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This chapter describes a variety of wavelets and scaling functions and the manner
in which they may be generated. These continuous-time functions might be re-
garded as a shadowy accompaniment—and even an inessential one—of a discrete-
time wavelet analysis that can be recognised as an application of the techniques of
multi rate filtering that are nowadays prevalent in communications engineering.

However, as the Shannon–Nyquist sampling theorem has established, there is
a firm correspondence between processes in continuous time that are of bounded
in frequency and their equivalent discrete-time representations. It is appropriate,
therefore, to seek to uncover the continuous-time processes that might be considered
to lie behind a discrete-time wavelets analysis.

Apart from the Haar wavelet and the Shannon or sinc function wavelet, which
are polar cases that are diametrically opposed, none of the wavelets that we shall
consider have closed-form or analytic expressions. To reveal these functions, one
must pursue an iterative or recursive process, based on the two-scale dilation equa-
tions, which entail the coefficients of the discrete-time filters that are associated with
the two-channel filter bank and with the pyramid algorithm of a dyadic wavelets
analysis.

The filters in question are the highpass and lowpass halfband filters that are
chosen in fulfilment of the conditions of perfect reproduction and of orthogonality.
The iterative procedure bequeaths these essential properties of the filters to the
continuous-time wavelets and scaling functions.

It follows that the first step in generating a family of wavelets and scaling
functions is to understand how to derive filters that satisfy the above-mentioned
conditions. This is the concern of the first section of this chapter. A common
stating point is with the autocorrelation generating functions of the lowpass filter
and of the complementary highpass filter.

These must satisfy the conditions of sequential orthogonality, individually, and
the condition of perfect reproduction, jointly. The lowpass filter is found by fac-
torising the lowpass autocorrelation function, whereas the highpass filter is derived
from the lowpass filter in a manner that ensures that, together, the two filters will
satisfy the condition of lateral orthogonality.
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Orthogonality and Perfect Reproduction

The first concern is to derive filters that will give rise to acceptable versions
of the scaling function and the wavelet. This is a matter of finding complementary
halfband filters that fulfil the canonical properties of perfect reconstruction and of
sequential and lateral orthogonality.

In the case of FIR filters, the conditions of orthogonality will be satisfied only by
filters with an even even number of coefficients. Such filters cannot be symmetric
about a central coefficient. Therefore, with the exception of the two-point Haar
filter, they are bound to induce a non-linear phase effect.

To see the necessity of an even number of coefficients, consider G(z) = g0 +
g1z+· · ·+gM−1z

M−1 in the case where M is an odd number, as it must be for central
symmetry. Then, if 2n = M − 1, there is p2n = g0gM−1 �= 0, since g0, gM−1 �= 0,
by definition. Therefore, the condition of sequential orthogonality is violated.

Nevertheless, it is possible to obtain symmetric canonical filters that have an
infinite number of coefficients or that correspond to the circularly wrapped versions
of such filters, which are applied to circular data sequences,

In the case of the canonical FIR filter, the basic prescription is the one that
was originally derived by Smith and Barnwell (1987). Given an appropriate half
band lowpass filter G(z), of M = 2n coefficients, the corresponding highpass filter
must fulfil the condition that

H(z) = −zM−1G(−z−1) or, equivalently, that zM−1H(−z−1) = G(z). (1)

Thus, the highpass filter is obtained from the lowpass filter by what has been
described an alternating flip—namely by the reversal of the sequence of coefficients
followed by the application of alternating positive and negative to the elements of
the reversed sequence.

The synthesis filters to accompany these analysis filters are just their time-
reversed versions:

D(z) = G(z−1) and E(z) = H(z−1). (2)

The relationship between the polynomials G(z) and H(z) can be illustrated
adequately by the case where M = 4. The coefficients of the cross covariance
function R(z) = G(z)H(z−1) can be obtained from the following table:

g0 g1z g2z
2 g3z

3

h0 = g3 g3g0 g3g1z g3g2z
2 g2

3z3

h1z
−1 = −g2z

−1 −g2g0z
−1 −g2g1 −g2

2z −g2g3z
2

h2z
−2 = g1z

−2 g1g0z
−2 g2

1z−1 g1g2 g1g3z

h3z
−3 = −g0z

−3 −g2
0z−3 −g0g1z

−2 −g0g2z
−1 −g0g3

(3)
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The coefficients of R(z) associated with the various powers of z are obtained by
summing the element in the rows that run in NW–SE direction. It can be seen that
r0 = 0, r2 = 0 and r−2 = 0. More generally, there is

R(z) + R(−z) = G(z)H(z−1) + G(−z)H(−z−1) = 0. (4)

This the downsampled version of the cross-covariance function, and the equation
indicates that the coefficients associated with odd-valued powers of z are zeros.

In the case of symmetric IIR filters , the prescription is that, given an appro-
priate lowpass filter G(z) = G(z−1), the corresponding highpass filter must fulfil
the condition that

H(z) = −z−1G(−z) or, equivalently, that H(−z) = z−1G(z). (5)

Then, the synthesis filters are

D(z) = G(z) and E(z) = −zG(−z). (6)

There is a manifest similarity in the two cases.
Given these specifications, is easy to see that, if P (z) = G(z)G(−1) and Q(z) =

H(z)H(−1) then, in either case, there is

P (z) + P (−z) = G(z)G(z−1) + G(−z)G(−z−1)

= G(z)G(z−1) + H(z)H(z−1)

= H(−z)H(−z−1) + H(−z)H(−z−1) = Q(−z) + Q(z).

