Computing the Values of Trigonometrical Functions

The trigonometrical functions take a relatively large amount of time to compute. In some applications, such as the fast Fourier transform (FFT), it is required to evaluate the sines and cosines of a sequence of harmonically related angles denoted by $\theta \times j ; j=0,1, \ldots, n$. In such cases, it may be efficient to use a simple recursive scheme based on the trigonometrical identities:

$$
\begin{aligned}
\cos (j \theta) & =2 \cos (\theta) \cos ([j-1] \theta)-\cos ([j-2] \theta), \\
\sin (j \theta) & =2 \sin (\theta) \cos ([j-1] \theta)+\sin ([j-2] \theta) .
\end{aligned}
$$

These follow, respectively, from the trigonometrical identities

$$
\begin{aligned}
\cos A \cos B & =\frac{1}{2}\{\cos (A+B)+\cos (A-B)\} \\
\cos A \sin B & =\frac{1}{2}\{\sin (A+B)-\sin (A-B)\}
\end{aligned}
$$

which are to be found under (13.126). We set $A=[j-1] \theta$ and $B=\theta$. The recursive schemes depend only on single evaluations of $\cos (\theta)$ and $\sin (\theta)$ made at the start.

Several alternative schemes are available, of which we show a further two. In the first of these, we generate the cosine and sine values as independent sequences:

$$
\begin{aligned}
C_{j+1} & =R \times \cos (j \theta)+C_{j}, \\
\cos ([j+1] \theta) & =\cos (j \theta)+C_{j+1}
\end{aligned}
$$

and

$$
\begin{aligned}
S_{j+1} & =R \times \sin (j \theta)+S_{j} \\
\sin ([j+1] \theta) & =\sin (j \theta)+S_{j+1}
\end{aligned}
$$

where the constant multiplier is

$$
R=-4 \sin ^{2}(\theta / 2)
$$

and the initial values are

$$
\begin{aligned}
C_{0} & =2 \sin ^{2}(\theta / 2) \\
S_{0} & =2 \sin (\theta) \\
\cos (0) & =1 \\
\sin (0) & =0 .
\end{aligned}
$$

D.S.G. POLLOCK: TRIGONOMETRICAL RECURRENCE

Another method, in which the sine and cosine are computed as a pair with four multiplications instead of two is as follows:

$$
\cos ([j+1] \theta)=\{C \times \cos (j \theta)-S \times \sin (j \theta)\}+\cos (j \theta)
$$

and

$$
\sin ([j+1] \theta)=\{C \times \sin (j \theta)-S \times \cos (j \theta)\}+\sin (j \theta)
$$

where

$$
\begin{aligned}
C & =2 \sin ^{2}(\theta / 2) \\
S & =2 \sin (\theta)
\end{aligned}
$$

Singleton (1967) reports that both of the latter methods result in a low level of errors, with the second method being marginally more accurate.

Reference

Singleton, R.C., (1967), On Computing the Fast Fourier Transform, Communications of the ACM, 10, 647-654.

