
STATISTICAL SIGNAL EXTRACTION AND FILTERING:

by D.S.G. Pollock

Linear Time-Invariant (LTI) Filters

An LTI filter entails a linear combination of successive elements of a
discrete-time signal x(t) = {xt; t = ±1,±2, . . .}. The filter’s output is

(1) y(t) =
∑

j

ψjx(t − j).

By associating zt to each element yt and by summing the sequence, we
get

(2)
∑

t

ytz
t =

∑
t

{∑
j

ψjxt−j

}
zt or y(z) = ψ(z)x(z),

where the constituent z-transforms are

(3) x(z) =
∑

t

xtz
t, y(z) =

∑
t

ytz
t and ψ(z) =

∑
j

ψjz
j .
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The Impulse Response

The sequence {ψj} of the filter’s coefficients is its impulse reponse.
Finite moving averages are called fini impulse-response (FIR) filters.
When the impulse response has an indefinite duration, there is an infinite
impulse-response (IIR) filter. A filter is causal or backward-looking if none
of its coefficients is associated with a negative power of z.

Causal Filters

A practical filter must comprise only a finite number of distinct
parameters. Linear IIR filters that are causal entail recursive equations

(4)
g∑

j=0

φjyt−j =
d∑

j=0

θjxt−j , with φ0 = 1,

of which the z-transform is

(5) φ(z)y(z) = θ(z)x(z),

wherein φ(z) = φ0 + φ1z + · · · + φpz
p and θ(z) = θ0 + θz + · · · + θqz

q.
Setting φ0 = 1 identifies y(t) as the output.

The lagged values of the output constitute feedback.
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The recursive equation may be assimilated to the equation under (2)
by writing it in rational form:

(6) y(z) =
θ(z)
φ(z)

x(z) = ψ(z)x(z).

On the condition that the filter is stable, the expression ψ(z) stands for
the series expansion of the ratio of the polynomials.

The Series Expansion of a Rational Transfer Function

The method of finding the coefficients of the series expansion can be
illustrated by the second-order case:

(7)
θ0 + θ1z

φ0 + φ1z + φ2z2
=

{
ψ0 + ψ1z + ψ2z

2 + · · ·
}
.

We rewrite this equation as

(8) θ0 + θ1z =
{
φ0 + φ1z + φ2z

2
}{

ψ0 + ψ1z + ψ2z
2 + · · ·

}
.
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Figure 1. The impulse response of the transfer function θ(z)/φ(z)
with φ(z) = 1.0 − 1.2728z + 0.81z2 and θ(z)(z) = 1.0 + 0.75z.
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Figure 2. The pole–zero diagram corresponding to the transfer function
of Figure 1. The conjugate complex poles have arguments of ±π/4 and a
modulus of 0.9. The single real-valued zero has the value of −0.75.
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The following table assists us in multiplying together the two polynomials:

(9)

ψ0 ψ1z ψ2z
2 · · ·

φ0 φ0ψ0 φ0ψ1z φ0ψ2z
2 · · ·

φ1z φ1ψ0z φ1ψ1z
2 φ1ψ2z

3 · · ·
φ2z

2 φ2ψ0z
2 φ2ψ1z

3 φ2ψ2z
4 · · ·

Performing the multiplication on the RHS of the equation, and by equating
the coefficients of the same powers of z on the two sides, we find that

θ0 = φ0ψ0,

θ1 = φ0ψ1 + φ1ψ0,

0 = φ0ψ2 + φ1ψ1 + φ2ψ0,
...

0 = φ0ψn + φ1ψn−1 + φ2ψn−2,

ψ0 = θ0/φ0,

ψ1 = (θ1 − φ1ψ0)/φ0,

ψ2 = −(φ1ψ1 + φ2ψ0)/φ0,
...

ψn = −(φ1ψn−1 + φ2ψn−2)/φ0.

6



D.S.G. POLLOCK: Statistical Signal Extraction and Filtering

Bi-directional (Non causal) Filters

A two-sided symmetric filter, which has the form of

(11) ψ(z) = θ(z−1)θ(z) = ψ0 + ψ1(z−1 + z) + · · · + ψm(z−m + zm),

imposes no delays on any of the components of the signal. This is explained
by the Cramér–Wold factorisation ψ(z) = θ(z−1)θ(z), which gives rise to
two equations

(i) q(z) = θ(z)y(z) and (ii) x(z) = θ(z−1)q(z).

The corresponding operations are

(12) (i) qt =
∑

j

θjyt−j and (ii) xt =
∑

j

θjqt+j .

The first operation, which runs in real time, imposes a time delay on every
component of x(t). The second operation, which works in reversed time,
imposes an equivalent reverse-time delay on each component.

The reverse-time delays, which are advances in other words, serve to
eliminate the corresponding real-time delays.
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If ψ(z) corresponds to an FIR filter, then x(t) may be generated via a
single application of the two-sided filter ψ(z) to the signal y(t), or it may
be generated in two operations via the successive applications of θ(z) to
y(z) and θ(z−1) to q(z) = θ(z)y(z). It is a matter of indifference of which
of these techniques is used to generate x(t).

