
     

LECTURE 10

Seasonal Models and
Seasonal Adjustment

So far, we have relied upon the method of trigonometrical regression for
building models which can be used for forecasting seasonal economic time series.
It has proved necessary, invariably, to perform the preliminary task of elimi-
nating a trend from the data before determining the seasonal pattern from the
residuals. In most of the cases which we have analysed, the trend has been
modelled quite successfully by a simple analytic function such as a quadratic.
However, it is not always possible to find an analytic function which serves the
purpose. In some cases, a stochastic trend seems to be more appropriate. Such
a trend is generated by an autoregressive operator with units roots. Once a
stochastic unit-root model has been adopted for the trend, it seems natural
to model the pattern of seasonal fluctuations in the same manner by using
autoregressive operators with complex-valued roots of unit modulus.

The General Multiplicative Seasonal Model

Let

(1) z(t) = ∇dy(t)

be a de-trended series which exhibits seasonal behaviour with a periodicity of s
periods. Imagine, for the sake of argument, that the period between successive
observations is one month, which means that the seasons have a cycle of s = 12
months. Once the trend has been extracted from the original series y(t) by
differencing, we would expect to find a strong relationship between the values
of observations taken in the same month of successive years. In the simplest
circumstances, we might find that the difference between zt and zt−12 is a small
random quantity. If the sequence of the twelve-period differences were white
noise, then we should have a relationship of the form

(2) z(t) = z(t− 12) + ε(t) or, equivalently, ∇12z(t) = ε(t).

This is ostensibly an autoregressive model with an operator in the form of
∇12 = 1 − L12. However, it is interesting to note in passing that, if z(t) were
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generated by a regression model in the form of

(3) z(t) =
6∑
j=0

ρj cos(ωj − θj) + η(t),

where ωj = πj/6 = j × 30◦, then we should have

(4) (1− L12)z(t) = η(t)− η(t− 12) = ζ(t);

and, if the disturbance sequence η(t) were white noise, then the residual term
ζ(t) = η(t)− η(t− 12) would show the following pattern of correlation:

(5) C(ζt, ζt−j) =

{
σ2, if j mod 12 = 0;

0, otherwise.

It can be imagined that a more complicated relationship stretches over the
years which connects the months of the calender. By a simple analogy with the
ordinary ARMA model, we can devise a model of the form

(6) Φ(L12)∇D12z(t) = Θ(L12)η(t),

where Φ(z) is a polynomial of degree P and Θ(z) is a polynomial of degree
Q. In effect, this model is applied to twelve separate time series—one for each
month of the year—whose observations are seperated by yearly intervals. If
η(t) were a white-noise sequence of independently and identically distributed
random variables, then there would be no connection between the twelve time
series.

If there is a connection between successive months within the year, then
there should be a pattern of serial correlation amongst the elements of the
disturbance process η(t). One might propose to model this pattern using a
second ARMA of the form

(7) α(L)η(t) = µ(L)ε(t),

where α(z) is a polynomial of degree p and µ(z) is a polynomial of degree q.
The various components of our analysis can now be assembled. By com-

bining equations (1) (6) and (7), we can derive the following general model for
the sequence y(t):

(8) Φ(L12)α(L)∇D12∇dy(t) = Θ(L12)µ(L)ε(t).

A model of this sort has been described by Box and Jenkins as the general
multiplicative seasonal model. To denote such a model in a summary fashion,
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they describe it as an ARIMA (P,D,Q) × (p, d, q) model. Although, in the
general version of the model, the seasonal difference operator ∇12 is raised to
the power D; it is unusual to find values other that D = 0, 1.

Factorisation of The Seasonal Difference Operator

The equation under (8) should be regarded as a portmanteau in which
a collection of simplified models can be placed. The profusion of symbols in
equation (8) tends to suggest a model which is too complicated to be of practical
use. Moreover, even with ∇12 in place of ∇D12, there is a redundancy in the
notation to which we should draw attention. This redundancy arises from the
fact that the seasonal difference operator ∇D12 already contains the operator
∇ = 1−L as one of its factors. Therefore, unless this factor is eliminated, there
is a danger that the original sequence y(t) will be subjected, inadvertently, to
one more differencing operation than is intended.

