
LECTURE 2

Seasons and Cycles
in Time Series

Cycles of a regular nature are often encountered in physics and engineering.
Consider a point moving with constant speed in a circle of radius ρ. The point
might be the axis of the ‘big end’ of a connecting rod which joins a piston to
a flywheel. Let time t be reckoned from an instant when the radius joining
the point to the centre is at an angle of θ below the horizontal. If the point is
projected onto the horizontal axis, then the distance of the projection from the
centre is given by

(2.1) x = ρ cos(ωt− θ).

The movement of the projection back and forth along the horizontal axis is
described as simple harmonic motion.

The parameters of the function are as follows:

ρ is the amplitude,
ω is the angular velocity or frequency and
θ is the phase displacement.

The angular velocity is a measure in radians per unit period. The quantity 2π/ω
measures the period of the cycle. The phase displacement, also measured in
radians, indicates the extent to which the cosine function has been displaced by
a shift along the time axis. Thus, instead of the peak of the function occurring
at time t = 0, as it would with an ordinary cosine function, it now occurs a
time t = θ/ω.

Using the compound-angle formula cos(A−B) = cosA cosB+ sinA sinB,
we can rewrite equation (1) as

(2.2)
x = ρ cos θ cos(ωt) + ρ sin θ sin(ωt)

= α cos(ωt) + β sin(ωt),

with

(2.3) α = ρ cos θ, β = ρ sin θ and α2 + β2 = ρ2.
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Extracting a Regular Cyclical Component

A cyclical component which is concealed beneath other motions may be
extracted from a data sequence by a straightforward application of the method
of linear regression. An equation may be written in the form of

(2.4) yt = αct(ω) + βst(ω) + et; t = 0, . . . , T − 1,

where ct(ω) = cos(ωt) and st(ω) = sin(ωt). To avoid the need for an intercept
term, the values of the dependent variable should be deviations about a mean
value. In matrix terms, equation (4) becomes

(2.5) y = [ c s ]
[
α
β

]
+ e,

where c = [c0, . . . , cT−1]′ and s = [s0, . . . , sT−1]′ and e = [e0, . . . , eT−1]′ are
vectors of T elements. The parameters α, β can be found by running regressions
for a wide range of values of ω and by selecting the regression which delivers
the lowest value for the residual sum of squares.

Such a technique may be used for extracting a seasonal component from
an economic time series; and, in that case, we know in advance what value
to give to ω. For the seasonality of economic activities is related, ultimately,
to the near-perfect regularities of the solar system which are reflected in the
annual calender.

It may be unreasonable to expect that an idealised seasonal cycle can be
represented by a simple sinusoidal function. However, wave forms of a more
complicated nature may be synthesised by employing a series of sine and cosine
functions whose frequencies are integer multiples of the fundamental seasonal
frequency. If there are s = 2n observations per annum, then a general model
for a seasonal fluctuation would comprise the frequencies

(2.6) ωj =
2πj
s
, j = 0, . . . , n =

s

2
,

which are equally spaced in the interval [0, π]. Such a series of frequencies is
described as an harmonic scale.

A model of seasonal fluctuation comprising the full set of harmonically-
related frequencies would take the form of

(2.7) yt =
n∑
j=0

{
αj cos(ωjt) + βj sin(ωjt)

}
+ et,

where et is a residual element which might represent an irregular white-noise
component in the process underlying the data.
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Figure 1. Trigonometrical functions, of frequencies ω1 = π/2 and

ω2 = π, associated with a quarterly model of a seasonal fluctuation.

At first sight, it appears that there are s + 2 components in the sum.
However, when s is even, we have

(2.8)

sin(ω0t) = sin(0) = 0,
cos(ω0t) = cos(0) = 1,
sin(ωnt) = sin(πt) = 0,
cos(ωnt) = cos(πt) = (−1)t.

Therefore there are only s nonzero coefficients to be determined.
This simple seasonal model is illustrated adequately by the case of quar-

terly data. Matters are no more complicated in the case of monthly data. When
there are four observations per annum, we have ω0 = 0, ω1 = π/2 and ω2 = π;
and equation (7) assumes the form of

(2.9) yt = α0 + α1 cos
(πt

2

)
+ β1 sin

(πt
2

)
+ α2(−1)t + et.