Two-Sided Rational Filters

The final species of linear filter which may be used in the processing
of economic time series is a symmetric two-sided rational filter of the form

(13) ψ(z) =
θ(z−1)θ(z)
φ(z−1)φ(z)

.

This must be applied in two separate passes running forwards and back-
wards in time and described, respectively, by the equations

(14) (i) φ(z)q(z) = θ(z)y(z) and (ii) φ(z−1)x(z) = θ(z−1)q(z).
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The Response to a Sinusoidal Input

Conside mapping the sequence {xt = cos(ωt)} through the transfer
function with the coefficients {ψ0, ψ1, . . .}. The output is

(15) y(t) =
∑

j

ψj cos
(
ω[t − j]

)
.

Using the identity cos(A − B) = cos A cos B + sinA sinB, this becomes

(16)
y(t) =

{∑
j

ψj cos(ωj)
}

cos(ωt) +
{∑

j

ψj sin(ωj)
}

sin(ωt)

= α cos(ωt) + β sin(ωt) = ρ cos(ωt − θ),

Expanding the final expression gives α = ρ cos(θ) and β = ρ sin(θ),
whence,

(17) ρ2 = α2 + β2 and θ = tan−1
(β

α

)
.

Also, if λ = α + iβ and λ∗ = α− iβ are conjugate complex numbers, then
ρ would be their modulus. This is illustrated in Figure 3.

9



D.S.G. POLLOCK: Statistical Signal Extraction and Filtering

ρ

α

β

θ

−θ

λ

λ*

Re

Im

Figure 3. The Argand Diagram showing a complex
number λ = α + iβ and its conjugate λ∗ = α − iβ.
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The transfer function has a gain effect, whereby the amplitude of the
sinusoid is increased or diminished by the factor ρ. It has a phase effect,
whereby the peak of the sinusoid is displaced by a time delay of θ/ω
periods. The frequency of the output is the same as the frequency of the
input, which is a fundamental feature of all linear dynamic systems.

To obtain full information on the system, it is necessary to excite it
over a full range of frequencies.

Aliasing and the Shannon–Nyquist Sampling Theorem

In a discrete-time system, signal frequencies in excess of π radians
per sampling interval are confounded with frequencies within the interval
[0, π]. Consider a cosine wave of a frequency ω in the interval π < ω < 2π
that is sampled at unit intervals. Let ω∗ = 2π − ω. Then,

(18)

cos(ωt) = cos
{
(2π − ω∗)t

}
= cos(2π) cos(ω∗t) + sin(2π) sin(ω∗t)
= cos(ω∗t);

which indicates that ω and ω∗ are observationally indistinguishable. Here,
ω∗ ∈ [0, π] is described as the alias of ω > π.
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Figure 4. The values of the function cos{(11/8)πt} coincide with those
of its alias cos{(5/8)πt} at the integer points {t = 0,±1,±2, . . .}.
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The Frequency Response of a Linear Filter

The frequency response of a linear filter ψ(z) is its response to the set
of sinusoidal inputs of all frequencies ω within the Nyquist interval [0, π].
This entails the squared gain of the filter, defined by

(19) ρ2(ω) = ψ2
α(ω) + ψ2

β(ω),

where

(20) ψα(ω) =
∑

j

ψj cos(ωj) and ψβ(ω) =
∑

j

ψj sin(ωj),

and the phase displacement, defined by

(21) θ(ω) = Arg{ψ(ω)} = tan−1{ψβ(ω)/ψα(ω)}.

It is convenient to replace the trigonometrical functions of (20) by the
complex exponential functions

(22) eiωj =
1
2
{cos(ωj) + sin(ωj)} and e−iωj =

1
2
{cos(ωj) − sin(ωj)}.
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These enable the trigonometrical functions to be expressed as

(23) cos(ωt) =
1
2
{eiωj + e−iωj} and sin(ωj) =

i
2
{e−iωj − eiωj}.

Setting z = exp{−iωj} in ψ(z) gives

(24) ψ(e−iωj) = ψα(ω) − iψβ(ω),

which we shall write hereafter as ψ(ω) = ψ(e−iωj).
The squared gain of the filter, previously denoted by ρ2(ω), is the

square of the complex modulus

(25) |ψ(ω)|2 = ψ2
α(ω) + ψ2

β(ω),

which is obtained by setting z = exp{−iωj} in ψ(z−1)ψ(z).
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Figure 5. The spectral density function of the ARMA(2, 1) process
y(t) = 1.2728y(t−1)−0.81y(t−1)+ε(t)+0.0.75ε(t−1) with V {ε(t)} = 1.
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The Spectrum of a Stationary Stochastic Process

Consider a stationary stochastic process y(t) = {yt; t = 0,±1,±2, . . .}
The generic element of the process can be expressed as yt =

∑
j ψjεt−j ,

where εt is an element of a sequence ε(t) of independently and identically
distributed random variables with E(εt) = 0 and V (εt) = σ2 for all t.