(7)

Given that P (z) + P (−z) = 2, in consequence of the customary the normalisation
p0 = 1 of the leading coefficient of P (z), the fist equality denotes the sequential
orthogonality of the coefficient of the lowpass filter as displacements that are mul-
tiples of two points. The second equality denotes the power complementarity of the
two filters. The third equality denotes the sequential orthogonality of the highpass
filter.

Successive Approximations to a Wavelet

Except in the polar cases of the Haar wavelet and the Shannon or sinc func-
tion wavelet, an explicit functional form for the wavelet or the scaling function
is unlikely to be available. Nor is there, in most practical applications, an indis-
pensable requirement to represent of these functions graphically. Nevertheless, it is
enlightening to examine the profiles of the wavelets and the scaling functions and
to consider a method of calculating them.

Given the filter coefficients, the calculation of the wavelet depends on the
basic two–scale dilation equation. This equation expresses the scaling function at
one level of resolution in terms of the functions at the twice that resolution:

φ(t) =
√

2
M−1∑
k=0

gkφ(2t − k). (8)
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A similar equation is expresses the corresponding wavelet in terms of the scaling
functions:

g(t) =
√

2
M−1∑
k=0

hkφ(2t − k). (9)

These equations have direct frequency-domain counterparts. Thus, taking the
Fourier transform on both sides of (8) gives

φ(ω) =
∫

φ(t)e−iωtdt =
√

2
∫ M−1∑

k=0

gkφ(2t − k)e−iωtdt

=
√

2
M−1∑
k=0

∫
1
2
gkφ(τ)e−iωτ/2e−iωk/2dτ

=
1√
2

M−1∑
k=0

gke−iωk/2

∫
φ(τ)e−iωτ/2dτ,

(10)

where τ = 2t had been defined, which has entailed the change of variable technique.
This has introduced the factor dt/dτ = 1/2. The term exp{−ik/2} relates to the
half-point displacements in time of the scaling functions. This equation can be
summarised using

G(ω) =
∑

j

gje
−iωj , (11)

which is the discrete-time Fourier transform of the sequence of the coefficients of
the dilation equation. It is also the result of setting z = exp{−iω} in G(z). Also,
there is ∫ ∞

−∞
φ(t)e−iωtdt = φ(ω), (12)

which is the Fourier transform of ψ(t). With these definitions, equation (19) can
be written as

φ(ω) =
1√
2
G(ω/2)φ(ω/2), (13)

Successive approximations to the wavelet can be generated using the basic
time-domain two-scale dilation equation. The iterations are defined by

φ(j+1)(t) =
√

2
M−1∑
k=0

gkφ(j)(2t − k), (14)

were the initial value φ(0) must be given This may be specified as a unit rectangle.
The frequency-domain form of the equation is seen to be

φ(j+1)(ω) =
1√
2
G(ω/2)φ(j)(ω/2), (15)
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The limit of successive iterations or back substitutions, if it exists, is

φ(ω) =

 ∞∏
j=1

{
1√
2
G

( ω

2j

)}φ(0). (16)

The Haar Wavelets

The Haar function has often been used as a didactic device for introducing
the concept of a multi resolution wavelets analysis. It has the twofold advantage
that its functional form is readily accessible and that it is easy to use in a multi
resolution wavelet analysis.

The Haar wavelet has a finite support in the time domain, but it has the
disadvantage that its frequency-domain counterpart, i.e. its Fourier transform, has
an infinite support and that it has only a hyperbolic rate of decay.

An opinion that is offered in this text is that, for the purpose of capturing
the essentials of a wavelets analysis, one might as well exploit the so-called Shan-
non wavelets that have characteristics that are the opposites of those of the Haar
wavelets.

The Shannon wavelets, which are based on the sinc function, have a finite
support in the frequency domain and an infinite support in the time domain. They
have a hyperbolic rate of decay in the time domain. They are also analytic functions.

Our description of the Haar wavelet, in this section, will be followed by that
of the Shannon wavelets in the next section. In both of these cases, closed form
expressions are available for the wavelet and the scaling functions, of which the
sampled ordinates are the coefficients of the corresponding filters. Therefore, little
attention needs to be given to the lowpass autocorrelation function, which is the
usual starting point in the derivation of a system of wavelets.

The Haar scaling function in V0 is given by

φ(t) =
{ 1, if 0 < t < 1;

0, otherwise,
(17)

and the wavelet in W0 is given by

ψ(t) =


1, if 0 < t < 1/2;

−1, if 1/2 ≤ t < 1,

0, otherwise.

(18)

The scaling function has a unit area 〈φ(t), φ(t)〉 = 1. Functions at different
integer displacements have no overlap and they are therefore mutually orthogonal
with 〈φ(t − j), φ(t − k)〉 = δ(j − k). Thus, the set of scaling functions functions at
integer displacements provides an orthonormal, basis for the space V0.
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For the wavelet there is, likewise, 〈ψ(t), ψ(t)〉 = 1 and 〈ψ(t − j), ψ(t − k)〉 =
δ(j − k) = 0; and the set of wavelet functions at integer displacements provides an
orthonormal basis for the space W0.

The wavelets and the scaling functions are laterally orthogonal, both in align-
ment, and at integer displacements so that 〈ψ(t− j), φ(t− k)〉 = 0 for all j, k. The
inner product 〈φ(t), ψ(t)〉 = 0 can be seen as the average of the wavelet over the
interval [0, 1], which is clearly zero, and the functions at different displacements do
not overlap.

The set of basis functions for the nested spaces Vj ; j := 0, 1, . . . , m, for which
Vj+1 ⊂ Vj , are provided by the dilated scaling functions

φj,k(t) = 2−j/2φ(2−jt − k). (19)

Here, j is the so-called scale factor, which corresponds to the level of a dyadic
decomposition, whereas k is the displacement factor. The actual displacement in
the level-j wavelet ψj,k(t) is by t = 2jk points, which is its central value that solves
the equation 2−jt − k = 0.

