
LECTURE 3

Models and Methods
of Time-Series Analysis

A time-series model is one which postulates a relationship amongst a num-
ber of temporal sequences or time series. An example is provided by the simple
regression model

(3.1) y(t) = x(t)β + ε(t),

where y(t) = {yt; t = 0,±1,±2, . . .} is a sequence, indexed by the time subscript
t, which is a combination of an observable signal sequence x(t) = {xt} and an
unobservable white-noise sequence ε(t) = {εt} of independently and identically
distributed random variables.

A more general model, which we shall call the general temporal regression
model, is one which postulates a relationship comprising any number of con-
secutive elements of x(t), y(t) and ε(t). The model may be represented by the
equation

(3.2)
p∑
i=0

αiy(t− i) =
k∑
i=0

βix(t− i) +
q∑
i=0

µiε(t− i),

where it is usually taken for granted that α0 = 1. This normalisation of the
leading coefficient on the LHS identifies y(t) as the output sequence. Any of
the sums in the equation can be infinite, but if the model is to be viable, the
sequences of coefficients {αi}, {βi} and {µi} can depend on only a limited
number of parameters.

Although it is convenient to write the general model in the form of (2), it
is also common to represent it by the equation

(3.3) y(t) =
p∑
i=1

φiy(t− i) +
k∑
i=0

βix(t− i) +
q∑
i=0

µiε(t− i),

where φi = −αi for i = 1, . . . , p. This places the lagged versions of the se-
quence y(t) on the RHS in the company of the input sequence x(t) and its lags.
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Whereas engineers are liable to describe this as a feedback model, economists
are more likely to describe it as a model with lagged dependent variables.

The foregoing models are termed regression models by virtue of the in-
clusion of the observable explanatory sequence x(t). When x(t) is deleted, we
obtain a simpler unconditional linear stochastic model:

(3.4)
p∑
i=0

αiy(t− i) =
q∑
i=0

µiε(t− i).

This is the autoregressive moving-average (ARMA) model.
A time-series model can often assume a variety of forms. Consider a simple

dynamic regression model of the form

(3.5) y(t) = φy(t− 1) + x(t)β + ε(t),

where there is a single lagged dependent variable. By repeated substitution,
we obtain

(3.6)

y(t) = φy(t− 1) + βx(t) + ε(t)

= φ2y(t− 2) + β
{
x(t) + φx(t− 1)

}
+ ε(t) + φε(t− 1)

...
= φny(t− n) + β

{
x(t) + φx(t− 1) + · · ·+ φn−1x(t− n+ 1)

}
+ ε(t) + φε(t− 1) + · · ·+ φn−1ε(t− n+ 1).

If |φ| < 1, then lim(n → ∞)φn = 0; and it follows that, if x(t) and ε(t) are
bounded sequences, then, as the number of repeated substitutions increases
indefinitely, the equation will tend to the limiting form of

(3.7) y(t) = β

∞∑
i=0

φix(t− i) +
∞∑
i=0

φiε(t− i).

It is notable that, by this process of repeated substitution, the feedback
structure has been eliminated from the model. As a result, it becomes easier
to assess the impact upon the output sequence of changes in the values of the
input sequence. The direct mapping from the input sequence to the output
sequence is described by engineers as a transfer function or as a filter.

For models more complicated than the one above, the method of repeated
substitution, if pursued directly, becomes intractable. Thus we are motivated
to use more powerful algebraic methods to effect the transformation of the
equation. This leads us to consider the use of the so-called lag operator. A
proper understanding of the lag operator depends upon a knowledge of the
algebra of polynomials and of rational functions.
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The Algebra of the Lag Operator

A sequence x(t) = {xt; t = 0,±1,±2, . . .} is any function mapping from
the set of integers Z = {0,±1,±2, . . .} to the real line. If the set of integers
represents a set of dates separated by unit intervals, then x(t) is described as
a temporal sequence or a time series.