The autocovariance generating function of the process is

(26) σ2ψ(z−1)ψ(z) = γ(z) = {γ0 + γ1(z−1 + z) + γ2(z−2 + z2) + · · ·}.

The following table assists in forming the product γ(z) = σ2ψ(z−1)ψ(z):

(27)

ψ0 ψ1z ψ2z
2 · · ·

ψ0 ψ2
0 ψ0ψ1z ψ0ψ2z

2 · · ·
ψ1z

−1 ψ1ψ0z
−1 ψ2

1 ψ1ψ2z · · ·
ψ2z

−2 ψ2ψ0z
−2 ψ2ψ1z

−1 ψ2
2 · · ·

...
...

...
...
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The autocovariances are obtained by summing along the NW–SE
diagonals:

(28)

γ0 = σ2{ψ2
0 + ψ2

1 + ψ2
2 + ψ2

3 + · · ·},

γ1 = σ2{ψ0ψ1 + ψ1ψ2 + ψ2ψ3 + · · ·},

γ2 = σ2{ψ0ψ2 + ψ1ψ3 + ψ2ψ4 + · · ·},
...

By setting z = exp{−iωj} and dividing by 2π, we get the spectral density
function of the process:

(29) f(ω) =
1
2π

{
γ0 + 2

∞∑
τ=1

γτ cos(ωτ)
}

.

This entails the cosine Fourier transform of the sequence of autocovari-
ances.
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Wiener–Kolmogorov Filtering of Stationary Sequences

The purpose of a Wiener–Kolmogorov (W–K) filter is to extract an
estimate of a signal sequence ξ(t) from an observable data sequence (t)
afflicted by the noise η(t).

(30) y(t) = ξ(t) + η(t).

The signal and the noise are zero-mean stationary stochastic processes
that are mutually independent. For the present, we assume that the data
constitute a doubly-infinite sequence.

The autocovariance generating function of the data is

(31) γyy(z) = γξξ(z) + γηη(z) and γξξ(z) = γyξ(z).

These functions have Cramér–Wold factorisations:

γyy(z) = φ(z−1)φ(z), γξξ(z) = θ(z−1)θ(z), γηη(z) = θη(z−1)θη(z).

The estimate xt of the signal element ξt, is a linear combination of
the elements of the data sequence:

(33) xt =
∑

j

ψjyt−j .
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The principle of minimum-mean-square-error estimation indicates that the
estimation errors must be statistically uncorrelated with the elements of
the information set. Thus, the following condition applies for all k:

(34)

0 = E
{

yt−k(ξt − xt)
}

= E(yt−kξt) −
∑

j

ψjE(yt−kyt−j)

= γyξ
k −

∑
j

ψjγ
yy
k−j .

The equation may be expressed, in terms of the z-transforms, as

(35) γyξ(z) = ψ(z)γyy(z).

It follows that

(36)
ψ(z) =

γyξ(z)
γyy(z)

=
γξξ(z)

γξξ(z) + γηη(z)
=

θ(z−1)θ(z)
φ(z−1)φ(z)

.
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The same principle applies to the estimation of the residual compo-
nent. This is obtained using the complementary filter

(37) ψc(z) = 1 − ψ(z) =
γηη(z)

γξξ(z) + γηη(z)
.

The estimated signal component may be obtained by filtering the
data in two passes according to the following equations:

(38) φ(z)q(z) = θ(z)y(z), φ(z−1)x(z−1) = θ(z−1)q(z−1).

The first equation relates to a process that runs forwards in time to
generate the elements of an intermediate sequence, represented by the
coefficients of q(z). The second equation represents a process that runs
backwards to deliver the estimates of the signal, represented by the coef-
ficients of x(z).

By setting z = exp{−iω}, one can derive the frequency-response func-
tion of the filter that is used in estimating the signal ξ(t). The effect of the
filter is to multiply each of the frequency elements of y(t) by the fraction
of its variance that is attributable to the signal.
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The Hodrick–Prescott (Leser) Filter and the Butterworth Filter

The Wiener–Kolmogorov methodology can be applied to non station-
ary data with minor adaptations. A model of the processes underlying the
data can be adopted that has the form of

(39)
∇d(z)y(z) = ∇d(z){ξ(z) + η(z)} = δ(z) + κ(z)

= (1 + z)nζ(z) + (1 − z)mε(z),

where ζ(z) and ε(z) are the z-transforms of two independent white-noise
sequences ζ(t) and ε(t).

The model of y(t) = ξ(t) + η(t) entails a pair of stochastic processes,
of which the z-transform are.

(40) ξ(z) =
(1 + z)n

∇d(z)
ζ(z) and η(z) =

(1 − z)m

∇d(z)
ε(z).

The condition m ≥ d is necessary to ensure the stationarity of η(t), which
is obtained from ε(t) by differencing m − d times.
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The filter that is applied to y(t) to estimate ξ(t), which is the d-fold
integral of δ(t), takes the form of

(41) ψ(z) =
σ2

ζ (1 + z−1)n(1 + z)n

σ2
ζ (1 + z−1)n(1 + z)n + σ2

ε(1 − z−1)m(1 − z)m
,

regardless of the degree d of differencing that would be necessary to reduce
y(t) to stationarity.