If the four seasons are indexed by j = 0, . . . , 3, then the values from the
year τ can be represented by the following matrix equation:

(2.10)


yτ0

yτ1

yτ2

yτ3

 =


1 1 0 1
1 0 1 −1
1 −1 0 1
1 0 −1 −1



α0

α1

β1

α2

+


eτ0

eτ1

eτ2

eτ3

 .
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It will be observed that the vectors of the matrix are mutually orthogonal.
When the data consist of T = 4p observations which span p years, the

coefficients of the equation are given by

(2.11)

α0 =
1
T

T−1∑
t=0

yt,

α1 =
2
T

p∑
τ=1

(yτ0 − yτ2),

β1 =
2
T

p∑
τ=1

(yτ1 − yτ3),

α2 =
1
T

p∑
τ=1

(yτ0 − yτ1 + yτ2 − yτ3).

It is the mutual orthogonality of the vectors of ‘explanatory’ variables which
accounts for the simplicity of these formulae.

An alternative model of seasonality, which is used more often by econome-
tricians, assigns an individual dummy variable to each season. Thus, in place
of equation (10), we may take

(2.12)


yτ0

yτ1

yτ2

yτ3

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



δ0
δ1
δ2
δ3

+


eτ0

eτ1

eτ2

eτ3

 ,
where

(2.13) δj =
4
T

p∑
τ=1

yτj , for j = 0, . . . , 3.

A comparison of equations (10) and (12) establishes the mapping from the
coefficients of the trigonometrical functions to the coefficients of the dummy
variables. The inverse mapping is

(2.14)


α0

α1

β1

α2

 =


1
4

1
4

1
4

1
4

1
2 0 − 1

2 0
0 1

2 0 − 1
2

1
4 − 1

4
1
4 − 1

4



δ0

δ1

δ2

δ3

 .
Another way of parametrising the model of seasonality is to adopt the

following form:

(2.15)


yτ0

yτ1

yτ2

yτ3

 =


1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0



φ
γ0

γ1

γ2

+


eτ0

eτ1

eτ2

eτ3

 .
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This scheme is unbalanced in that it does not treat each season in the same
manner. An attempt might be made to correct this feature by adding to the
matrix an extra column with a unit at the bottom and with zeros elsewhere and
by introducing an accompanying parameter γ3. However, the columns of the
resulting matrix will be linearly dependent; and this will make the parameters
indeterminate unless an additional constraint is imposed which sets γ0 + · · ·+
γ3 = 0.

The problem highlights a difficulty which might arise if either of the
schemes under (10) or (12) were fitted to the data by multiple regression in
the company of a polynomial φ(t) = φ0 + φ1t+ · · ·+ φpt

p designed to capture
a trend. To make such a regression viable, one would have to eliminate the
intercept parameter φ0.

Irregular Cycles

Whereas it seems reasonable to model a seasonal fluctuation in terms of
trigonometrical functions, it is difficult to accept that other cycles in economic
activity should have such regularity.

A classic expression of skepticism was made by Slutsky [19] in a famous
article of 1927:

Suppose we are inclined to believe in the reality of the strict period-
icity of the business cycle, such, for example, as the eight-year period
postulated by Moore. Then we should encounter another difficulty.
Wherein lies the source of this regularity? What is the mechanism of
causality which, decade after decade, reproduces the same sinusoidal
wave which rises and falls on the surface of the social ocean with the
regularity of day and night?

It seems that something other than a perfectly regular sinusoidal component
is required to model the secular fluctuations of economic activity which are
described as business cycles.

To obtain a model for a seasonal fluctuation, it has been enough to modify
the equation of harmonic motion by superimposing a disturbance term which
affects the amplitude. To generate a cycle which is more fundamentally affected
by randomness, we must construct a model which has random effects in both
the phase and the amplitude.