The set of all time series represents a vector space, and various linear
transformations or operators can be defined over the space. The simplest of
these is the lag operator L which is defined by

(3.8) Lx(t) = x(t− 1).

Now, L{Lx(t)} = Lx(t − 1) = x(t − 2); so it makes sense to define L2 by
L2x(t) = x(t− 2). More generally, Lkx(t) = x(t− k) and, likewise, L−kx(t) =
x(t+ k). Other operators are the difference operator ∇ = I −L which has the
effect that

(3.9) ∇x(t) = x(t)− x(t− 1),

the forward-difference operator ∆ = L−1 − I, and the summation operator
S = (I − L)−1 = {I + L+ L2 + · · ·} which has the effect that

(3.10) Sx(t) =
∞∑
i=0

x(t− i).

In general, we can define polynomials of the lag operator of the form p(L) =
p0 + p1L+ · · ·+ pnL

n =
∑
piL

i having the effect that

(3.11)

p(L)x(t) = p0x(t) + p1x(t− 1) + · · ·+ pnx(t− n)

=
n∑
i=0

pix(t− i).

In these terms, the equation under (2) of the general temporal model becomes

(3.12) α(L)y(t) = β(L)x(t) + µ(L)ε(t).

The advantage which comes from defining polynomials in the lag operator
stems from the fact that they are isomorphic to the set of ordinary algebraic
polynomials. Thus we can rely upon what we know about ordinary polynomials
to treat problems concerning lag-operator polynomials.
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Algebraic Polynomials

Consider the equation φ0 + φ1z + φ2z
2 = 0. Once the equation has been

divided by φ2, it can be factorised as (z − λ1)(z − λ2) where λ1, λ2 are the
roots or zeros of the equation which are given by the formula

(3.13) λ =
−φ1 ±

√
φ2

1 − 4φ2φ0

2φ2
.

If φ2
1 ≥ 4φ2φ0, then the roots λ1, λ2 are real. If φ2

1 = 4φ2φ0, then λ1 = λ2.
If φ2

1 < 4φ2φ0, then the roots are the conjugate complex numbers λ = α+ iβ,
λ∗ = α− iβ, where i =

√
−1.

There are three alternative ways of representing the conjugate complex
numbers λ and λ∗ :

(3.14)
λ = α+ iβ = ρ(cos θ + i sin θ) = ρeiθ,

λ∗ = α− iβ = ρ(cos θ − i sin θ) = ρe−iθ,

where

(3.15) ρ =
√
α2 + β2 and θ = tan−1

(
β

α

)
.

These are called, respectively, the Cartesian form, the trigonometrical form and
the exponential form.

The Cartesian and trigonometrical representations are understood by con-
sidering the Argand diagram:

ρ

α

β

θ

−θ

λ

λ*

Re

Im

Figure 1. The Argand Diagram showing a complex

number λ = α+ iβ and its conjugate λ∗ = α− iβ.
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The exponential form is understood by considering the following series
expansions of cos θ and i sin θ about the point θ = 0:

(3.16)
cos θ =

{
1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

}
,

i sin θ =
{
iθ − iθ3

3!
+
iθ5

5!
− iθ7

7!
+ · · ·

}
.

Adding these gives

(3.17)
cos θ + i sin θ =

{
1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+ · · ·

}
= eiθ.

Likewise, by subtraction, we get

(3.18)
cos θ − i sin θ =

{
1− iθ − θ2

2!
+
iθ3

3!
+
θ4

4!
− · · ·

}
= e−iθ.

These are Euler’s equations. It follows from adding (17) and (18) that

(3.19) cos θ =
eiθ + e−iθ

2
.

Subtracting (18) from (17) gives

(3.20)
sin θ =

−i
2

(eiθ − e−iθ)

=
1
2i

(eiθ − e−iθ).

Now consider the general equation of the nth order:

(3.21) φ0 + φ1z + φ2z
2 + · · ·+ φnz

n = 0.