By setting d = m = 2 and n = 0 in (39), a model is obtained of a
second-order random walk ξ(t) affected by white-noise errors of observa-
tion η(t) = ε(t). The resulting lowpass W–K filter, in the form of

(42) ψ(z) =
1

1 + λ(1 − z−1)2(1 − z)2
with λ =

σ2
η

σ2
δ

,

is the Hodrick–Prescott filter. The complementary highpass filter is

(43) ψc(z) =
(1 − z−1)2(1 − z)2

λ−1 + (1 − z−1)2(1 − z)2
.

Here, λ is the adjustable smoothing parameter.
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By setting m = n, a filter for estimating ξ(t) is obtained that takes
the form of

(44)

ψ(z) =
σ2

ζ (1 + z−1)n(1 + z)n

σ2
ζ (1 + z−1)n(1 + z)n + σ2

ε(1 − z−1)n(1 − z)n

=
1

1 + λ

(
i
1 − z

1 + z

)2n with λ =
σ2

ε

σ2
ζ

.

This is the Butterworth lowpass digital filter. The filter has two ad-
justable parameters, and, it is a more flexible than the H–P filter.

First, there is the parameter λ. This can be expressed as

(45) λ = {1/ tan(ωd)}2n,

where ωd is the nominal cut-off point of the filter, which is the mid point
in the transition of the filter’s frequency response from its pass band to
its stop band.

The second of the adjustable parameters is n, which denotes the order
of the filter. As n increases, the transition between the pass band and the
stop band becomes more abrupt.
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Figure 6. The gain of the Hodrick–Prescott lowpass filter with a smooth-
ing parameter set to 100, 1600 and 14400.
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Figure 7. The squared gain of the lowpass Butterworth filters
of orders n = 6 and n = 12 with a nominal cut-off point of 2π/3
radians.
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Wiener–Kolmogorov Filters for Finite Sequences

The W–K theory can be adapted to finite data sequences. Consider
a data vector y = [y0, y1, . . . , yT−1, ]′ with components ξ and η:

(46) y = ξ + η.

The components are assumed to be independently normally distributed
with zero means and with positive-definite dispersion matrices. Then,

(47)

E(ξ) = 0, D(ξ) = Ωξ,

E(η) = 0, D(η) = Ωη,

and C(ξ, η) = 0.

Here, Ωξ and Ωη may be obtained, from γξ(z) and γη(z), respec-
tively, by replacing z by the matrix lag operator LT = [e1, e2, . . . , eT−1, 0]
obtained from IT = [e0, e1, e2, . . . , eT−1] by deleting the leading column
and by appending a zero vector to the end. Negative powers of z are
replaced by powers of FT = L−1

T .
The independence of ξ and η implies that D(y) = Ωξ + Ωη.
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Time-Varying Filter Coefficients

We may begin by considering the determination of the vector of the T
filter coefficients ψt. = [ψt,0, ψt,1, . . . , ψt,T−1] that determine xt, which is
the tth element of the filtered vector x = [x0, x1, . . . , xT−1]′. The estimate
of ξt based on the sample y0, y1, . . . , yT−1 is

xt =
t−T+1∑
j=−t

ψt,jyt−j ,

and the principle of minimum-mean-square-error estimation indicates that

(48)

0 = E
{
yt−k(ξt − xt)

}
= E(yt−kξt) −

t−T+1∑
j=−t

ψt,jE(yt−kyt−j)

= γyξ
k −

t−T+1∑
j=−t

ψt,jγ
yy
j−k.
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Equation (48) can be rendered also in a matrix format. By running
from k = −t to k = T − t − 1, we get

(49)


γξξ

t

γξξ
t+1

...
γξξ

T−1−t

 =


γyy
0 γyy

1 · · · γyy
T−1

γyy
1 γyy

0 · · · γyy
T−2

...
...

. . .
...

γyy
T−1 γyy

T−2 · · · γyy
0




ψt,0

ψt,1

...

ψt,T−1

 .

Here, on the LHS, we have set γyξ
j = γξξ

j in accordance with (31).
This equation above can be written as Ωξet = Ωyψ′

t., where et is a
vector of order T containing a single unit preceded by t zeros and followed
by T − 1 − t zeros. The coefficient vector ψt. is given by

(50) ψt. = e′tΩξΩ−1
y = e′tΩξ(Ωξ + Ωη)−1.

and the estimate of ξt is xt = ψt.y.
Given the data vector y, the estimate of the signal vector ξ is

(51) x = ΩξΩ−1
y y = Ωξ(Ωξ + Ωη)−1y.
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The Estimates as Conditional Expectations

The optimal predictors of the signal and the noise components are
the conditional expectations:

E(ξ|y) = E(ξ) + C(ξ, y)D−1(y){y − E(y)}(52)
= Ωξ(Ωξ + Ωη)−1 = x,

E(η|y) = E(η) + C(η, y)D−1(y){y − E(y)}(53)
= Ωη(Ωξ + Ωη)−1y = h.