The basis functions for the wavelet spaces Wj ; j := 0, 1, . . . , m are provided by
the dilated wavelet function

ψj,k(t) = 2−j/2ψ(2−jt − k). (20)

The first stage of the dyadic decomposition of V0 = V1 ⊕ W1 produces a
direct sum of a space of scaling functions V1 and a space wavelets W1, wherein the
respective basis functions are

φ1,k(t) =
1√
2
φ(t/2 − k) and ψ1,k(t) =

1√
2
φ(t/2 − k). (21)

The two-scale dilation equation for the scaling function φ1,0(t) is

φ1,0(t) =
1√
2
φ(t/2) = g0φ(t) + g1φ(t − 1), (22)

and that of the wavelet function ψ1,0(t) is

ψ1,0(t) =
1√
2
ψ(t/2) = h0φ(t) + h1φ(t − 1). (23)

Here,

g0 =
1√
2
, g1 =

1√
2

and h0 =
1√
2
, h1 =

−1√
2
. (24)

These are the values of the ordinates sampled from the functions φ1,0(t) and
ψ1,0(t) at the points ε, 1 + ε, where ε ∈ (0, 1). (The inclusion of a small positive
displacement ε is to avoid taking a sample at the jump point of ψ1,0(t) at t = 1.)
They are also the values of the filter coefficients of a discrete-time analysis.
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It will be observed that

g2
0 + g2

1 = 1, that h2
0 + h2

1 = 1 and that g0h0 + g1h1 = 0. (25)

which demonstrates that the filters can be used in constructing an orthonormal
basis for a discrete-time analysis.

Sinc Function Filters and Shannon Wavelets

The ideal halfband filters and the corresponding Shannon wavelets and scaling
functions are realised by virtue of the sinc function. The function provides a pro-
totype for a wavelet that is tractable from the point of view of its mathematical
analysis. The wavelet and the scaling function have closed-form analytic expres-
sions that leads directly, via the sampling theorem, to expressions for the filters
that are entailed by the two-scale dilation equations.

The sinc function is defined by

φ(t) =
1
2π

∫ π

−π

eiωtdω =
1
2π

[
eiωt

it

]π

−π

=
(

eiπt − e−iπt

2πit

)
=

sin(πt)
πt

.

(26)

This is the (inverse) Fourier transform of a rectangle of unit height supported, in the
frequency domain, of the interval [−π, π]. The function, together with its ordinates
sampled at unit intervals, is represented in Figure 1.

The sinc function gives rise to a family of scaling functions φ(t − k) that
provide an orthonormal basis for the space V0. The sequential orthonormality of
the functions at unit displacements follows from their fulfilment of the condition
that ∑

k

|φ(ω + 2kπ|2 = 1, ω ∈ [−π, π], (27)

which is the frequency-domain equivalent of the condition 〈φ(t − j)φ(t − k)〉 =
δ(j − k), as is indicated under (6.4).

The basis functions for the subspace V1 ⊂ V0 are given by

φ1,k(t) = 2−1/2φ(2−1t − k). (28)

Substituting the formula of (35) gives

φ1,k(t) =
1√
2

{
sin(πt/2 − k)

πt/2

}
=

√
2
sin(πt/2 − k)

πt
. (29)

The scaling function φ1,0(t), together with its ordinates sampled at unit intervals,
is represented in Figure 2.

7



D.S.G. POLLOCK: Filters and Wavelets

0

0.25

0.5

0.75

1

0

−0.25

0 2 4 6 80−2−4−6−8

Figure 1. The scaling function φ(0)(t).
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Figure 2. The scaling function φ(1)(t) = φ(0)(t/2).
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Figure 3. The wavelet function ψ(1)(t) = cos(πt)φ(0)(t/2).
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The Nyquist–Shannon sampling theorem indicates that

φ1,0(t) =
∞∑

k=−∞
gk

sin{π(t − k)}
π(t − k)

=
∞∑

k=−∞
gkφ(t − k), (30)

where

gk =
√

2
sin(πk/2)

πt
= g−k (31)

are just the ordinates sampled at unit intervals from φ1,0(t). These are also the
coefficients of the filter function

G(z) = {g0 + g1(z + z−1) + g2(z2 + z−2) + · · ·}. (32)

Equation (39) is nothing but the two-scale dilation equation for the sinc function
bases.

The sinc function sin(πk/2)/πt is idempotent. It corresponds to a rectangle
in the frequency domain of unit height defined the interval [−π/2, π/2]; and the
squaring of the rectangle leaves it unaltered. The function is also symmetric, and
it represents its own autocorrelation function. Thus, the conditions of sequential
orthogonality amongst the basis functions φ1,k(t) = φ(2t − k) correspond to the
zeros of the sinc function, which, as can be seen from Figure 2, are at two-point
displacements.

A wavelet and a set of filter coefficients, to complement the scaling function of
(29) and the filter coefficients of (31), may be obtained by the process of frequency
shifting that translates the φ1,k(t) in the upper frequency range [π/2, π]. The
translation is affected by the function cos(πt) = (−1)t.