On dividing by φn, we can factorise this as

(3.22) (z − λ1)(z − λ2) · · · (z − λn) = 0,

where some of the roots may be real and others may be complex. The complex
roots come in conjugate pairs, so that, if λ = α + iβ is a complex root, then
there is a corresponding root λ∗ = α−iβ such that the product (z−λ)(z−λ∗) =
z2 − 2αz + (α2 + β2) is real and quadratic. When we multiply the n factors
together, we obtain the expansion

(3.23) 0 = zn −
∑
i

λiz
n−1 +

∑
i

∑
j

λiλjz
n−2 − · · · (−1)nλ1λ2 · · ·λn.
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This can be compared with the expression (φ0/φn)+(φ1/φn)z+ · · ·+zn =
0. By equating coefficients of the two expressions, we find that (φ0/φn) =
(−1)n

∏
λi or, equivalently,

(3.24) φn = φ0

n∏
i=1

(−λi)−1.

Thus we can express the polynomial in any of the following forms:

(3.25)

∑
φiz

i = φn
∏

(z − λi)

= φ0

∏
(−λi)−1

∏
(z − λi)

= φ0

∏(
1− z

λi

)
.

We should also note that, if λ is a root of the primary equation
∑
φiz

i = 0,
where rising powers of z are associated with rising indices on the coefficients,
then µ = 1/λ is a root of the equation

∑
φiz

n−i = 0, which has declining
powers of z instead. This follows since

∑
φiλ

i =
∑
φiµ
−i = 0 implies that

µn
∑
φiµ
−i =

∑
φiµ

n−i = 0. Confusion can arise from not knowing which of
the two equations one is dealing with.

Rational Functions of Polynomials

If δ(z) and γ(z) are polynomial functions of z of degrees d and g respec-
tively with d < g, then the ratio δ(z)/γ(z) is described as a proper rational
function. We shall often encounter expressions of the form

(3.26) y(t) =
δ(L)
γ(L)

x(t).

For this to have a meaningful interpretation in the context of a time-series
model, we normally require that y(t) should be a bounded sequence whenever
x(t) is bounded. The necessary and sufficient condition for the boundedness of
y(t), in that case, is that the series expansion of δ(z)/γ(z) should be convergent
whenever |z| ≤ 1. We can determine whether or not the sequence will converge
by expressing the ratio δ(z)/γ(z) as a sum of partial fractions. The basic result
is as follows:

(3.27) If δ(z)/γ(z) = δ(z)/{γ1(z)γ2(z)} is a proper rational function, and
if γ1(z) and γ2(z) have no common factor, then the function can
be uniquely expressed as

δ(z)
γ(z)

=
δ1(z)
γ1(z)

+
δ2(z)
γ2(z)

,

where δ1(z)/γ1(z) and δ2(z)/γ2(z) are proper rational functions.
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Imagine that γ(z) =
∏

(1−z/λi). Then repeated applications of this basic
result enables us to write

(3.28)
δ(z)
γ(z)

=
κ1

1− z/λ1
+

κ2

1− z/λ2
+ · · ·+ κg

1− z/λg
.

By adding the terms on the RHS, we find an expression with a numerator of
degree n− 1. By equating the terms of the numerator with the terms of δ(z),
we can find the values κ1, κ2, . . . , κg. The convergence of the expansion of
δ(z)/γ(z) is a straightforward matter. For the series converges if and only if
the expansion of each of the partial fractions converges. For the expansion

(3.29)
κ

1− z/λ = κ
{

1 + z/λ+ (z/λ)2 + · · ·
}

to converge when |z| ≤ 1, it is necessary and sufficient that |λ| > 1.

Example. Consider the function

(3.30)

3z
1 + z − 2z2

=
3z

(1− z)(1 + 2z)

=
κ1

1− z +
κ2

1 + 2z

=
κ1(1 + 2z) + κ2(1− z)

(1− z)(1 + 2z)
.

Equating the terms of the numerator gives

(3.31) 3z = (2κ1 − κ2)z + (κ1 + κ2),

so κ2 = −κ1, which gives 3 = (2κ1 − κ2) = 3κ1; and thus we have κ1 = 1,
κ2 = −1.