which are their minimum-mean-square-error estimates.
The error dispersion matrices, from which confidence intervals for the

estimated components may be derived, are

D(ξ|y) = D(ξ) − C(ξ, y)D−1(y)C(y, ξ)(54)
= Ωξ − Ωξ(Ωξ + Ωη)−1Ωξ,

D(η|y) = D(η) − C(η, y)D−1(y)C(y, η),(55)
= Ωη − Ωη(Ωξ + Ωη)−1Ωη.
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The Least-Squares Derivation of the Estimates

The estimates x and h of ξ and η can also be derived according to
the following criterion:

(56) Minimise S(ξ, η) = ξ′Ω−1
ξ ξ + η′Ω−1

η η subject to ξ + η = y.

The resulting estimates may be described, also, as the minimum chi-square
estimates or the maximum-likelihood estimates.

Substituting for η = y − ξ gives the concentrated criterion function
S(ξ) = ξ′Ω−1

ξ ξ + (y − ξ)′Ω−1(y − ξ). Differentiating in respect of ξ and
setting the result to zero gives the condition

Ω−1(y − x) = Ω−1
ξ x.

Pre multiplication by Ωη, gives y = x + ΩΩ−1
ξ x = (Ωξ + Ωη)Ω−1

ξ x. There-
fore, the solution for x is

(57) x = Ωξ(Ωξ + Ωη)−1y.

Since ξ and η are interchangeable, and since h+x = y, there are also

(58) h = Ωη(Ωξ + Ωη)−1y and x = y − Ωη(Ωξ + Ωη)−1y.
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Computing the Estimates

The filter matrices Ψξ = Ωξ(Ωξ + Ωη)−1 and Ψη = Ωη(Ωξ + Ωη)−1 of
(57) and (58) are the matrix analogues of the z-transforms displayed in
equations (36) and (37).

To calculate the estimates x and h, first solve the equation

(59) (Ωξ + Ωη)b = y

for the value of b. Then, one can generate

(60) x = Ωξb and h = Ωηb.

If Ωξ and Ωη are narrow-band moving-average dispersion matrices,
then the solution to (58) is via a Cholesky factorisation Ωξ + Ωη = GG′,
where G is a lower-triangular matrix with a limited number of nonzero
bands.

The system GG′b = y may be cast in the form of Gp = y and solved
for p. Then, G′b = p can be solved for b.
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Figure 8. The squared gain of the difference operator, which has a zero at zero

frequency, and the squared gain of the summation operator, which is unbounded

at zero frequency.
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The Difference and Summation Operators

The trend can be eliminated from the data y(t) = {yt; t = 0,±1,±2, . . .}
by taking the first differences y(t) − y(t − 1) or the second differences
y(t) − 2y(t − 1) + y(t − 2). Differences of higher orders are rare.

The difference operator is ∇(z) = 1 − z. The z-transform of the first
difference is ∇(z)y(z) = y(z) − zy(z). For the second difference, it is
∇2(z)y(t) = (1 − 2z + z2)y(z).

The inverse of the difference operator is the summation operator

(61) Σ(z) = (1 − z)−1 = {1 + z + z2 + · · ·}.

The z-transform of the d-fold summation operator is

(62) Σd(z) =
1

(1 − z)d
= 1 + dz +

d(d + 1)
2!

z2 +
d(d + 1)(d + 2)

3!
z3 + · · · .

The difference operator nullifies the trend and it severely attenuates
the elements of the data that are adjacent in frequency to the zero fre-
quency of the trend. It also amplifies the high frequency elements of the
data.
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The Matrix Difference Operators

For a sample of T elements in the vector y = [y0, y1, . . . , yT−1]′, one
must use the matrix difference operator ∇(LT ) = IT − LT .

Examples of the first-order and second-order matrix difference oper-
ators are

(63) ∇4 =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

 , ∇2
4 =


1 0 0 0
−2 1 0 0
1 −2 1 0
0 1 −2 1

 .

The correspoding inverse matrices are

(64) Σ4 =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 , Σ2
4 =


1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1

 .

The elements of the leading vector are the coefficients associated with the
expansion of Σd(z) of (62).
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Polynomial Interpolation

The first p columns of the matrix Σp
T provide a basis of the set of

polynomials of degree p − 1 defined on the integers t = 0, 1, 2, . . . , T − 1.
Consider, for example, the first three columns of the matrix Σ3

4, which
may be transformed as follows:

(65)


1 0 0
3 1 0
6 3 1
10 6 3


 1 1 1
−2 −1 1
1 0 0

 =


1 1 1
1 2 4
1 3 9
1 4 16

 .

The first column of the matrix on the LHS contains the ordinates of the
quadratic function (t2 + t)/2. The columns of the transformed matrix
contain the ordinates t0, t1 and t2 for the integers t = 1, 2, 3, 4. The ex-
tension of the matrix to T rows provides a basis for the quadratic functions
q(t) = at2 + bt + c defined on T consecutive integers.