The twelve factors of the operator ∇D12 = 1 − L12 contain the so-called
twelfth-order roots of unity which are the solutions of the algebraic equation
1 = z12. The factorisation may be demonstrated in three stages. To begin, it
is easy to see that

(9)
1− L12 = (1− L)(1 + L+ L2 + · · ·+ L11)

= (1− L)(1 + L2 + L4 + · · ·+ L10)(1 + L).

The next step is to recognise that

(10)
(1 + L2 + L4 + · · ·+ L10)

= (1−√3L+ L2)(1− L+ L2)(1 + L2)(1 + L+ L2)(1 +
√

3L+ L2).

Finally, it can be see that the generic quadratic factor has the form of

(11) 1− 2 cos(ωj)L+ L2 = (1− eiωjL)(1− e−iωjL).

where ωj = πj/6 = j × 30◦.
Figure 1 shows the disposition of the twelfth roots of unity around the unit

circle in the complex plane.
A cursory inspection of equation (9) indicates that the first-order difference

operator ∇ = 1−L is indeed one of the factors of ∇12 = 1−L12. Therefore, if
the sequence y(t) has been reduced to stationarity already by the application
of d first-order differencing operations, then its subsequent differencing via the
operator ∇12 is unnecessary and is liable to destroy some of the characteristics
of the sequence which ought to be captured by the ARIMA model.

The factorisation of the seasonal difference operator also helps to explain
how the seasonal ARMA model can give rise to seemingly regular cycles of the
appropriate duration.
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Figure 1. The 12th roots of unity inscribed in the unit circle.

Consider a simple second-order autoregressive model with complex-valued
roots of unit modulus:

(12)
{

1− 2 cos(ωj)L+ L2
}
yj(t) = εj(t).

Such a model can gives rise to quite regular cycles whose average duration is
2π/ωj periods. The graph of the sequence generated by a model with ωj =
ω1 = π/6 = 30◦ is given in Figure 2. Now consider generating the full set of
stochastic sequences yj(t) for j = 1, . . . , 5. Also included in this set should be
the sequences y0(t) and y6(t) generated by the first-order equations

(13) (1− L)y0(t) = ε0(t) and (1 + L)y6(t) = ε6(t).

These sequences, which resemble trigonometrical functions, will be harmoni-
cally related in the manner of the trigonometrical functions comprised by equa-
tion (3) which also provides a model for a seasonal time series. It follows that
a good representation of a seasonal economic time series can be obtained by
taking a weighted combination of the stochastic sequences.

For simplicity, imagine that the white-noise sequences εj(t); j = 0, . . . , 6
are mutually independent and that their variances can take a variety of values.
Then the sum of the stochastic sequences will be given by

(14)

y(t) =
6∑
j=0

yj(t)

=
ε0(t)

1− L +
5∑
j=1

εj(t)

1− 2 cos(ωj)L+ L2
+
ε6(t)

1− L.
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Figure 2. The graph of 84 observations on a simulated series

generated by the AR(2) process (1− 1.732L+ L2)y(t) = ε(t).

The terms on the RHS of this expression can be combined. Their common
denominator is simply the operator ∇12 = 1 − L12. The numerator is a sum
of 7 mutually independent moving-average process, each with an order of 10
or 11. This also amounts to an MA(11) process which can be denoted by
η(t) = θ(L)ε(t). Thus the combination of the harmonically related unit-root
AR(2) processes gives rise to a seasonal process in the form of

(15)
y(t) =

θ(L)

1− L12
ε(t) or, equivalently,

∇12y(t) = θ(L)ε(t).