Linear Difference Equations

An nth-order linear difference equation is a relationship amongst n + 1
consecutive elements of a sequence x(t) of the form

(3.32) α0x(t) + α1x(t− 1) + · · ·+ αnx(t− n) = u(t),

where u(t) is some specified sequence which is described as the forcing function.
The equation can be written, in a summary notation, as

(3.33) α(L)x(t) = u(t),
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where α(L) = α0 +α1L+ · · ·+αnL
n. If n consecutive values of x(t) are given,

say x1, x2, . . . , xn, then the relationship can be used to find the succeeding value
xn+1. In this way, so long as u(t) is fully specified, it is possible to generate any
number of the succeeding elements of the sequence. The values of the sequence
prior to t = 1 can be generated likewise; and thus, in effect, we can deduce
the function x(t) from the difference equation. However, instead of a recursive
solution, we often seek an analytic expression for x(t).

The function x(t; c), expressing the analytic solution, will comprise a set
of n constants in c = [c1, c2, . . . , cn]′ which can be determined once we are
given a set of n consecutive values of x(t) which are called initial conditions.
The general analytic solution of the equation α(L)x(t) = u(t) is expressed as
x(t; c) = y(t; c) + z(t), where y(t) is the general solution of the homogeneous
equation α(L)y(t) = 0, and z(t) = α−1(L)u(t) is called a particular solution of
the inhomogeneous equation.

We may solve the difference equation in three steps. First, we find the
general solution of the homogeneous equation. Next, we find the particular
solution z(t) which embodies no unknown quantities. Finally, we use the n
initial values of x to determine the constants c1, c2, . . . , cn. We shall discuss in
detail only the solution of the homogeneous equation.

Solution of the Homogeneous Difference Equation

If λj is a root of the equation α(z) = α0 +α1z + · · ·+αnz
n = 0 such that

α(λj) = 0, then yj(t) = (1/λj)t is a solution of the equation α(L)y(t) = 0.
This can be see this by considering the expression

(3.34)

α(L)
(

1
λj

)t
=
(
α0 + α1L+ · · ·+ αnL

n
)( 1

λj

)t
= α0

(
1
λj

)t
+ α1

(
1
λj

)t−1

+ · · ·+ αn

(
1
λj

)t−n
=
(
α0 + α1λj + · · ·+ αnλ

n
j

)( 1
λj

)t
= α(λj)

(
1
λj

)t
.

Alternatively, one may consider the factorisation α(L) = α0

∏
i(1 − L/λi).

Within this product is the term 1− L/λj ; and since(
1− L

λj

)(
1
λj

)t
=
(

1
λj

)t
−
(

1
λj

)t
= 0,

it follows that α(L)(1/λj)t = 0.
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The general solution, in the case where α(L) = 0 has distinct real roots, is
given by

(3.35) y(t; c) = c1

(
1
λ1

)t
+ c2

(
1
λ2

)t
+ · · ·+ cn

(
1
λn

)t
,

where c1, c2, . . . , cn are the constants which are determined by the initial con-
ditions.

In the case where two roots coincide at a value of λj , the equation α(L)y(t)
= 0 has the solutions y1(t) = (1/λj)t and y2(t) = t(1/λj)t. To show this, let us
extract the term (1 − L/λj)2 from the factorisation α(L) = α0

∏
i(1 − L/λi).

Then, according to the previous argument, we have (1 − L/λj)2(1/λj)t = 0,
but, also, we have

(3.36)

(
1− L

λj

)2

t

(
1
λj

)t
=

(
1− 2L

λj
+
L2

λ2
j

)
t

(
1
λj

)t
= t

(
1
λj

)t
− 2(t− 1)

(
1
λj

)t
+ (t− 2)

(
1
λj

)t
= 0.

In general, if there are r repeated roots with a value of λj , then all of (1/λj)t,
t(1/λj)t, t2(1/λj)t, . . . , tr−1(1/λj)t are solutions to the equation α(L)y(t) = 0.