The matrix of the powers of the integers is notoriously ill-conditioned.
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Consider, the matrix that takes the p-th differences:

(66) ∇p
T = (I − LT )p.

Let ∇p
T = [Q∗, Q]′, where Q′

∗ has p rows. Then

(67) ∇p
T y =

[
Q′

∗
Q′

]
y =

[
g∗
g

]
;

and g∗ is liable to be discarded, whereas g will be regarded as the vector
of the p-th differences of the data.

If ∇−p
T = [S∗, S] is partitioned conformably then

(68) [S∗ S ]
[

Q′
∗

Q′

]
= S∗Q

′
∗ + SQ′ = IT ,

and

(69)
[

Q′
∗

Q′

]
[S∗ S ] =

[
Q′

∗S∗ Q′
∗S

Q′S∗ Q′S

]
=

[
Ip 0
0 IT−p

]
.

If g∗ is available, then y can be recovered from g via

(70) y = S∗g∗ + Sg.
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Polynomial Interpolation by Least Squares

Since S∗, provides a basis for all polynomials of degree p− 1 that are
defined on the integer points t = 0, 1, . . . , T − 1, it follows that S∗g∗ =
S∗Q′

∗y contains the ordinates of a polynomial of degree p − 1, which is
interpolated through the first p elements of y, indexed by t = 0, 1, . . . , p−1.

Let y = ξ+η, where ξ contains the ordinates of a polynomial of degree
p − 1 and η is a disturbance term with E(η) = 0 and D(η) = σ2

ηIT . To
estimate ξ via x = S∗r∗ we should minimise the residual sum of squares

(71) (y − x)′(y − x) = (y − S∗r∗)′(y − S∗r∗)

with respect to r∗. The resulting values are

(72) r∗ = (S′
∗S∗)−1S′

∗y and x = S∗(S′
∗S∗)−1S′

∗y.
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An Alternative Polynomial Representation

An alternative representation of the estimated polynomial is available.
This is provided by the identity

(73) S∗(S′
∗S∗)−1S′

∗ = I − Q(Q′Q)−1Q′.

To prove this identity, consider the fact that Z = [Q, S∗] is square
matrix of full rank and that Q and S∗ are mutually orthogonal such that
Q′S∗ = 0. Then

(74)
Z(Z ′Z)−1Z ′ = [Q S∗ ]

[
(Q′Q)−1 0

0 (S′
∗S)−1

] [
Q′

S′
∗

]
= Q(Q′Q)−1Q′ + S∗(S′

∗S∗)−1S′
∗.

Since Z(Z ′Z)−1Z ′ = Z(Z−1Z ′−1)Z ′ = I, the result of (73) follows; and
the vector the ordinates of the polynomial regression is also given by

(75) x = y − Q(Q′Q)−1Q′y.
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Figure 9. The quarterly series of the logarithms of consumption in the U.K., for

the years 1955 to 1994, together with a linear trend interpolated by least-squares

regression.
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Figure 10. The periodogram of the residual sequence obtained from the linear

detrending of the logarithmic consumption data.
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Polynomial Regression and Trend Extraction

Polynomial regression can be used in a preliminary detrending of the
data. Once the trend has been eliminated from the data, one can proceed
to assess their spectral structure by examining the periodogram of the
residual sequence.

Often the periodogram will reveal the existence of a cut-off frequency
that bounds a low frequency trend/cycle component and separates it from
the remaining elements of the spectrum.

An example is given in Figures 5 and 6. Figure 5 represents the
logarithms of the quarterly data on aggregate consumption in the United
Kingdom for the years 1955 to 1994.

The linear trend that has been interpolated by least-squares regression
establishes a benchmark of constant exponential growth, against which the
fluctuations of consumption can be measured.

The periodogram of the residual sequence is plotted in Figure 6. This
shows that the low-frequency structure is bounded by a frequency value of
π/8. This value can used in specifying the appropriate filter for extracting
the low-frequency trajectory of the data
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Filters for Short Trended Sequences

One way of eliminating the trend is to take differences of the data.
Usually, twofold differencing is appropriate. The matrix analogue of the
second-order backwards difference operator in the case of T = 5 is given
by

(76) ∇2
5 =

[
Q′

∗
Q′

]
=


1 0 0 0 0
−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

 .

Applying Q′ to the equation y = ξ + η, representing the trended data,
gives

(77)
Q′y = Q′ξ + Q′η

= δ + κ = g.
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The moments of the differenced vectors are

(78)
E(δ) = 0, D(δ) = Ωδ = Q′D(ξ)Q,

E(κ) = 0, D(κ) = Ωκ = Q′D(η)Q.

The starting-value problem can be circumvented by concentrating on
the estimation of η. The conditional expectation of η given g = Q′y is

(79)
h = E(η|g) = E(η) + C(η, g)D−1(g){g − E(g)}

= C(η, g)D−1(g)g,

Within this expression, there are

(80) D(g) = Ωδ + Q′ΩηQ and C(η, g) = ΩηQ.

Putting these details into (79) gives the following estimate of η:

(81) h = ΩηQ(Ωδ + Q′ΩηQ)−1Q′y.