A one-unit time lag may also be imposed in fulfilment of the condition for
lateral orthogonality that applies, in general, to symmetric IIR filters. (This is
notwithstanding the fact that the scaling function and its frequency-shifted coun-
terpart are already mutually orthogonal by virtue of their segregation within the
frequency domain.) Thus, the wavelet may be specified by

ψ1,k(t) = (−1)tφ1,k(t − 1) =
√

2 cos(πt)
sin(πt/2 − k − 1)

πt
. (33)

It is represented, together with its ordinates sampled at unit intervals, by Figure 3.
The corresponding filter coefficients, which are to be found in the dilation

equation

ψ1,0(t) =
∞∑

k=−∞
hkφ(t − k), (34)

which are just the sampled ordinates of ψ1,k(t), are given by

hk = (−1)kgk−1. (35)
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These are also the coefficients of the filter function

H(z) = zG(−z) = z{g0 − g1(z + z−1) + g2(z2 + z−2) + · · ·}. (36)

Because its coefficients form a doubly-infinite sequence, the sinc function does
not provide a practical filter. Also, the coefficients converge to zero slowly. The
problems of an infinite sequence can be overcome by creating a circular filter of an
order that is appropriate to the length of the data sequence.

An alternative way of adapting the filter is to truncate the sequence. Then, to
obtain a desirable frequency response, which is not affected by ripples or by exces-
sive leakage, it is appropriate to apply a taper to the coefficients via a symmetric
sequence of weights {wj ; j = 0,±1, . . . ,±M − 1}, with wj = w−j and w0 = 1.

The generic element of the weighted and truncated autocorrelation sequence
may be denoted by

pj =

 wj
2 sin(πj/2)

πj
, for j = 0,±1, . . . ,±M − 1;

0, otherwise,
(37)

Given that the sinc function already satisfies the conditions of sequential orthogo-
nality, which is that the coefficients of P (z) associated with even powers of z are
zeros, it follows that, regardless of the choice of the weights, the weighted function
will also satisfy the conditions.

For an appropriate weighting function, one might think of using the Blackman
window (see Blackman and Tukey 1959) which is defined by

wj = 0.42 + 0.5 cos
(πj

M

)
+ 0.08 cos

(2πj

M

)
, where |j| ≤ M − 1. (38)

An alternative weighting function is provided by the split cosine bell defined by

wj =


0.5

[
1 + cos

π(M + j)
q

]
; j = 1 − M, . . . , q − M,

1.0; j = q − M, . . . , M − q,

0.5
[
1 + cos

π(q − M + j)
q

]
; j = M − q, . . . , M − 1.

(39)

This has a horizontal segment interpolated at the apex of the bell. Setting q = M
reduces this to the cosine bell.

If the autocorrelation function P (z) is to be amenable to a spectral factorisation
such that P (z) = G(z)G(z−1), then it is necessary that P (ω) > 0 for all ω ∈ [−π, π].
If this is not the case and if minP (ω) = q < 0, then P (z) can be replaced by P (z)−q.
The autocorrelation function can be rescaled so as to satisfy the condition that
P (z) + P (−z) = 2.
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Once an appropriate positive-definite symmetric function is available, it can be
factorised to give the function G(z), which has an even number M of coefficients.
Thereafter, the highpass filter H(z) = −zM−1G(−z−1) can be obtained by means
of a signed reversal.

A numerical procedure for the spectral factorisation of the autocorrelation
function has been provided by Tunnicliffe Wilson (1969) and it has been coded
in Pascal and C by Pollock (1999). A discourse on the alternative methods for
factorising a Laurent polynomial has been provided by Goodman et al. (1997).

Infinite Impulse Response Filters

One way of satisfying the condition of perfect reconstruction is to exploit the
structure of the Wiener–Kolmogorov filters to derive a pair of complementary half-
band filters. Let F (z) be an arbitrary polynomial. Then, the autocorrelation
function of the lowpass filter can take the form of

P (z) =
2F (z)F (z−1)

F (z)F (z−1) + F (−z)F (−z−1)
; (40)

and this may be factorised as P (z) = G(z)G(z−1). It is easy to see that P (z) +
P (−z) = 2, whereby the condition of perfect reconstruction is confirmed. The filter
may be subject to an arbitrary number of translations in time that can be effected
by an allpass filter or by a power of z. In that case, we may assume the factor
affecting the translation is absorbed within the function G(z). The corresponding
highpass filter will be H(z) = −z−1G(−z).

A familiar example of such an autocorrelation function is provided by

P (z) =
2(1 + z)n(1 + z−1)n

(1 + z)n(1 + z−1)n + (1 − z)n(1 − z−1)n

=
2

1 +
(

i
1 − z

1 + z

)2n ,
(41)

which is the formula of the lowpass halfband Butterworth filter. The second expres-
sion is derived by dividing top and bottom of the first expression by the numerator.
Then, the top and bottom of each factor within {(1−z−1)/(1+z−1)}n are multiplied
by z. The factor i2n provides n changes of sign.

The roots of P (z), i.e. its poles and its zeros, come in reciprocal pairs; and,
once they are available, they may be assigned unequivocally to the factors G(z)
and G(z−1). Those roots which lie outside the unit circle belong to G(z) whilst
their reciprocals, which lie inside the unit circle, belong to G(z−1).

The zeros of P (z) are already available. To find the poles, consider the equation

(1 + z)n(1 + z−1)n + (1 − z)n(1 − z−1)n = 0, (42)
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which is equivalent to the equation

1 +
(

i
1 − z

1 + z

)2n

= 0. (43)

Solving the latter for

s = i
1 − z

1 + z
(44)

is a matter of finding the 2n roots of −1. These are given by

s = exp
{ iπj

2n

}
, where j = 1, 3, 5, . . . , 4n − 1,

or j = 2k − 1; k = 1, . . . , 2n.
(45)

The roots correspond to a set of 2n points which are equally spaced around the
circumference of the unit circle. The radii that join the points to the centre are
separated by angles of π/n; and the first of the radii makes an angle of π/(2n) with
the horizontal real axis.