A particularly important special case arises when there are r repeated
roots of unit value. Then the functions 1, t, t2, . . . , tr−1 are all solutions to the
homogeneous equation. With each solution is associated a coefficient which
can be determined in view of the initial conditions. If these coefficients are
d0, d1, d2, . . . , dr−1 then, within the general solution of the homogeneous equa-
tion, there will be found the term d0+d1t+d2t

2+· · ·+dr−1t
r−1 which represents

a polynomial in t of degree r − 1.

The 2nd-order Difference Equation with Complex Roots

Imagine that the 2nd-order equation α(L)y(t) = α0y(t) + α1y(t − 1) +
α2y(t−2) = 0 is such that α(z) = 0 has complex roots λ = 1/µ and λ∗ = 1/µ∗.
If λ, λ∗ are conjugate complex numbers, then so too are µ, µ∗. Therefore, let
us write

(3.37)
µ = γ + iδ = κ(cosω + i sinω) = κeiω,

µ∗ = γ − iδ = κ(cosω − i sinω) = κe−iω.

These will appear in a general solution of the difference equation of the form

(3.38) y(t) = cµt + c∗(µ∗)t.
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Figure 2. The solution of the homogeneous difference equation (1 −
1.69L+ 0.81L2)y(t) = 0 for the initial conditions y0 = 1 and y1 = 3.69.

The time lag of the phase displacement p1 and the duration of the cycle p2

are also indicated.

This represents a real-valued sequence; and, since a real term must equal its
own conjugate, it follows that c and c∗ must be conjugate numbers of the form

(3.39)
c∗ = ρ(cos θ + i sin θ) = ρeiθ,

c = ρ(cos θ − i sin θ) = ρe−iθ.

Thus the general solution becomes

(3.40)

cµt + c∗(µ∗)t = ρe−iθ(κeiω)t + ρeiθ(κe−iω)t

= ρκt
{
ei(ωt−θ) + e−i(ωt−θ)

}
= 2ρκt cos(ωt− θ).

To analyse the final expression, consider first the factor cos(ωt− θ). This
is a displaced cosine wave. The value ω, which is a number of radians per unit
period, is called the angular velocity or the angular frequency of the wave. The
value f = ω/2π is its frequency in cycles per unit period. The duration of one
cycle, also called the period, is r = 2π/ω.

The term θ is called the phase displacement of the cosine wave, and it
serves to shift the cosine function along the axis of t so that, in the absence of
damping, the peak would occur at the value of t = θ/ω instead of at t = 0.
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Next consider the term κt wherein κ = √(γ2 + δ2) is the modulus of the
complex roots. When κ has a value of less than unity, it becomes a damping
factor which serves to attenuate the cosine wave as t increases. The damping
also serves to shift the peaks of the cosine function slightly to the left.

Finally, the factor 2ρ affects the initial amplitude of the cosine wave which
is the value which it assumes when t = 0. Since ρ is just the modulus of the
values c and c∗, this amplitude reflects the initial conditions. The phase angle
θ is also a product of the initial conditions.

It is instructive to derive an expression for the second-order difference equa-
tion which is in terms of the parameters of the trigonometrical or exponential
representations of a pair of complex roots. Consider

(3.41)
α(z) = α0(1− µz)(1− µ∗z)

= α0

{
1− (µ+ µ∗)z + µµ∗z2

}
,

From (37) it follows that

(3.42) µ+ µ∗ = 2κ cosω and µµ∗ = κ2.

Therefore the polynomial operator which is entailed by the difference equation
is

(3.43) α0 + α1L+ α2L
2 = α0(1− 2κ cosω L+ κ2L2);

and it is usual to set α0 = 1. This representation indicates that a necessary
condition for the roots to be complex, which is not a sufficient condition, is
that α2/α0 > 0.