Putting this into the equation

(82) x = E(ξ|g) = y − E(η|g) = y − h

gives

(83) x = y − ΩηQ(Ωδ + Q′ΩηQ)−1Q′y.
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The Least-Squares Derivation of the Filter

The least-squares criterion is

(84) Minimise (y − ξ)′Ω−1
η (y − ξ) + ξ′QΩ−1

δ Q′ξ.

The first term penalises departures of the curve from the data, and the
second term imposes a penalty for a lack of smoothness. Differentiating
the function with respect to ξ and setting the result to zero gives

(85) Ω−1
η (y − x) = −QΩ−1

δ Q′x = QΩ−1
δ d,

where x stands for the estimated value of ξ and d = Q′x. Premultiplying
by Q′Ωη gives

(86) Q′(y − x) = Q′y − d = Q′ΩηQΩ−1
δ d,

whence

(87)
Q′y = d + Q′ΩηQΩ−1

δ d

= (Ωδ + Q′ΩηQ)Ω−1
δ d,

44



D.S.G. POLLOCK: Statistical Signal Extraction and Filtering

which gives

(88) Ω−1
δ d = (Ωδ + Q′ΩηQ)−1Q′y.

Putting this into

(89) x = y − ΩηQΩ−1
δ d,

which comes from premultiplying (64) by Ωη, gives

(90) x = y − ΩηQ(Ωδ + Q′ΩηQ)−1Q′y.

One should observe that

(91) ΩηQ(Ωδ + Q′ΩηQ)−1Q′y = ΩηQ(Ωδ + Q′ΩηQ)−1Q′e,

where e = Q(Q′Q)−1Q′y is the vector of residuals obtained by interpolat-
ing a straight line through the data by a least-squares regression.

It makes no difference to the estimate of the component that is com-
plementary to the trend whether the filter is applied to the data vector y
or the residual vector e.
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The Leser (HP) Filter

The specific cases that have been considered in the context of the
classical form of the Wiener–Kolmogorov filter can now be adapted to the
circumstances of short trended sequences. First there is the Leser filter.
This is derived by setting

(92) D(η) = Ωη = σ2
ηI, D(δ) = Ωδ = σ2

δI and λ =
σ2

η

σ2
δ

within (90) to give

(93) x = y − Q(λ−1I + Q′Q)−1Q′y

Here, λ is the so-called smoothing parameter. As λ → ∞, the vector
x tends to that of a linear function interpolated into the data by least-
squares regression, which is

(75) x = y − Q(Q′Q)−1Q′y.

46



D.S.G. POLLOCK: Statistical Signal Extraction and Filtering

The Butterworth Filter

The Butterworth filter that is appropriate to short trended sequences
can be represented by the equation

(94) x = y − λΣQ(M + λQ′ΣQ)−1Q′y.

Here, the matrices

(95) Σ = {2IT − (LT + L−1
T )}n−2 and M = {2IT + (LT + L−1

T )}n

are obtained from the RHS of the equations {(1 − z)(1 − z−1)}n−2 =
{2−(z+z−1)}n−2 and {(1+z)(1+z−1)}n = {2+(z+z−1)}n, respectively,
by replacing z by LT and z−1 by L−1

T . Observe that the equalities no
longer hold after the replacements. However, it can be verified that

(96) Q′ΣQ = {2IT − (LT + L−1
T )}n.
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Figure 11. The residual sequence from fitting a linear trend to
the logarithmic consumption data with an interpolated line rep-
resenting the business cycle, obtained by the frequency-domain
method.
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Filtering in the Frequency Domain

The method of Wiener–Kolmogorov filtering can also be implemented
using the circulant dispersion matrices that are given by

(97)
Ω◦

ξ = Ūγξ(D)U, Ω◦
η = Ūγη(D)U and

Ω◦ = Ω◦
ξ + Ω◦

η = Ū{γξ(D) + γη(D)}U,

wherein the diagonal matrices γξ(D) and γη(D) contain the ordinates of
the spectral density functions of the component processes.

Here, U = T−1/2[W jt], with t, j = 0, . . . , T − 1, is the matrix of the
Fourier transform, in which W jt = exp(−i2πtj/T ), and Ū is its conjugate
transpose. Also, D = diag{1, W, W 2, . . . , WT−1} is a diagonal matrix
comprising the T roots of unity.

By replacing the dispersion matrices within (52) and (53) by their
circulant counterparts, we derive the following formulae:

x = Ūγξ(D){γξ(D) + γη(D)}−1Uy = Pξy,(98)

h = Ūγη(D){γξ(D) + γη(D)}−1Uy = Pηy.(99)
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Implementing the Frequency-Domain Filter

A Fourier transform may applied to the data vector y to give Uy,
which resides in the frequency domain. Then, Uy is multiplied by

Jξ = γξ(D){γξ(D) + γη(D)}−1 and Jη = γη(D){γξ(D) + γη(D)}−1.

