the distur-
bance process υ(t). By applying the difference operator to equation (10) and
substituting from (11), we find that

∇2(z)τ(z) = ∇(z)zβ(z) + ∇(z)υ(z) (12)

= zζ(z) + ∇(z)υ(z).

The two terms of the RHS can be combined to form a first-order moving-
average process, whereupon the process generating τ(t) can be described by
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an integrated moving-average IMA(2, 1) model. Thus

∇2(z)τ(z) = zζ(z) + ∇(z)υ(z) (13)

= (1 − µz)ε(z).

A limiting case arises when the variance of the white-noise process ζ(t) in
equation (11) tends to zero. Then, the slope parameter tends to a constant
β, and the process by which the trend is generated, which has been identified
as an IMA(2,1) process, becomes a random walk with drift.

Another limiting case arises when the variance of υ(t) in equation (10)
tends to zero. Then, the overall process generating the trend becomes a
second-order random walk, and the resulting trends are liable to be described
as smooth trends. When the variances of ζ(t) and υ(t) are both zero, then
the process τ(t) degenerates to a simple linear time trend.

The seasonal component of the structural time-series model is described
by the equation

σ(t) + σ(t − 1) + · · · + σ(t − s + 1) = ω(t) (14)

or, equivalently,

S(z)σ(z) = ω(z),

where S(z) = 1 + z + z2 + · · · + zs−1 is the seasonal summation operator, s
is the number of observation per annum and ω(t) is a white-noise process.

The equation implies that the sum of s consecutive values of this com-
ponent will be a random variable distributed about a mean of zero. To
understand this construction, we should note that, if the seasonal pattern
were perfectly regular and invariant, then the sum of the consecutive values
would be identically zero. Since the sum is a random variable with a zero
mean, some variability can occur in the seasonal pattern.

By substituting equations (12) and (14) into equation (2), we seen that
the structural model can be represented by the equation

∇2(z)S(z)y(z) = S(z)zζ(z) + ∇(z)S(z)υ(z) + ∇2(z)ω(z) + ∇2(z)Sη(z),

or, equivalently, (15)

∇(z)∇s(z)y(z) = S(z)zζ(z) + ∇s(z)υ(z) + ∇2(z)ω(z) + ∇(z)∇s(z)η(z),

where ζ(t), υ(t), ω(t) and η(t) are mutually independent white-noise pro-
cesses. Here, the alternative expression comes from using the identity

∇(z)S(z) = (1 − z)(1 + z + · · · + zs−1) = (1 − zs) = ∇s(z).

We should observe that the RHS or equation (15) corresponds to a moving
average of degree s + 1, which is typically subject to a number of restriction
on its parameters. The restrictions arise from the fact there are only four pa-
rameters in the model of (15), which are the white-noise variances V {ζ(t)},
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V {υ(t)}, V {ω(t)} and V {η(t)}, whereas there are s + 1 moving-average pa-
rameters and a variance parameter in the unrestricted reduced-form of the
seasonal ARIMA model.

The basic structural model can be represented is a state-space form which
comprises a transition equation, which constitutes a first-order vector au-
toregressive process, and an accompanying measurement equation. For no-
tational convenience, let s = 4, which corresponds to the case of quarterly
observations. Then, the transition equation, which gathers together equa-
tions (10), (11) and (14), is

τ(t)
β(t)
σ(t)

σ(t − 1)
σ(t − 2)

 =


1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0




τ(t − 1)
β(t − 1)
σ(t − 1)
σ(t − 2)
σ(t − 3)

 +


υ(t)
ζ(t)
ω(t)
0
0

 . (16)

The observation equation, which corresponds to (2), is

y(t) =
[

1 0 1 0 0
]


τ(t)
β(t)
σ(t)

σ(t − 1)
σ(t − 2)

 + η(t). (17)

The state-space model is amenable to the Kalman filter and the associated
smoothing algorithms, which can be used in estimating the parameters of the
model and in extracting estimates of the unobserved components τ(t), σ(t).

There are various ways of handling, within the context of the Kalman
filter, the start-up problem that is associated with filtering of nonstationary
data sequences. These will be touched upon at the end of the next section.

Example. Figure 1 shows the logarithms of a monthly sequence of 132
observations of the U.S. money supply, through which a quadratic function
has been interpolated. This provides a simple way of characterising the
growth over the period in question.

However, it is doubtful whether such an analytic function can provide an
adequate representation of a trend that is subject to irregular variations; and
we prefer to estimate the trend more flexibly by applying a linear filter to
the data. In order to devise an effective filter, it is helpful to know the extent
of the frequency band in which the spectral effects of the trend are located.