It is easy to ascertain by inspection whether or not the second-order dif-
ference equation is stable. The condition that the roots of α(z) = 0 must lie
outside the unit circle, which is necessary and sufficient for stability, imposes
certain restrictions on the coefficients of α(z) which can be checked easily.

We can reveal these conditions most readily by considering the auxiliary
polynomial ρ(z) = z2α(z−1) whose roots, which are the inverses of those of
α(z), must lie inside the unit circle. Let the roots of ρ(z), which might be real
or complex, be denoted by µ1, µ2. Then we can write

(3.44)

ρ(z) = α0z
2 + α1z + α2

= α0(z − µ1)(z − µ2)

= α0

{
z2 − (µ1 + µ2)z + µ1µ2

}
,

where is is assumed that α0 > 0. This indicates that α2/α0 = µ1µ2. Therefore
the conditions |µ1|, |µ2| < 1 imply that

(3.45) −α0 < α2 < α0.

43



D.S.G. POLLOCK : TIME SERIES AND FORECASTING

If the roots are complex conjugate numbers µ, µ∗ = γ ± iδ, then this condition
will ensure that µ∗µ = α2/α0 < 1, which is the condition that they are within
the unit circle.

Now consider the fact that, if α0 > 0, then the function ρ(z) will have a
minimum value over the real line which is greater than zero if the roots are
complex and no greater than zero if they are real. If the roots are real, then
they will be found in the interval (−1, 1) if and only if

(3.46)
ρ(−1) = α0 − α1 + α2 > 0 and

ρ(1) = α0 + α1 + α2 > 0.

If the roots are complex then these conditions are bound to be satisfied.
From these arguments, it follows that the conditions under (45) and (46)

in combination are necessary and sufficient to ensure that the roots of ρ(z) = 0
are within the unit circle and that the roots of α(z) = 0 are outside.

State-Space Models

An nth-order difference equation in a single variable can be transformed
into a first-order system in n variables which are the elements of a so-called
state vector.

There is a wide variety of alternative forms which can be assumed by
a first-order vector difference equation corresponding to the nth-order scalar
equation. However, certain of these are described as canonical forms by virtue
of special structures in the matrix.

In demonstrating one of the more common canonical forms, let us consider
again the nth-order difference equation of (32), in reference to which we may
define the following variables:

(3.47)

ξ1(t) = x(t),
ξ2(t) = ξ1(t− 1) = x(t− 1),

...
ξn(t) = ξn−1(t− 1) = x(t− n+ 1).

On the basis of these definitions, a first-order vector equation may be con-
structed in the form of

(3.48)


ξ1(t)
ξ2(t)

...
ξn(t)

 =


−α1 . . . −αn−1 −αn

1 . . . 0 0
...

. . .
...

...
0 . . . 1 0



ξ1(t− 1)
ξ2(t− 1)

...
ξn(t− 1)

+


1
0
...
0

 ε(t).
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The matrix in this structure is sometimes described as the companion form.
Here it is manifest, in view of the definitions under (47), that the leading
equation of the system, which is

(3.49) ξ1(t) = −α1ξ1(t− 1) + · · ·+ αnξn(t− 1) + ε(t),

is precisely the equation under (32).

Example. An example of a system which is not in a canonical form is provided
by the following matrix equation:

(3.50)
[
y(t)
z(t)

]
= κ

[
cosω − sinω
sinω cosω

] [
y(t− 1)
z(t− 1)

]
+
[
υ(t)
ζ(t)

]
.

With the use of the lag operator, the equation can also be written as

(3.51)
[

1− κ cosωL κ sinωL
−κ sinωL 1− κ cosωL

] [
y(t)
z(t)

]
=
[
υ(t)
ζ(t)

]
.

On premultiplying the equation by the inverse of the matrix on the LHS, we
get
(3.52)[

y(t)
z(t)

]
=

1
1− 2κ cosωL+ κ2L2

[
1− κ cosωL −κ sinωL
κ sinωL 1− κ cosωL

] [
υ(t)
ζ(t)

]
.