The inverse of the function s = s(z) is the function

z =
i − s

i + s
=

i(s − s∗)
2 − i(s∗ − s)

, (46)

Here, the final expression comes from multiplying top and bottom of the second
expression by s∗ − i = (i + s)∗, where s∗ denotes the conjugate of the complex
number s, and from noting that ss∗ = 1. On substituting the expression for s from
(34), it is found that the solutions of (34) are given, in terms of z, by

zk = i
cos{π(2k − 1)/2n}

1 + sin{π(2k − 1)/2n} , where k = 1, . . . , 2n. (47)

The roots of G(z−1) = 0 are generated when k = 1, . . . , n. Those of G(z) = 0 are
generated when k = n + 1, . . . , 2n.

Given the availability of the analytic expressions for the roots of the Butter-
worth polynomial, we might hope to find a straightforward factorisation of the
function P (z) = G(z)G(z−1) that does not require an iterative procedure.

Herley and Vetterli (1993) have demonstrated that, in the special case where
F (z) is of an even length and when it comprises a symmetric sequence of coefficients,
there is indeed a simple closed form factorisation of P (z) that is available more
generally to other versions of the Weiner–Kolmogorov function.

Consider, therefore, a causal filter

F (z) = f0 + f1z + · · · + f1z
N−1 + f0z

N . (48)

which has a even number N +1 of terms that form a symmetric sequence. Since the
number of terms is even, there is no central point of symmetry within the sequence.
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The terms associated with the even and the odd powers of z can be separated
to form the polynomials

Fe(z2) = f0 + f2z
2 + · · · + f1z

N−1, Fo(z2) = f1 + f3z
2 + · · · + f0z

N−1, (49)

for which Fo(z2) = zN−1Fe(z−2). Then, it follows that

F (z) = Fe(z2) + zFo(z2) = Fe(z2) + zNFe(z−2). (50)

Therefore,

F (z)F (z−1) = {Fe(z2) + zNFe(z−2)}{Fe(z−2) + z−NFe(z2)}
= 2Fe(z2)Fe(z−2)

+ {zNFe(z2)Fe(z−2) + z−NFe(z2)Fe(z−2)}.
(51)

Since
F (z)F (z−1) + F (−z)F (−z−1) = {F (z)F (z−1)}e (52)

contains only even powers of z, and since N is an odd number, it follows that

{F (z)F (z−1)}e = 2Fe(z2)Fe(z−2) (53)

Therefore, the function of (31) can be expressed as

P (z) =
F (z)F (z−1)

Fe(z2)Fe(z−2)
(54)

of which the requisite factor is

G(z) =
F (z)

Fe(z2)
. (55)

The function that provides the frequency-domain profile of the Butterworth
filter is obtained by setting z = e−iω in (43). In that case,

1 +
(

i
1 − z

1 + z

)2n

= 1 +
(

i
z−1/2 − z1/2

z−1/2 + z1/2

)2n

= 1 +
{

sin(ω/2)
cos(ω/2)

}2n

, (56)

since sin(ω/2) = −i{exp(iω/2) − exp(−iω/2)}/2 and cos(ω/2) = {exp(iω/2) +
exp(−iω/2)}/2. Therefore, the function in question is

P (ω) = {1 + tan(ω)2n}−1. (57)
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Filtering in the Frequency Domain

Within the time domain, filters are applied to the data via a process of con-
volution. If the data and the filter sequences are lengthy, then this may be a
computationally demanding and a time consuming process. On the other hand, if
the data sequence is short relative to the length of the filter, then there is liable to
be a significant end-or-sample problem.

Provided that one is able to perform the computations off-line, then both
problems can be addressed by performing the operations in the frequency domain.
The time-consuming process of convolution in the time domain is converted into a
more efficient process of modulation in the frequency domain, whereby the Fourier
transforms of the data and the filter are multiplied together point by point.

The end-of-sample problem is handled automatically by the process of
frequency-domain modulation, which corresponds to an application of circular con-
volution in the time domain. The latter would entail using the initial sample values
as proxies for the values that lie beyond the end of the sample and using the final
sample values as proxies for the presample values.

Provided that the data have been adequately detrended, there may be little
harm in such a contrivance. What harm there might be can be mitigated by the
provision of some carefully constructed synthetic data to be interpolated into the
circular data sequence, where the end joins the beginning.

The essential condition that must be fulfilled by the frequency-domain versions
of the wavelets filters is that of power complementarily whereby

P (ω) + Q(ω) = |G(ω)|2 + |H(ω)|2 = 2. (58)

Moreover, if the functions P (ω)and Q(ω) are to be mirror images of each other,
then it must be that Q(ω) = P (ω + π). The latter requires the functions to be
reflections of each other about the about the vertical axis through π/2 and about
the horizontal axis of unit height.

The condition

|G(ω)|2 + |G(ω + π)|2 = 2, (59)

which comes from setting H(ω) = G(ω + π) in (41) can also be deduced from the
condition that ∑

k

|φ(ω + 2kπ|2 = 1. (60)

As was indicated under (6.4), this is the frequency-domain equivalent of the condi-
tion othonormality affecting the family of scaling functions φ(t−k). The frequency-
domain version of the dilation equation is

φ(ω) = 2−1/2G(ω/2)φ(ω/2), (61)

14
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and substituting this into (69) gives

1 =
1
2

∑
k

|G(ω + kπ)|2|φ(ω + kπ)|2

=
1
2
|G(ω)|2

∑
k

|φ(ω + 2kπ)|2

+
1
2
|G(ω + π)|2

∑
k

|φ(ω + [2k + 1]π)|2

=
1
2

{
|G(ω)|2 + |G(ω + π)|2

}
(62)

The condition of (60) is fulfilled, of course, by the Shannon filter defined under
(29) which corresponds to a perfect rectangular halfband frequency response. How-
ever, this function has a slow hyperbolic rate of convergence as well as an infinite
support in the time domain.