To begin, let us imagine, once more, a point on the circumference of a circle
of radius ρ which is travelling with an angular velocity of ω. At the instant
t = 0, when the point makes a positive angle of θ with the horizontal axis, the
coordinates are given by

(2.16) (α, β) = (ρ cos θ, ρ sin θ).
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To find the coordinates of the point after it has rotated through an angle of ω
in one period of time, we may rotate the component vectors (α, 0) and (0, β)
separately and add them. The rotation of the components is depicted as follows:

(2.17)
(α, 0) ω−→ (α cosω, α sinω),

(0, β) ω−→ (−β sinω, β cosω).

Their addition gives

(2.18) (α, β) ω−→ (y, z) = (α cosω − β sinω, α sinω + β cosω).

In matrix terms, the transformation becomes

(2.19)
[
y
z

]
=
[

cosω − sinω
sinω cosω

] [
α
β

]
.

To find the values of the coordinates at a time which is an integral number of
periods ahead, we may transform the vector [y′, z′]′ by premultiplying it the
appropriate number of times by the matrix of the rotation. Alternatively, we
may replace ω in equation (19) by whatever angle will be reached at the time
in question. In effect, equation (19) specifies the horizontal and vertical com-
ponents of a circular motion which amount to a pair of synchronous harmonic
motions.

To introduce the appropriate irregularities into the motion, we may add a
random disturbance term to each of its components. The discrete-time equation
of the resulting motion may be expressed as follows:

(2.20)
[
yt
zt

]
=
[

cosω − sinω
sinω cosω

] [
yt−1

zt−1

]
+
[
υt
ζt

]
.

Now the character of the motion is radically altered. There is no longer any
bound on the amplitudes which the components might acquire in the long
run; and there is, likewise, a tendency for the phases of their cycles to drift
without limit. Nevertheless, in the absence of uncommonly large disturbances,
the trajectories of y and z are liable, in a limited period, to resemble those of
the simple harmonic motions.

It is easy to decouple the equations of y and z. The first of the equations
within the matrix expression can be written as

(2.21) yt = cyt−1 − szt−1 + υt.

The second equation may be lagged by one period and rearranged to give

(2.22) zt−1 − czt−2 = syt−2 + ζt−1.
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By taking cyt−1 = c2yt−2 − cszt−2 + υt−2 from equation (21) and by using
equation (22) to eliminate the values of z, we get

(2.23)
yt − cyt−1 = cyt−1 − c2yt−2 − szt−1 + cszt−2 + υt − cυt−1

= cyt−1 − c2yt−2 − s2yt−2 − sζt−1 + υt − cυt−1.

If we use the result that yt−2 cos2 +yt−2 sin2 = yt−2 and if we collect the dis-
turbances to form a new variable εt = υt−sζt−1−cυt−1, then we can rearrange
the second equality to give

(2.24) yt = 2 cosωyt−1 − yt−2 + εt.

Here it is not true in general that the sequence of disturbances {εt} will be
white noise. However, if we specify that, within equation (20),

(2.25)
[
υt
ζt

]
=
[
− sinω
cosω

]
ηt,

where {ηt} is a white-noise sequence, then the lagged terms within εt will cancel
leaving a sequence whose elements are mutually uncorrelated.

A sequence generated by equation (24) when {εt} is a white-noise sequence
is depicted in Figure 2.
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Figure 2. A quasi-cyclical sequence generated by the

equation yt = 2 cosωyt−1 − yt−2 + εt when ω = 20◦.
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It is interesting to recognise that equation (24) becomes the equation of a
second-order random walk in the case where ω = 0. The second-order random
walk gives rise to trends which can remain virtually linear over considerable
periods.

Whereas there is little difficulty in understanding that an accumulation
of purely random disturbances can give rise to a linear trend, there is often
surprise at the fact that such disturbances can also generate cycles which are
more or less regular. An understanding of this phenomenon can be reached
by considering a physical analogy. One such analogy, which is very apposite,
was provided by Yule whose article of 1927 introduced the concept of a second-
order autoregressive process of which equation (24) is a limiting case. Yules’s
purpose was to explain, in terms of random causes, a cycle of roughly 11 years
which characterises the Wolfer sunspot index.