Finally, the products are carried back into the time domain by the inverse
Fourier transform Ū .
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The Frequency-Domain Method and Nonstationary Data

Data may be reduced to stationarity by twofold differencing before
filtering. The filtered sequence may be reinflated by summation.

Let the original data be y = ξ + η and let the differenced data be
g = Q′y = δ + κ. If the estimates of δ = Q′ξ and κ = Q′η are denoted by
d and k respectively, then the estimates of ξ and η will be

(100) x = S∗d∗ + Sd where d∗ = (S′
∗S∗)−1S′

∗(y − Sd)

and

(101) h = S∗k∗ + Sk where k∗ = −(S′
∗S∗)−1S′

∗Sk.

Here, d∗ an k∗ are the initial conditions that are obtained via the minimi-
sation of the function

(102)
(y − x)′(y − x) = (y − S∗d∗ − Sd)′(y − S∗d∗ − Sd)

= (S∗k∗ + Sk)′(S∗k∗ + Sk) = h′h.

The minimisation ensures that the estimated trend x adheres as closely
as possible to the data y.
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An Alternative Frequency Domain Method

An alternative method concentrates on estimating the stationary high
frequency component. First, the data are reduced to stationarity by
twofold differencing.

Then the re-inflation of the high frequency component occurs in the
frequency domain after it has been extracted. The resulting vector of
Fourier coefficients is transformed to the time domain.

The centralised difference operator reduces the trended data sequence
to stationary This is

(108)
N(z) = z−1 − 2 + z = z−1(1 − z)2

= z−1∇2(z).

The matrix version of the operator is obtained by setting z = LT and
z−1 = L′

T , which gives

(109) N(LT ) = NT = LT − 2IT + L′
T .
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(110) N5 =

Q′
−1

Q′

Q+1

 =


−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

0 0 0 1 −2

 .

On deleting the first and last elements of the vector NT y, which are
Q′

−1y = e′1∇2
T y and Q+1y, respectively, we get Q′y = [q1, . . . , qT−2]′. The

loss of these elements can be overcome by supplementing the original data
vector y with two extrapolated end points y−1 and yT .or by attributing
appropriate values to q0 and qT−1.

Let Λ be the matrix which selects the appropriate ordinates of the
Fourier transform γ = Uq of the twice differenced data. These ordinates
must be reinflated to compensate for the differencing operation, which has
the frequency response

(111) f(ω) = 2 − 2 cos(ω).
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Reinflation in the Frequency Domain

The response of the anti-differencing operation is 1/f(ω); and γ is
reinflated by pre-multiplying by the diagonal matrix

(112) V = diag{v0, v1, . . . , vT−1},

comprising the values vj = 1/f(ωj); j = 0, . . . , T − 1, where ωj = 2πj/T .
Let H = V Λ be the matrix that is is applied to γ = Uq to generate the

Fourier ordinates of the filtered vector. The resulting vector is transformed
to the time domain to give

(113) h = ŪHγ = ŪHUq.

Since f(ω) is zero-valued when ω = 0 and that 1/f(ω) is unbounded
in the neighbourhood of ω = 0.

The low-frequency trend component that is complementary to h is

(114) x = y − h = y − ŪHUq.
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Figure 12. The pseudo-spectrum of a random walk, labelled A, to-
gether with the squared gain of the highpass Hodrick–Prescott filter with
a smoothing parameter of λ = 100, labelled B. The curve labelled C
represents the spectrum of the filtered process.
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Business Cycles and Spurious Cycles

For the original data, the decomposition is usually a multiplicative
one and, for the logarithmic data, the corresponding decomposition is an
additive one. The filters are usually applied to the logarithmic data, and
the sum of the estimated components should equal the logarithmic data.

The manner in which any component is defined and and extracted
is liable to all of the other components. In particular, variations in the
definition of the trend will have substantial effects upon the representation
of the business cycle.

It has been proposed by several authors, including Harvey and Jaeger
(1993) and Cogley and Nason (1995), that the effect of using the Hodrick–
Prescott filter to extract a trend from the data is to create or induce spu-
rious cycles in the complementary component, which includes the cyclical
component. Others have strongly disputed this idea.

We analyse the effects of the H–P filter in the following sequence of
graphics:
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Figure 13. the quarterly logarithmic consumption data together with a
trend interpolated by the lowpass Hodrick–Prescott filter with the smooth-
ing parameter set to λ = 1600.

57



D.S.G. POLLOCK: Statistical Signal Extraction and Filtering

0

0.05

0.1

0.15

0

−0.05

−0.1

0 50 100 150

Figure 14. The residual sequence obtained by extracting a linear trend
from the logarithmic consumption data, together with a low-frequency
trajectory that has been obtained via the lowpass Hodrick–Prescott filter.
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Figure 15. The sequence obtained by using the Hodrick–Prescott filter
to extract the trend, together with a fluctuating component obtained by
a lowpass frequency-domain filter with a cut-off point at π/8 radians.
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Figure 11. The residual sequence from fitting a linear trend to
the logarithmic consumption data with an interpolated line rep-
resenting the business cycle, obtained by the frequency-domain
method.
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