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THE SUBSAMPLING OF LINEAR STOCHASTIC PROCESSES

Consider the first-order autoregressive AR(1) model

y(t) = αy(t − 1) = ε(t). (1)

On defining the lag operator L, which has the effect that Ly(t) = y(t− 1), this
can be written as

(1 − αL)y(t) = ε(t). (2)

We wish to consider the effect of sampling every nth point to produce the
sequence x(t) = {yt; t = 0,±n,±2n . . .},

Multiplying both sides of (2) by

T (L) =
(1 − {αL}n)

(1 − αL)
= 1 + αL + · · · + {αL}n−1, (3)

which is a polynomial of finite degree, we get

(1 − αnLn)y(t) = (1 + αL + · · · + {αL}n−1)ε(t) = ζ(t), (4)

Here, ζt = εt + αεt−1 + · · · + αn−1εt−n+1 is compounded from elements that
postdate yt−n. Therefore, ζt and yt−n are statistically independent. Also, ζt

and ζt−n, which have no elements in common, are statistically independent;
and, therefore, η(t) = {ζt; t = 0,±n,±2n, . . .} is a white-noise sequence of
independently and identically distributed random variables. If follows that a
consistent estimate of αn = φ can be obtained by applying the usual methods
to the equation

x(t) = φx(t − 1) + η(t), (5)

comprising the subsampled sequence, x(t) and the corresponding subsequence
η(t) of the disturbances.

Now consider the case of an AR(p) model

α(L)y(t) =
p∏

j=1

(1 − λjL)y(t) = ε(t), (6)

We may multiply both sides by

β(L) =
φ∗(L)
α(L)

=

∏p
j=1(1 − {λjL}n)∏p

j=1(1 − λjL)

=
p∏

j=1

(1 + λjL + · · · + {λLj}n−1) =
p(n−1)∑

j=0

βjL
j ,

(7)
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Now, there is
p∑

j=0

αjL
njy(t) =

p(n−1)∑
j=0

βjL
jε(t) = ζ(t). (8)

and the subsampled data sequence is described by an ARMA model of the form

φ(L)x(t) = η(t), (9)

where φ(L) = 1 + φ∗
nL + · · · + φ∗

pnLp, which is of degree p, contains the
nonzero coefficients of φ∗(L), which is degree np, and where η(t) = {ζt; t =
0,±n,±2n, . . .} follows a moving-averge process.

The autocovariances of the disturbances η(t) are given by

γk = E(ηtηt−nk) = E

{( ∑
i

βiεt−i

)( ∑
j

βjεt−j−nk

)}
=

∑
i

∑
j

βiβjE(εt−iεt−j−nk).
(9)

But

E(εt−iεt−j−nk) =

{
σ2, if i = j + nk;

0, otherwise,
(10)

so

γk = σ2

p(n−1)∑
j=0

βjβj+kn, (11)

which becomes zero when kn > p(n − 1), which is when k ≥ p. It follows
that the moving-average process describing the subsequence of disturbances
η(t) has a maximum order of p−1. Therefore, the subsampled AR(p) sequence
is described by an ARMA(p, p − 1) process

Consider next, the general case of an ARMA(p, q) model which can be
denoted by

α(L)y(t) = µ(L)ε(t), (12)

where α(z) is a polynomial of degree p and µ(z) is a polynomial of degree q.
We seek a poynomial β(z) of degree h such that

β(z)α(z) = φ∗(z), (13)

where φ∗(z) is a polynomial of degree rn of which 1, φn, . . . , φrn are the only
nonzero coefficients.

The degrees of the products on the LHS and the RHS of (13) must be
the same, which imposes the condition that h + p = rn. Also, there are r(n −
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1) coefficients in φ(zn), which are subject to the restrictions that they are
zero-valued. Since these conditions are imposed by a set of linear restrictions
generated by the poynomial β(z) of degree h, we must have h = r(n − 1). We
can see that

h + p = rn and h = r(n − 1) implies r = p, (14)

which is the degree of the autoregessive polynomial in the ARMA model that
describes the subsampled sequence

To obtain the degree of the moving-average polynomial of sussampled pro-
cess, we note that the degreee of β(z)µ(z) is h + q = p(n − 1) + q. It follows
that

E(ηtηt−kn) =
{

γkn, if kn ≤ p(n − 1) + q;

0, otherwise.
(12)

On defining b = Trunc{p(n − 1) + q}/n we can assert that the subsampled
sequence x(t) = {yt; t = 0,±n,±2n . . .} follows an ARMA(p, d) process.
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