A special case arises when

(3.53)
[
υ(t)
ζ(t)

]
=
[
− sinω
cosω

]
η(t),

where η(t) is a white-noise sequence. Then the equation becomes

(3.54)
[
y(t)
z(t)

]
=

1
1− 2κ cosωL+ κ2L2

[
− sinω
cosω

]
η(t).

On defining ε(t) = − sinωη(t) we may write the first of these equations as

(3.55) (1− 2κ cosωL+ κ2L2)y(t) = ε(t).

This is just a second-order difference equation with a white-noise forcing func-
tion; and, by virtue of the inclusion of the damping factor κ ∈ [0, 1), it repre-
sents a generalisation of the equation to be found under (2.24).
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Transfer Functions

Consider again the simple dynamic model of equation (5):

(3.56) y(t) = φy(t− 1) + x(t)β + ε(t).

With the use of the lag operator, this can be rewritten as

(3.57) (1− φL)y(t) = βx(t) + ε(t)

or, equivalently, as

(3.58) y(t) =
β

1− φLx(t) +
1

1− φLε(t).

The latter is the so-called rational transfer-function form of the equation. The
operator L within the transfer functions or filters can be replaced by a complex
number z. Then the transfer function which is associated with the signal x(t)
becomes

(3.59)
β

1− φz = β
{
1 + φz + φ2z2 + · · ·

}
,

where the RHS comes from a familiar power-series expansion.
The sequence {β, βφ, βφ2, . . .} of the coefficients of the expansion consti-

tutes the impulse response of the transfer function. That is to to say, if we
imagine that, on the input side, the signal is a unit-impulse sequence of the
form

(3.60) x(t) = {. . . , 0, 1, 0, 0, . . .},

which has zero values at all but one instant, then its mapping through the
transfer function would result in an output sequence of

(3.61) r(t) = {. . . , 0, β, βφ, βφ2, . . .}.

Another important concept is the step response of the filter. We may
imagine that the input sequence is zero-valued up to a point in time when it
assumes a constant unit value:

(3.62) x(t) = {. . . , 0, 1, 1, 1, . . .}.

The mapping of this sequence through the transfer function would result in an
output sequence of

(3.63) s(t) = {. . . , 0, β, β + βφ, β + βφ+ βφ2, . . .}
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whose elements, from the point when the step occurs in x(t), are simply the
partial sums of the impulse-response sequence. This sequence of partial sums
{β, β + βφ, β + βφ + βφ2, . . .} is described as the step response. Given that
|φ| < 1, the step response converges to a value

(3.64) γ =
β

1− φ

which is described as the steady-state gain or the long-term multiplier of the
transfer function.

These various concepts apply to models of any order. Consider the equa-
tion

(3.65) α(L)y(t) = β(L)x(t) + ε(t),

where

(3.66)

α(L) = 1 + α1L+ · · ·+ αpL
p

= 1− φ1L− · · · − φpLp,

β(L) = β0 + β1L+ · · ·+ βkL
k

are polynomials of the lag operator. The transfer-function form of the model
is simply

(3.67) y(t) =
β(L)
α(L)

x(t) +
1

α(L)
ε(t),

The rational function associated with x(t) has a series expansion

(3.68)
β(z)
α(z)

= ω(z)

=
{
ω0 + ω1z + ω2z

2 + · · ·
}
;

and the sequence of the coefficients of this expansion constitutes the impulse-
response function. The partial sums of the coefficients constitute the step-
response function. The gain of the transfer function is defined by

(3.69) γ =
β(1)
α(1)

=
β0 + β1 + · · ·+ βk
1 + α1 + · · ·+ αp

.

The method of finding the coefficients of the series expansion of the transfer
function in the general case can be illustrated by the second-order case:

(3.70)
β0 + β1z

1− φ1z − φ2z2
=
{
ω0 + ω1z + ω2z

2 + · · ·
}
.
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We rewrite this equation as

(3.71) β0 + β1z =
{
1− φ1z − φ2z

2
}{
ω0 + ω1z + ω2z

2 + · · ·
}
.