The difficulty of the infinite support can be overcome by the circular wrapping
of the filter, which occurs when the frequency-domain rectangle is sampled at T
points which are transformed via the inverse discrete Fourier transform to create
circular filter.

The difficulty of the slow convergence of the Shannon wavelets is attributable
to the sharp frequency cut-off at π/2. It can be addressed by imposing a more
gradual transition from the pass band to the stop and vice versa.

There are numerous pairs of functions with more or less gradual transitions
that satisfy the power complementary condition of (59). The simplest are derived
by placing a cross at the points ±π/2. The resulting power spectrum of the low
pass filter, which may be described as a split triangle or as a chamfered box, is
defined by

P (ω) =


1, if |ω| ∈ (0, π/2 − ε),

1 − |ω + ε − π/2|
2ε

, if |ω| = (π/2 − ε, π/2 + ε),

0, otherwise.

(63)

Setting ε = π/2 reduces this to a triangular function. Also subsumed under
this function is the rectangular function The discontinuity at the cut-off point is
handled, in effect, by chamfering the edge. (When the edge of the box is chamfered
in the slightest degree, the two function values at the point of discontinuity, which
are zero and unity, will coincide at a value of one half.) The result can be a greatly
improved rate of convergence; but this crude recourse fails achieve an optimal trade
off between dispersion in the time domain and dispersion in the frequency domain,

A superior recourse is to use the Butterworth function of (57) to obtain a
wide range of profiles for the power function P (ω). There is no reason why, in
this context, the parameter n should be restricted to take an integer value. It will
be found, for example that when n = 0.65 the Butterworth function provides a
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−π −π/2 0 π/2 π

Figure 4. The Butterworth function with the parameter values n = 0.62 (the

triangle), n = 1 (the bell) and n = 20 (the boxcar).

close approximation to the triangular power function. This is shown in Figure (4)
together with the effects of other values of the parameter. The frequency response
of the lowpass filter is obtained simply by taking the square root of P (ω),

To coefficient sequence corresponding to the function G(ω) =
√

P (ω) would
be obtained by subjecting it to the inverse of the discrete-time Fourier transform,
which, in consequence of the symmetry of the function, becomes a cosine Fourier
transform. Indeed, allowing for an interchange of time and frequency, this is nothing
but a classical Fourier series transform.

However, the result from transforming G(ω) would be an infinite sequence of
filter coefficients. To produce a circular filter of as many coefficients T as there are
data elements, one should sample the function G(ω) at T equally-spaced points in
the interval [−π, π), or in the equivalent interval [0, 2π). The filter coefficients would
be obtained by applying the inverse discrete Fourier transform to these points.

Adapting the Filters to Finite Samples

The sequence of filter coefficients that corresponds to a power function defined
in the frequency domain is liable to be infinite. Likewise, the corresponding wavelet
is liable to require the entire real line for its support. However, in practice, a discrete
wavelet analysis usually concerns a finite sample of T data points.

If T is very large or of indefinite length, as it is liable to be in the case of real-
time or on-line processing, then this disparity can be ignored and a large number
of coefficients, tending to zero with the increasing lags, can be comprised within a
truncated filter sequence. In other cases, the disparity can be overcome by using
circular versions of the data and of the filter.

In theory, a finite data sequence could be adapted to an infinite coefficient
sequence by creating a periodic extension of the data in which the sample is repli-
cated over every preceding and succeeding set of T integer points. which are
{rT, rT + 1, . . . , (r + 1)(T − 1)} with r ∈ {±1,±2, . . .}.
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By these means, the data value at a point t /∈ {0, 1, . . . , T−1}, which lies outside
the sample, is provided by yt = y{t mod T}, which does lie within the sample. With
the periodic extension available, one can think multiplying the filter coefficients
point by point with the data and of shifting them any number of times.

As an alternative to extending the data, one can think of creating a finite
sequence of filter coefficients by wrapping the infinite filter sequence {gt} around a
circle of circumference T and adding the overlying coefficients to give

g◦t =
∞∑

k=−∞
g{t+kT} for t = 0, 1, . . . , T − 1. (64)

The inner product of the resulting coefficients g◦0 , . . . , g◦T−1 with a finite se-
quence x0, . . . , xT−1 will be identical to that of the original coefficients with the
extended sequence. To show this, let x̃(t) = {x̃t = x{t mod T}} denote the infinite
sequence that is the periodic extension of x0, . . . , xT−1. Then

∞∑
t=−∞

gtx̃t =
∞∑

k=−∞

{
T−1∑
t=0

g{t+kT}x̃{t+kT}

}

=
T−1∑
t=0

xt

{ ∞∑
k=−∞

g{t+kT}

}
=

T−1∑
t=0

g◦t xt.

(65)

Here, the first equality, which is the result of cutting the sequence {gtx̃t} into
segments of length T , is true in any circumstance, whilst the second equality uses
the fact that x̃{t+kT} = x{t mod T} = xt. The final equality invokes the definition
of g◦t .

In fact, the process of wrapping the filter coefficients should be conducted in
the frequency domain, where it is simple and efficient, rather than in the the time
domain, where it entails the summation of an infinite sequence. We shall elucidate
these matters while demonstrating the use of the discrete Fourier transform in
performing a wavelt analysis.