The equation of this model is contained within the portmanteau equation of the
general multiplicative model given under (8). However, although it represents
a simplification of the general model, it still contains a number of parameters
which is liable to prove excessive. A typical model, which contain only a few
parameter, is the ARIMA (0, 1, 1) × (0, 1, 1) model which Box and Jenkins
fitted to the logarithms of the AIRPASS data. If z(t) = ∇y(t) denotes the first
difference of the logarithms of the data series, then the AIRPASS model takes
the form of

(16) (1− L12)z(t) = (1− θL12)(1− µL)ε(t).
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Forecasting with Unit-Root Seasonal Models

Although their appearances are superficially similar, the seasonal economic
series and the series generated by equations such as (16) are, fundamentally,
of very different natures. In the case of the series generated by a unit-root
stochastic difference equation, there is no bound, in the long run, on the ampli-
tude of the cycles. Also there is a tendency for the phases of the cycles to drift
without limit. If the latter were a feature of the monthly time series of con-
sumer expenditures, for example, then we could not expect the annual boom
in sales to occur at a definite time of the year. In fact, it occurs invariably at
Christmas time.

The advantage of unit-root seasonal models does not lie in the realism with
which they describe the processes which generate the economic data series.
For that purpose the trigonometrical model seems more appropriate. Their
advantage lies, instead, in their ability to forecast the seasonal series.

The simplest of the seasonal unit-root models is the one which is specified
by equation (2). This is a twelfth-order difference equation with a white-noise
forcing function. In generating forecasts from the model, we need only replace
the elements of ε(t) which lie in the future by their zero-valued expectations.
Then the forecasts may be obtained iteratively from a homogeneous difference
equation in which the initial conditions are simply the values of y(t) observed
over the preceding twelve months. In effect, we observe the most recent annual
cycle and we extrapolate its form exactly year-in year-out into the indefinite
future.

A somewhat different forecasting rule is associated with the model defined
by the equation

(17) (1− L12)y(t) = (1− θL12)ε(t)

This equation is analogous to the simple IMA(1, 1) equation in the form of

(18) (1− L)y(t) = (1− θL)ε(t)

which was considered at the beginning of the course. The later equation was
obtained by combining a first-order random walk with a white-noise error of
observation. The two equations, whose combination gives rise to (18), are

(19)
ξ(t) = ξ(t− 1) + ν(t),

y(t) = ξ(t) + η(t),

wherein ν(t) and η(t) are generated by two mutually independent white-noise
processes.
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Figure 3. The sample trajectory and the forecast function of

the nonstationary 12th-order process y(t) = y(t− 12) + ε(t).

Equation (17), which represents the seasonal model which was used by Box
and Jenkins, is generated by combining the following the equations which are
analogous to these under (19):

(20)
ξ(t) = ξ(t− 12) + ν(t),

y(t) = ξ(t) + η(t).

Here ν(t) and η(t) continue to represent a pair of independent white-noise
processes.

The procedure for forecasting the IMA model consisted of extrapolating
into the indefinite future a constant value ŷt+1|t which represents the one-
step-ahead forecast made at time t. The forecast itself was obtained from
a geometrically-weighted combination of all past values of the sequence y(t)
which represent erroneous observations on the random-walk process ξ(t). The
forecasts for the seasonal model of (17) are obtained by extrapolating a so-called
annual reference cycle into the future so that it applies in every successive
year. The reference cycle is constructed by taking a geometrically weighted
combination of all past annual cycles. The analogy with the IMA model is
perfect!

It is interesting to compare the forecast function of a stochastic unit-root
seasonal model of (17) with the forecast function of the corresponding trigono-
metrical model represented by (3). In the latter case, the forecast function
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depends upon a reference cycle which is the average of all of the annual cycles
which are represented by the data set from which the regression parameters
have been computed. The stochastic model seems to have the advantage that,
in forming its average of previous annual cycles, it gives more weight to recent
years. However, it is not difficult to contrive a regression model which has the
same feature.
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