Then, by performing the multiplication on the RHS, and by equating the co-
efficients of the same powers of z on the two sides of the equation, we find
that

(3.72)

β0 = ω0,

β1 = ω1 − φ1ω0,

0 = ω2 − φ1ω1 − φ2ω0,
...

0 = ωn − φ1ωn−1 − φ2ωn−2,

ω0 = β0,

ω1 = β1 + φ1ω0,

ω2 = φ1ω1 + φ2ω0,
...

ωn = φ1ωn−1 + φ2ωn−2.

The necessary and sufficient condition for the convergence of the sequence
{ωi} is that the roots of the primary polynomial equation 1− φ1z − φ2z

2 = 0
should lie outside the unit circle or, equivalently, that the roots of the auxiliary
equation z2−φ1z−φ2 = 0—which are the inverses of the former roots—should
lie inside the unit circle. If the roots of these equations are real, then the
sequence will converge monotonically to zero whereas, if the roots are complex-
valued, then the sequence will converge in the manner of a damped sinusoid.

It is clear that the equation

(3.73) ω(n) = φ1ω(n− 1) + φ2ω(n− 2),

which serves to generate the elements of the impulse response, is nothing but
a second-order homogeneous difference equation. In fact, Figure 2, which has
been presented as the solution to a homogeneous difference equation, represents
the impulse response of the transfer function (1 + 2L)/(1− 1.69L+ 0.81L2).

In the light of this result, it is apparent that the coefficients of the denomi-
nator polynomial 1−φ1z−φ2z

2 serve to determine the period and the damping
factor of a complex impulse response. The coefficients in the numerator poly-
nomial β0 + β1z serve to determine the initial amplitude of the response and
its phase lag. It seems that all four coefficients must be present if a second-
order transfer function is to have complete flexibility in modelling a dynamic
response.

The Frequency Response

In many applications within forecasting and time-series analysis, it is of
interest to consider the response of a transfer function to a signal which is a
simple sinusoid. As we have indicated in a previous lecture, it is possible
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Figure 3.The gain of the transfer function (1 + 2L2)/(1− 1.69L+ 0.81L2).
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Figure 4.The phase diagram of the transfer function (1 + 2L2)/(1− 1.69L+ 0.81L2).
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to represent a finite sequence as a sum of sine and cosine functions whose
frequencies are integer multiples of a fundamental frequency. More generally, it
is possible, as we shall see later, to represent an arbitrary stationary stochastic
process as a combination of an infinite number of sine and cosine functions
whose frequencies range continuously in the interval [0, π]. It follows that the
effect of a transfer function upon stationary signals can be characterised in
terms of its effect upon the sinusoidal functions.

Consider therefore the consequences of mapping the signal x(t) = cos(ωt)
through the transfer function γ(L) = γ0 + γ1L+ · · ·+ γgL

g. The output is

(3.74)

y(t) = γ(L) cos(ωt)

=
g∑
j=0

γj cos
(
ω[t− j]

)
.

The trigonometrical identity cos(A−B) = cosA cosB + sinA sinB enables us
to write this as

(3.75)
y(t) =

{∑
j

γj cos(ωj)
}

cos(ωt) +
{∑

j

γj sin(ωj)
}

sin(ωt)

= α cos(ωt) + β sin(ωt) = ρ cos(ωt− θ).

Here we have defined

(3.76)

α =
g∑
j=0

γj cos(ωj), β =
g∑
j=0

γj sin(ωj),

ρ =
√
α2 + β2 and θ = tan−1

(β
α

)
.

It can be seen from (75) that the effect of the filter upon the signal is
twofold. First there is a gain effect whereby the amplitude of the sinusoid has
been increased or diminished by a factor of ρ. Also there is a phase effect
whereby the peak of the sinusoid is displaced by a time delay of θ/ω periods.
Figures 3 and 4 represent the two effects of a simple rational transfer function
on the set of sinusoids whose frequencies range from 0 to π.
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