Yule invited his readers to imagine a pendulum attached to a recording de-
vice. Any deviations from perfectly harmonic motion which might be recorded
must be the result of superimposed errors of observation which could be all
but eliminated if a long sequence of observations were subjected to a regression
analysis.

The recording apparatus is left to itself and unfortunately boys get
into the room and start pelting the pendulum with peas, sometimes
from one side and sometimes from the other. The motion is now
affected not by superposed fluctuations but by true disturbances, and
the effect on the graph will be of an entirely different kind. The graph
will remain surprisingly smooth, but amplitude and phase will vary
continuously.

The phenomenon described by Yule is due to the inertia of the pendulum.
In the short term, the impacts of the peas impart very little energy to the
system compared with the sum of its kinetic and potential energies at any point
in time. However, on taking a longer view, we can see that, in the absence of
clock weights, the system is driven by the impacts alone.

The Fourier Decomposition of a Time Series

In spite of the notion that a regular trigonometrical function is an inappro-
priate means for modelling an economic cycle other than a seasonal fluctuation,
there are good reasons to persist with the business of explaining a data sequence
in terms of such functions.

The Fourier decomposition of a series is a matter of explaining the series
entirely as a composition of sinusoidal functions. Thus it is possible to represent
the generic element of the sample as

(2.26) yt =
n∑
j=0

{
αj cos(ωjt) + βj sin(ωjt)

}
.
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Assuming that T = 2n is even, this sum comprises T functions whose frequen-
cies

(2.27) ωj =
2πj
T
, j = 0, . . . , n =

T

2

are at equally spaced points in the interval [0, π].
As we might infer from our analysis of a seasonal fluctuation, there are

as many nonzeros elements in the sum under (26) as there are data points,
for the reason that two of the functions within the sum—namely sin(ω0t) =
sin(0) and sin(ωnt) = sin(πt)—are identically zero. It follows that the mapping
from the sample values to the coefficients constitutes a one-to-one invertible
transformation. The same conclusion arises in the slightly more complicated
case where T is odd.

The angular velocity ωj = 2πj/T relates to a pair of trigonometrical com-
ponents which accomplish j cycles in the T periods spanned by the data. The
highest velocity ωn = π corresponds to the so-called Nyquist frequency. If a
component with a frequency in excess of π were included in the sum in (26),
then its effect would be indistinguishable from that of a component with a
frequency in the range [0, π]

To demonstrate this, consider the case of a pure cosine wave of unit am-
plitude and zero phase whose frequency ω lies in the interval π < ω < 2π. Let
ω∗ = 2π − ω. Then

(2.28)

cos(ωt) = cos
{

(2π − ω∗)t
}

= cos(2π) cos(ω∗t) + sin(2π) sin(ω∗t)
= cos(ω∗t);

which indicates that ω and ω∗ are observationally indistinguishable. Here,
ω∗ ∈ [0, π] is described as the alias of ω > π.

For an illustration of the problem of aliasing, let us imagine that a person
observes the sea level at 6am. and 6pm. each day. He should notice a very
gradual recession and advance of the water level; the frequency of the cycle
being f = 1/28 which amounts to one tide in 14 days. In fact, the true frequency
is f = 1− 1/28 which gives 27 tides in 14 days. Observing the sea level every
six hours should enable him to infer the correct frequency.

Calculation of the Fourier Coefficients

For heuristic purposes, we can imagine calculating the Fourier coefficients
using an ordinary regression procedure to fit equation (26) to the data. In
this case, there would be no regression residuals, for the reason that we are
‘estimating’ a total of T coefficients from T data points; so we are actually
solving a set of T linear equations in T unknowns.
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A reason for not using a multiple regression procedure is that, in this case,
the vectors of ‘explanatory’ variables are mutually orthogonal. Therefore T
applications of a univariate regression procedure would be appropriate to our
purpose.

Let cj = [c0j , . . . , cT−1,j ]′ and sj = [s0,j , . . . , sT−1,j ]′ represent vectors of
T values of the generic functions cos(ωjt) and sin(ωjt) respectively. Then there
are the following orthogonality conditions:

(2.29)
c′icj = 0 if i 6= j,

s′isj = 0 if i 6= j,

c′isj = 0 for all i, j.