It is difficult to discern the spectral structure of the data in the peri-
odogram of the trended sequence y. This is dominated by the effects of the
disjunctions in the periodic extension of the data that occur where the end
of one replication of the data sequence joins the beginning of the next. In
fact, the periodic extension of a segment of a linear trend will generate a saw-
tooth function, of which the periodogram will have the form of a rectangular
hyperbola, within which any finer spectral detail will be concealed.
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Figure 1: The plot of 132 monthly observations on the U.S. money sup-
ply, beginning in January 1960. A quadratic function has been interpolated
through the data.
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Figure 2: The periodogram of the residuals of the logarithmic money-supply
data.
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Figure 3: logarithms of 132 monthly observations on the U.S. money supply,
beginning in January 1960. A trend, estimated by the Fourier method, has
been interpolated through the data.

On the other hand, if a d-fold differencing operation is used to reduce
the data to stationarity to produce g = Qy, then one may find that the low-
frequency spectral ordinates have been diminished to such an extent that
the structure of the trend has become invisible. The problem will to be
exacerbated when the data contain a strong seasonal component, which may
be amplified by the differencing operation to become the dominant feature
of the periodogram.

An effective way of discerning the spectral structure of the data is to
examine the periodograms of the residuals obtained by fitting polynomials of
various degrees to the data. The residual sequence from fitting a polynomial
of degree d, can expressed as

r = Q(Q′Q)−1Q′y, (18)

where Q′ is the aforementioned differencing operator. This sequence con-
tains the same information as the differenced sequence g = Q′y, but its
periodogram renders the spectral structure visible over the entire frequency
range.

Figure 2 which shows the periodogram of the residuals from the quadratic
detrending of Figure 1. There is a significant spectral mass within the fre-
quency range [0, π/6), of which the upper bound is the fundamental frequency
of the seasonal fluctuations. This mass properly belongs to the trend and,
if the trend had been adequately estimated, it would not be present in the
periodogram of the residuals.

To construct a better estimate of the trend, an ideal lowpass filter, with
a sharp cut-off frequency a little short of π/6, has been applied to the twice
differenced data and the filtered sequence has been reinflated with initial
conditions that are supplied by equation (??). The result is the trend that
is shown in Figure 3. The pass band of the ideal lowpass filter has been
superimposed upon the periodogram of Figure 2 as a shaded area.

Figure 4 shows the gains of the trend estimation filters that have been
obtained by applying two of the model-based procedures to the data. The
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Figure 4: The gain function of the trend-extraction filter obtained from
the STAMP program (solid line) together with that of the canonical trend-
extraction filter (broken line) obtained from the TRAMO–SEATS program.

outer envelope is the gain of a trend extraction filter obtained in the process
of using the STAMP program to estimate the components of the data. The
inner envelope represents the gain of the analogous filter from the TRAMO–
SEATS program. The indentations in the gain functions of both filters at
the frequencies πj/6; j = 1, . . . , 6 have the effect of nullifying the seasonal
elements and of preventing them from entering the trend.

The two model-based filters differ greatly from the ideal filter. Disre-
garding the indentations, one can see how the gain of the filters is reduced
only gradually as the frequency value increases. The trend component ex-
tracted by the STAMP filter would contain a substantial proportion of the
non-seasonal high-frequency components that are present in the original data.

In practice, however, the trends that are estimated by the ideal filter and
by the two model-based filters are virtually indistinguishable in the case of the
money supply data. The reason for this is that, after the elimination of the
seasonal components, whether it be by nullifying all elements of frequencies
in excess of π/6 or only by eliminating the elements in the vicinities of the
seasonal frequencies of πj/6; j = 1, . . . , 6, there is virtually nothing remaining
in the data but the trend. Therefore, in this case, the potential of the two
model-based filters to transmit high-frequency components can do no harm.

In other cases, it has been observed that the STAMP filter produces a
trend estimate that has a profile which is noticeably rougher than the one pro-
duced by the TRAMO–SEATS program—see Pollock (2002), for example—
and this is a testimony to fact that the latter program, which observes the
so-called canonical principle, suppresses the high-frequency noise more em-
phatically.
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1 The Kalman Filter and the Smoothing Al-

gorithm

One of the reasons for setting a structural time-series model in a state-space
form is to make it amenable to the application the Kalman filter, which may
be used both for estimating the parameters of the model and for extracting
the unobserved components. To obtain estimates that take full advantage of
all of the sampled data, a smoothing algorithm must also be deployed. These
algorithms are described in the present section.