To elucidate these matters, consider the z-transforms of the filter sequence and
the data sequence:

G(z) =
∞∑

t=−∞
gtz

t and x(z) =
T−1∑
t=0

xtz
t. (66)

Setting z = exp{−iω} in G(z) creates a periodic function in the frequency do-
main of period 2π, denoted by g(ω), which, by virtue of the discrete-time Fourier
transform, corresponds one-to-one with the doubly infinite time-domain sequence
of filter coefficients.

Setting z = zj = exp{−i2πj/T}; j = 0, 1, . . . , T −1, is tantamount to sampling
the continuous function G(ω) at T points within the frequency range of ω ∈ [0, 2π).
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(Given that the data sample is defined on a set of positive integers, it is appro-
priate to replace the symmetric interval [−π, π], considered hitherto, in which the
endpoints are associated with half the values of their ordinates, by the positive
frequency interval [0, 2π), which excludes the endpoint on the right and attributes
the full value of the ordinate at zero frequency to the left endpoint.) The powers
of zj now form a T -periodic sequence, with the result that

G(zj) =
∞∑

t=−∞
gtz

t
j (67)

=
{ ∞∑

k=−∞
gkT

}
+

{ ∞∑
k=−∞

g(kT+1)

}
zj + · · · +

{ ∞∑
k=−∞

g(kT+T−1)

}
zT−1
j

= g◦0 + g◦1zj + · · · + g◦T−1z
T−1
j = G◦(zj).

There is now a one-to-one correspondence, via the discrete Fourier transform, be-
tween the values G(zj); j = 0, 1, . . . , T − 1, sampled from G(ω) at intervals of
2π/T , and the coefficients g◦0 , . . . , g◦T−1 of the circular wrapping of g(t). Setting
z = zj = exp{−i2πj/T}; j = 0, 1, . . . , T −1, within y(z) creates the discrete Fourier
transform of the data sequence, which is commensurate with the square roots of
the ordinates sampled from the energy function.

The Daubechie Maxflat FIR Filters

The filters that have come to dominate dyadic wavelets analysis are the ones
that have been proposed by Daubechies (1988, 1992). These are the so-called
maxflat halfband FIR filters that entail an even number M = 2m of coefficients of
which z-transforms constitute polynomials of degree M − 1. The lowpass scaling
function filter G(z) and the highpass wavelets filter H(z) form a power complemen-
tary pair of which the sum of the squared gain functions is a constant function:

G(z)G(z−1) + H(z)H(z−1) = 2 (68)

A maxflat condition is fulfilled when there is a maximum number of zero-
valued derivatives at a specific point or set of points in the frequency response.
The condition that is imposed on the lowpass filter, of which the z-transform is
G(z) = g0 + g1z + · · ·+ gM−1z

M−1, is that the response has the maximum number
of zeros at the point z = −1, which correspond to factors of 1 + z within G(z).

Once the lowpass filter has been specified, the condition of sequential orthog-
onality requires that the highpass filter should be

H(z) = −zM−1G(−z−1). (69)

Therefore, the maxflat condition affecting G(z) imposes the same number of zeros
on H(z) at the point z = 1, which correspond to factors of 1 − z. Given that the
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two filters are complementary, the two sets of maxflat conditions imply that the
two filters have flat frequency responses both at z = 1 and at z = −1.

The filter G(z) is derived by factorising the autocovariance function P (z) =
G(z)G(z−1), which has 4m−1 coefficients associated with powers of z ranging from
1 − 2m to 2m − 1.

The conditions of sequential orthogonality require that P (z) has 2m − 2 zero-
valued coefficients: p2j = 0; j = ±1, . . . ,±(m−1). There is also a central coefficient
with the value of p0 = 1. This leaves a reminder of 2m coefficients that can be
used in placing zeros in P (z) at ω = π, which correspond to polynomial roots at
z = z−1 = exp{±iπ} = −1. In that case, the autocovariance function must take
the form of

P (z) = G(z)G(z−1) =
(

1 + z

2

)m

W (z)
(

1 + z−1

2

)m

, (70)

where W (z) = W (z−1) is a symmetric polynomial of 2m−1 coefficients, associated
with powers of z running from 1 − m to m − 1. This can be factorised as W (z) =
V (z)V (z−1), whereafter G(z) = {(1 + z)/2}mV (z) can be formed.

Observe that the presence of the operator (1 − z)m within H(z) implies the
this filter will nullify the ordinates of polynomial of degree m − 1. Therefore, the
condition of perfect reproduction, which is a feature of an orthogonal filter bank,
implies that G(z) will transmit the ordinates of the polynomial.

The factors of W (z) can be obtained via an iterative procedure, but, in some
simple cases, it is possible to perform the factorisation analytically as the following
example shows, which concerns the Daubechies D4 filter. This is a filter of length
4 that satisfies the conditions of sequential and lateral orthogonality.

Example. Let m = 2 and let W (z) = αz−1 + β + αz. On compounding this with
the factors {(1 + z)/2}2 = {1 + 2z + z2}/4 and {(1 − z)/2}2, we get

P (z) = {αz−3 + (4α + β)z−2 + (7α + 4β)z−1 + (8α + 6β)

+ (7α + 4β)z + (4α + β)z2 + αz−3}/16.
(71)

The conditions of sequential orthogonality indicate that the coefficients associated
with z2 and z−2 are zeros. The coefficient associated with z0 is unity. Therefore,

4α + β = 0 and 8α + 6β = 16. (72)

The solutions of these equations are

α = −1 and β = 4, (73)

and W (z) = V (z)V (z−1) becomes

W (z) = −z−1 + 4 − z

=
1
2
({1 +

√
3} + {1 −

√
3}z−1)({1 +

√
3} + {1 −

√
3}z).