In addition, there are the following sums of squares:

(2.30)

c′0c0 = c′ncn = T,

s′0s0 = s′nsn = 0,

c′jcj = s′jsj =
T

2
.

The ‘regression’ formulae for the Fourier coefficients are therefore

(2.31) α0 = (i′i)−1i′y =
1
T

∑
t

yt = ȳ,

(2.32) αj = (c′jcj)
−1c′jy =

2
T

∑
t

yt cosωit,

(2.33) βj = (s′jsj)
−1s′jy =

2
T

∑
t

yt sinωjt.

By pursuing the analogy of multiple regression, we can understand that
there is a complete decomposition of the sum of squares of the elements of y
which is given by

(2.34) y′y = α2
0i
′i+

∑
j

α2
jc
′
jcj +

∑
j

β2
j s
′
jsj .

Now consider writing α2
0i
′i = ȳ2i′i = ȳ′ȳ where ȳ′ = [ȳ, . . . , ȳ] is the vector

whose repeated element is the sample mean ȳ. It follows that y′y − α2
0i
′i =

y′y − ȳ′ȳ = (y − ȳ)′(y − ȳ). Therefore we can rewrite the equation as

(2.35) (y − ȳ)′(y − ȳ) =
T

2

∑
j

{
α2
j + β2

j

}
=
T

2

∑
j

ρ2
j ,

28



D.S.G. POLLOCK : SEASONS AND CYCLES

and it follows that we can express the variance of the sample as

(2.36)

1
T

T−1∑
t=0

(yt − ȳ)2 =
1
2

n∑
j=1

(α2
j + β2

j )

=
2
T 2

∑
j

{(∑
t

yt cosωjt
)2

+
(∑

t

yt sinωjt
)2
}
.

The proportion of the variance which is attributable to the component at fre-
quency ωj is (α2

j + β2
j )/2 = ρ2

j/2, where ρj is the amplitude of the component.
The number of the Fourier frequencies increases at the same rate as the

sample size T . Therefore, if the variance of the sample remains finite, and
if there are no regular harmonic components in the process generating the
data, then we can expect the proportion of the variance attributed to the
individual frequencies to decline as the sample size increases. If there is such
a regular component within the process, then we can expect the proportion of
the variance attributable to it to converge to a finite value as the sample size
increases.

In order provide a graphical representation of the decomposition of the
sample variance, we must scale the elements of equation (36) by a factor of T .
The graph of the function I(ωj) = (T/2)(α2

j +β2
j ) is know as the periodogram.
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Figure 3. The periodogram of Wolfer’s Sunspot Numbers 1749–1924.
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There are many impressive examples where the estimation of the peri-
odogram has revealed the presence of regular harmonic components in a data
series which might otherwise have passed undetected. One of the best-know
examples concerns the analysis of the brightness or magnitude of the star T.
Ursa Major. It was shown by Whittaker and Robinson in 1924 that this series
could be described almost completely in terms of two trigonometrical functions
with periods of 24 and 29 days.

The attempts to discover underlying components in economic time-series
have been less successful. One application of periodogram analysis which was a
notorious failure was its use by William Beveridge in 1921 and 1923 to analyse
a long series of European wheat prices. The periodogram had so many peaks
that at least twenty possible hidden periodicities could be picked out, and this
seemed to be many more than could be accounted for by plausible explanations
within the realms of economic history.

Such findings seem to diminish the importance of periodogram analysis
in econometrics. However, the fundamental importance of the periodogram is
established once it is recognised that it represents nothing less than the Fourier
transform of the sequence of empirical autocovariances.

The Empirical Autocovariances

A natural way of representing the serial dependence of the elements of a
data sequence is to estimate their autocovariances. The empirical autocovari-
ance of lag τ is defined by the formula

(2.37) cτ =
1
T

T−1∑
t=τ

(yt − ȳ)(yt−τ − ȳ).

The empirical autocorrelation of lag τ is defined by rτ = cτ/c0 where c0, which
is formally the autocovariance of lag 0, is the variance of the sequence. The
autocorrelation provides a measure of the relatedness of data points separated
by τ periods which is independent of the units of measurement.