The state-space model, which underlies the Kalman filter, consists of two
equations

yt = Hξt + ηt, Observation Equation (19)

ξt = Φξt−1 + νt, Transition Equation (20)

where yt is the observation on the system and ξt is the state vector. The
observation error ηt and the state disturbance νt are mutually uncorrelated
random vectors of zero mean with dispersion matrices

D(ηt) = Ω and D(νt) = Ψ. (21)

It is assumed that the matrices H, Φ, Ω and Ψ are known and that an initial
estimate x0 is available for the state vector ξ0 at time t = 0 together with a
dispersion matrix D(ξ0) = P0. This set of initial information is denoted by
I0. (In a more general formulation, the parameter matrices would be allowed
to vary with time, but here they are constant.) The information available at
time t is It = {yt, . . . , y1, I0} = {yt, It−1}.

The Kalman-filter equations determine the state-vector estimates xt|t−1 =
E(ξt|It−1) and xt = E(ξt|It) and their associated dispersion matrices Pt|t−1

and Pt from the values xt−1, Pt−1 of the previous period. From xt|t−1, the
prediction ŷt|t−1 = Hxt|t−1 is formed which has a dispersion matrix Ft. A
summary of these equations is as follows:

xt|t−1 = Φxt−1, State Prediction (22)

Pt|t−1 = ΦPt−1Φ
′ + Ψ, Prediction Dispersion (23)

et = yt − Hxt|t−1, Prediction Error (24)

Ft = HPt|t−1H
′ + Ω, Error Dispersion (25)

Kt = Pt|t−1H
′F−1

t , Kalman Gain (26)

xt = xt|t−1 + Ktet, State Estimate (27)

Pt = (I − KtH)Pt|t−1. Estimate Dispersion (28)

The equations of the Kalman filter may be derived using the ordinary
algebra of conditional expectations which indicates that, if x, y are jointly
distributed variables which bear the linear relationship E(y|x) = α + B{x−
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E(x)}, then

E(y|x) = E(y) + C(y, x)D−1(x){x − E(x)}, (29)

D(y|x) = D(y) − C(y, x)D−1(x)C(x, y), (30)

E{E(y|x)} = E(y), (31)

D{E(y|x)} = C(y, x)D−1(x)C(x, y), (32)

D(y) = D(y|x) + D{E(y|x)}, (33)

C{y − E(y|x), x} = 0. (34)

Of the equations listed under (22)—(28), those under (24) and (26) are
merely definitions.

To demonstrate equation (22), we use (31) to show that

E(ξt|It−1) = E{E(ξt|ξt−1)|It−1} (35)

= E{Φξt−1|It−1}
= Φxt−1.

We use (33) to demonstrate equation (23):

D(ξt|It−1) = D(ξt|ξt−1) + D{E(ξt|ξt−1)|It−1} (36)

= Ψ + D{Φξt−1|It−1}
= Ψ + ΦPt−1Φ

′.

To obtain equation (25), we substitute (19) into (24) to give et = H(ξt −
xt|t−1)+ηt. Then, in view of the statistical independence of the terms on the
RHS, we have

D(et) = D{H(ξt − xt|t−1)} + D(ηt) (37)

= HPt|t−1H
′ + Ω = D(yt|It−1).

To demonstrate the updating equation (27), we begin by noting that

C(ξt, yt|It−1) = E{(ξt − xt|t−1)y
′
t} (38)

= E{(ξt − xt|t−1)(Hξt + ηt)
′}

= Pt|t−1H
′.

It follows from (29) that

E(ξt|It) = E(ξt|It−1) + C(ξt, yt|It−1)D
−1(yt|It−1){yt − E(yt|It−1)}(39)

= xt|t−1 + Pt|t−1H
′
tF

−1
t et.

The dispersion matrix under (28) for the updated estimate is obtained
via equation (30):

D(ξt|It) = D(ξt|It−1) − C(ξt, yt|It−1)D
−1(yt|It−1)C(yt, ξt|It−1) (40)

= Pt|t−1 − Pt|t−1H
′
tF

−1
t HtPt|t−1.
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The set of information It = {yt, . . . , y1, It}, on which the Kalman fil-
ter estimates are based, can be represented, equivalently, by replacing the
sequence {yt, . . . , y1} of observations by the sequence {et, . . . , e1} of the pre-
diction errors, which are mutually uncorrelated.