(74)
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It follows that the lowpass filter G(z) = {(1 + z)/2}2V (z) is given by

G(z) =
(

1
4
√

2

)
(1 + z)2({1 +

√
3} + {1 −

√
3}z)

=
(

1
4
√

2

)
({1 +

√
3} + {3 +

√
3}z + {3 −

√
3}z2 + {1 −

√
3}z3).

(75)

The Method of Daubechies

The original approach pursued by Daubechies in deriving maxflat filter of
higher orders was somewhat complicated. It has the virtue, nevertheless, of iden-
tifying the functional form, in general, of the polynomial V (z) within G(z) =
{(1 + z)/2}mV (z).

To begin, one may consider the expressions for P (z) = G(z)G(z−1) and P (−z)
that incorporate the zeros at z = −1 and at z = 1 respectively. These are

P (z) =
(

1 + z

2

)m

W (z)
(

1 + z−1

2

)m

and

P (−z) =
(

1 − z

2

)m

W (−z)
(

1 − z−1

2

)m

.

(76)

Setting z = exp{−iω} within(
1 + z

2

) (
1 + z−1

2

)
=

1
2

{
1 +

z + z−1

2

}
=

{
z1/2 + z−1/2

2

}2

(77)

gives

1 + cos(ω)
2

= cos2(ω/2) = 1 − y. (78)

Replacing z in (77) by −z and again setting z = exp{−iω} gives

1 − cos(ω)
2

= sin2(ω/2) = y. (79)

Therefore, the condition for sequential orthogonality, which is that P (z)+P (−z) =
2, can be expressed as

2 = P (ω) + P (ω + π)

=
{

cos2
(ω

2

)}m

W (ω) +
{

sin2
(ω

2

)}m

W (ω + π).
(80)

Next, it is recognised that the functions W (z) and W (−z) with z = exp{−iω} can
be expressed as trigonometrical polynomials:

W (ω) = Q(sin2{ω/2}), W (ω + π) = Q(cos2{ω/2}). (81)
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Therefore, on setting sin2{ω/2) = y and cos2{ω/2) = 1 − y, equation (80) can be
written as

2 = (1 − y)mQ(y) + ymQ(1 − y). (82)

Now, the object is to find a solution to the polynomial Q(y), which will lead to
W (z) = V (z)V (z−1) and thence to G(z). To this end, it is appropriate to consider
the equation

1 = {(1 − y) + y}2m−1

=
2m−1∑
j=0

(
2m − 1

j

)
(1 − y)jy2m−1−j

=
m−1∑
j=0

(
2m − 1

j

)
(1 − y)jy2m−1−j +

2m−1∑
j=m

(
2m − 1

j

)
(1 − y)jy2m−1−j .

(83)

Using (
2m − 1

j

)
=

(
2m − 1

2m − 1 − j

)
=

(2m − 1)!
j!(2m − 1 − j)!

and defining k = 2m − 1 − j enables us to rewrite the second term of (91) as

m−1∑
k=0

(
2m − 1

k

)
yk(1 − y)2m−1−k, (84)

whence, on multiplying by 2, equation (83) becomes

2 =ym2
m−1∑
j=0

(
2m − 1

j

)
(1 − y)jym−1−j

+ (1 − y)m2
m−1∑
j=0

(
2m − 1

j

)
yj(1 − y)m−1−j

=ymQ(1 − y) + (1 − y)mQ(y),

(85)

where

Q(y) = 2
m−1∑
j=0

(
2m − 1

j

)
yj(1 − y)m−1−j . (86)

Here, we may observe that Q(y) is a polynomial of degree m − 1, which may
be indicated by denoting it by Qm−1(y). It is straightforward to show that

1
2 Q0(y) = 1,

1
2 Q1(y) = 1 + 2y,

1
2 Q2(y) = 1 + 3y + 6y2,

1
2 Q4(y) = 1 + 4y + 10y2 + 20y3.

(87)
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An easy means of generating such coefficients is illustrated by the following matrix:
1 1 1 1
1 2 4 4
1 3 6 10
1 4 10 20

 . (88)

Here, as one moves from left to right, the elements of each column after the first
are formed via a running total of the elements of the previous column. Also, the
successive matrix diagonals of a NE–SW orientation contain the coefficients from
successive rows of Pascal’s triangle.

An alternative form for Q(y) can be found by considering the matter of solving
to equation (82) directly. The solution must satisfy the equation

Q(y) = (1 − y)−m{2 − ymQ(1 − y)}, (89)

and, given that it is a polynomial of degree m−1, this is bound to comprise the first
m terms of the expansion of (1 − y)−m. The higher order terms of the expansion
will be cancelled with terms within ymQ(1 − y). The coefficient of yk within the
Taylor series or binomial expansion of (1 − y)−m is

m(m + 1) · · · (m + k − 1)
k!

=
(m + k − 1)!
k!(m − 1)

=
(

m + k − 1
k

)
. (90)

Therefore, the alternative expression for the solution is

Q(y) = 2
m−1∑
k=0

(
m + k − 1

k

)
yk. (91)

It is easy to recognise that this also generates the equations of (87) and that the
coefficients of the expansion of (1− y)−m are the elements of the mth column of an
indefinitely extended version of the matrix of (87).

Now, by setting y = sin2(ω/2) and 1 − y = cos2(ω/2) within the equation
(1 − y)mQ(y) and using the identities of (78) and (79), it can be seen that

P (ω) = 2
(

1 + cos(ω)
2

)m m−1∑
k=0

(
m + k − 1

k

) (
1 − cos(ω)

2

)k

, (92)

which can also be rendered as

P (ω) = 2
(

1 + z

2

)m (
1 + z−1

2

)m m−1∑
k=0

(
m + k − 1

k

) (
1 + z

2

)k (
1 + z−1

2

)k

.

(93)
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