It is straightforward to establish the relationship between the periodogram
and the sequence of autocovariances.

The periodogram may be written as

(2.38) I(ωj) =
2
T

[{ T−1∑
t=0

cos(ωjt)(yt − ȳ)
}2

+
{ T−1∑

t=0

sin(ωjt)(yt − ȳ)
}2
]
.

The identity
∑
t cos(ωjt)(yt− ȳ) =

∑
t cos(ωjt)yt follows from the fact that, by
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construction,
∑
t cos(ωjt) = 0 for all j. Expanding the expression in (38) gives

(2.39)

I(ωj) =
2
T

{∑
t

∑
s

cos(ωjt) cos(ωjs)(yt − ȳ)(ys − ȳ)
}

+
2
T

{∑
t

∑
s

sin(ωjt) sin(ωjs)(yt − ȳ)(ys − ȳ)
}
,

and, by using the identity cos(A) cos(B) + sin(A) sin(B) = cos(A−B), we can
rewrite this as

(2.40) I(ωj) =
2
T

{∑
t

∑
s

cos(ωj [t− s])(yt − ȳ)(ys − ȳ)
}
.

Next, on defining τ = t − s and writing cτ =
∑
t(yt − ȳ)(yt−τ − ȳ)/T , we can

reduce the latter expression to

(2.41) I(ωj) = 2
T−1∑

τ=1−T
cos(ωjτ)cτ ,

which is a Fourier transform of the sequence of empirical autocovariances.

An Appendix on Harmonic Cycles

Lemma 1. Let ωj = 2πj/T where j ∈ {0, 1, . . . , T/2} if T is even and j ∈
{0, 1, . . . , (T − 1)/2} if T is odd. Then

T−1∑
t=0

cos(ωjt) =
T−1∑
t=0

sin(ωjt) = 0.

Proof. By Euler’s equations, we have

T−1∑
t=0

cos(ωjt) =
1
2

T−1∑
t=0

exp(i2πjt/T ) +
1
2

T−1∑
t=0

exp(−i2πjt/T ).

By using the formula 1 + λ+ · · ·+ λT−1 = (1− λT )/(1− λ), we find that

T−1∑
t=0

exp(i2πjt/T ) =
1− exp(i2πj)

1− exp(i2πj/T )
.

But exp(i2πj) = cos(2πj) + i sin(2πj) = 1, so the numerator in the expression
above is zero, and hence

∑
t exp(i2πj/T ) = 0. By similar means, we can show
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that
∑
t exp(−i2πj/T ) = 0; and, therefore, it follows that

∑
t cos(ωjt) = 0. An

analogous proof shows that
∑
t sin(ωjt) = 0.

Lemma 2. Let ωj = 2πj/T where j ∈ 0, 1, . . . , T/2 if T is even and j ∈
0, 1, . . . , (T − 1)/2 if T is odd. Then

(a)
T−1∑
t=0

cos(ωjt) cos(ωkt) =

{
0, if j 6= k;
T
2 , if j = k.

(b)
T−1∑
t=0

sin(ωjt) sin(ωkt) =

{
0, if j 6= k;
T
2 , if j = k.

(c)
T−1∑
t=0

cos(ωjt) sin(ψkt) = 0 ifj 6= k.

Proof. From the formula cosA cosB = 1
2{cos(A+B) + cos(A−B)} we have

T−1∑
t=0

cos(ωjt) cos(ωkt) =
1
2

∑
{cos([ωj + ωk]t) + cos([ωj − ψk]t)}

=
1
2

T−1∑
t=0

{cos(2π[j + k]t/T ) + cos(2π[j − k]t/T )} .

We find, in consequence of Lemma 1, that if j 6= k, then both terms on the RHS
vanish, and thus we have the first part of (a). If j = k, then cos(2π[j−k]t/T ) =
cos 0 = 1 and so, whilst the first term vanishes, the second terms yields the
value of T under summation. This gives the second part of (a).

The proofs of (b) and (c) follow along similar lines.
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