The equivalence can be demonstrated by showing that, given the initial
information of I0, there is a one-to-one correspondence between the two
sequences, which depends only on the known parameters of equations (19),
(20) and (21). The result is intuitively intelligible, for, at each instant t,
the prediction error et contains only the additional information of yt that is
not predictable from the information in the set It−1; which is to say that
It = {et, It−1}.

The prediction errors provide a useful formulation of the likelihood func-
tion from which the parameters that are assumed to be know to the Kalman
filter can be estimated from the data. Under the assumption that the dis-
turbances are normally distributed, the likelihood function is given by

ln L = −kT

2
ln 2π − 1

2

T∑
t=1

ln |Ft| −
1

2

T∑
t=1

e′tF
−1
t et. (41)

This form was proposed originally by Schweppe (1965). It tractability, which
is a partial compensation for the complexity of the Kalman filter, has con-
tributed significantly to the popularity of the state-space formulation of the
structural time-series models.

There are various ways in which the value of the initial condition in
I0 = {ξ0, P0} may be obtained. If the processes are stationary, then the
eigenvalues of the transition matrix Φ must lie within unit circle, which
implies that lim(n → ∞)Φn = 0. Then, there is E(ξ0) = x0 = 0 and
D(ξ0) = P0 = ΦP0Φ

′ + Ψ; and the latter equation may be solved by analytic
or iterative means for the value of P0.

In the nonstationary case, the initial conditions require to be determined
in the light of the data. To allow the information of the data rapidly to
assert itself, one may set P0 = λI, where λ is given a large value. This will
associate a large dispersion to the initial state estimate x0 to signify a lack of
confidence in its value, which will allow the estimate to be enhanced rapidly
by the information of the data points. Using the terminology of Bayesian
estimation, this recourse may be described as the method of the diffuse prior.

Data-dependent methods for initialising the Kalman filter of a more so-
phisticated nature, which make amends for, or which circumvent, the arbi-
trary choices of x0 and P0, have been proposed by Ansley and Kohn (1982)
and by de Jong (1991), amongst others. These methods have been surveyed
by Pollock (2003). Another account of the method of Ansley and Kohn,
which is more accessible than the original one, has also been provided by
Durbin and Koopman (2001).

The method of the diffuse prior bequeaths some pseudo information to
the Kalman filter, in the form of arbitrary initial conditions, which remains
in the system indefinitely, albeit that its significance is reduced as the sample
information is accumulated. The technique of Ansley and Kohn is designed
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to remove the pseudo information at the earliest opportunity, which is when
there is enough sample information to support the estimation of the state
vector.

In their exposition of the technique, Ansley and Kohn described a trans-
formation of the likelihood function that would eliminate its dependence
on the initial conditions. This transformation was a purely theoretical de-
vice without any practical implementation. However, it is notable that the
method of handling the start-up problem that has been expounded tje ac-
companying paper, which employs a differencing operation to reduce the data
sequence to stationarity, has exactly the effect of eliminating the dependence
upon initial conditions.

The Smoothing Algorithms

The Kalman filter generates an estimate xt = E(ξt|It) of the current state
of the system using information from the past and the present. To derive
a more efficient estimate, we should take account of information that arises
subsequently up to the end of the sample. Such an estimate, which may be
denoted by xt|T = E(ξt|IT ), is described as a fixed-interval estimate; and the
various algorithms that provide the estimate are described as a fixed-interval
smoothers.

It is laborious to derive the smoothing algorithms, of which there exist a
fair variety. The matter is treated at length in the survey article of Merkus,
Pollock and de Vos (1993) and in the monograph of Weinert (2001). Econo-
metricians and others have derived a collection of algorithms which are, in
some respects, more efficient in computation than the classical fixed-interval
smoothing algorithm that is due to Rauch (1963), of which a derivation can
be found in Anderson and Moore (1979), amongst other sources. A variant
of the classical algorithm has been employed by Young et al. (2004) in the
CAPTAIN MatLab toolbox, which provides facilities for estimating struc-
tural time-series models.

The classical algorithm may be derived via a sleight of hand. Consider
enhancing the estimate xt = E(ξt|It) in the light of the information afforded
by an exact knowledge of the subsequent state vector ξt+1. The information
would be conveyed by

ht+1 = ξt+1 − E(ξt+1|It), (42)

which would enable us to find

E(ξt|It, ht+1) = E(ξt|It) + C(ξt, ht+1|It)D
−1(ht+1|It)ht+1. (43)

Here there are

C(ξt, ht+1|It) = E{ξt(ξt − xt)
′Φ′ + ξtν

′
t|It} = PtΦ

′ and (44)

D(ht+1|It) = Pt+1|t.
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It follows that

E(ξt|It, ht+1) = E(ξt|It) + PtΦ
′P−1

t+1|t

{
ξt+1 − E(ξt+1|It)

}
. (45)

Of course, the value of ξt+1 in the RHS of this equation is not observable.
However, if we take the expectation of the equation conditional upon the
available information of the set IT , then ξt+1 is replaced by E(ξt+1|IT ) and
we get a formula that can be rendered as

xt|T = xt + PtΦ
′P−1

t+1|t{xt+1|T − xt+1|t}. (46)

The dispersion of the estimate is given by

Pt|T = Pt − PtΦ
′P−1

t+1|t{Pt+1|t − Pt+1|T}P−1
t+1|tΦPt. (47)

This derivation was published by Ansley and Kohn (1982). It highlights
the notion that the information that is used in enhancing the estimate of ξt

is contained entirely within the smoothed estimate of ξt+1.
The smoothing algorithm runs backwards through the sequence of esti-

mates generated by the Kalman filter, using a first-order feedback in respect
of the smoothed estimates. The estimate xt = E(ξt|It) is enhanced in the
light of the “prediction error”xt+1|T − xt+1|t, which is the difference between
the smoothed and the unsmoothed estimates of the state vector ξt+1.

In circumstances where the factor PtΦ
′P−1

t+1|t can be represented by a
constant matrix, the classical algorithm is efficient and easy to implement.
This would be the case if there were a constant transition matrix Φ and if
the filter gain Kt had converged to a constant. In all other circumstances,
where it is required recompute the factor at each iteration of the index t,
the algorithm is liable to cost time and to invite numerical inaccuracies. The
problem, which lies with the inversion of Pt+1|t, can be avoided at the expense
of generating a supplementary sequence to accompany the smoothing process.

Equivalent and Alternative Procedures

The derivations of the Kalman filter and the fixed-interval smoothing algo-
rithm are both predicated upon the minimum-mean-square-error estimation
criterion. Therefore, when the filter is joined with the smoothing algorithm,
the resulting estimates of the data components should satisfy this criterion.
However, its fulfilment will also depend upon an appropriate choice of the
initial conditions for the filter. For this, one may use the method of Ansley
and Kohn (1985).

The same criterion of minimum-mean-square-error estimation underlies
the derivation of the finite-sample Wiener–Kolmogorov filter that has been
presented in the accompanying paper. Therefore, when they are applied to
a common model, the Wiener–Kolmogorov filter and the combined Kalman
filter and smoother are expected to deliver the same estimates.

The handling of the initial-value problem does appear to be simpler in
the Wiener–Kolmogorov method than in the method of Ansley and Kohn.
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However, the finite-sample Wiener–Kolmogorov method is an instance of the
transformation approach that Ansley and Kohn have shown to be equivalent
to their method.

It should be noted that the minimum-mean-square-error estimates can
also be obtained using a time-invariant version of the Wiener–Kolmogorov
filter, provided that the finite data sequence can be extended by estimates
of the presample and post-sample elements. However, this requires that the
filter should relate to a well-specified ARMA or ARIMA model that is capable
of generating the requisite forecasts and backcasts. If this is the case, then
a cogent procedure for generating the extra-sample elements is the one that
has been been described by Burman (1980) and which is incorporated in the
TRAMO–SEATS program.

The upshot is that several routes lead to the same ends, any of which
may be taken. Nevertheless, there have been some heated debates amongst
econometrics who are the proponents of alternative approaches. However,
the only significant issue is the practical relevance of the alternative models
that are intended to represent the processes that underlie the data or to
provide heuristic devices for generating the relevant filters.

An agnostic stance has been adopted in this chapter; and no firm pro-
nouncements have been made concerning the nature of economic realities.
Nevertheless, it has been proposed that the concept of a band-limited pro-
cess, which had been largely overlooked in the past, is particularly relevant
to this area of econometric analysis.

This concept encourages consideration of the Fourier methods of filtering
presented in the accompanying paper, which are capable of separating com-
ponents of the data that lie in closely adjacent frequency bands, as is the
case in Figure 2, where the fundamental seasonal component abuts the low-
frequency structure of the trend-cycle component. Such methods have been
explored in greater detail in a paper of Pollock (2008); and they have been
implemented in a program that is available from a website at the address

http://www.le.ac.uk/users/dsgp1/
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