THE STARTING-VALUE PROBLEM ASSOCIATED WITH ARMA PROCESSES

The $\operatorname{ARMA}(p, q)$ model can be represented by the equation

$$
\begin{equation*}
\sum_{i=0}^{p} \alpha_{i} y(t-i)=\sum_{i=0}^{q} \mu_{i} \varepsilon(t-i), \quad \text { with } \quad \alpha_{0}=1 \tag{1}
\end{equation*}
$$

where $\varepsilon(t)$ is a white-noise process with a variance of σ^{2}. In matrix terms, the system that generates a sample $y=\left[y_{0}, y_{1}, \ldots, y_{T-1}\right]^{\prime}$ of T observations, can be written as

$$
\begin{equation*}
A y+A_{*} y_{*}=M \varepsilon+M_{*} \varepsilon_{*} . \tag{2}
\end{equation*}
$$

Here, $\varepsilon=\left[\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{T-1}\right]^{\prime}$ is a vector of independently and identically distributed elements, whilst $y_{*}=\left[y_{-p}, \ldots, y_{-2}, y_{-1}\right]^{\prime}$ and $\varepsilon_{*}=\left[\varepsilon_{-q}, \ldots, \varepsilon_{-2}, \varepsilon_{-1}\right]^{\prime}$ are vectors of presample elements.

The matrices A and M, which are of a lower-triangular Toeplitz form, are completely characterised by their leading columns, which are the vectors $\left[\alpha_{0}, \alpha_{1}, \ldots \alpha_{p}, 0, \ldots, 0\right]^{\prime}$ and $\left[\mu_{0}, \mu_{1}, \ldots, \mu_{q}, 0, \ldots 0\right]^{\prime}$, respectively.

The matrices $A_{*}=\left[A_{* *}^{\prime}, 0\right]^{\prime}$ and $M_{*}=\left[M_{* *}^{\prime}, 0\right]^{\prime}$ contain the parameters associated with the presample elements. The principal minor of $A_{*}=\left[A_{* *}^{\prime}, 0\right]^{\prime}$ is a nonsingular upper-triangular matrix $A_{* *}$ of order p. Likewise, $M_{* *}$, which is the leading minor of M_{*}, is a nonsingular matrix of order q.

An example is provided by the following display that relates to the case where the autoregressive order is $p=3$ and the size of the sample is $T=6$:

$$
A_{*}=\left[\begin{array}{ccc}
\alpha_{3} & \alpha_{2} & \alpha_{1} \tag{3}\\
0 & \alpha_{3} & \alpha_{2} \\
0 & 0 & \alpha_{3} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad A=\left[\begin{array}{cccccc}
\alpha_{0} & 0 & 0 & 0 & 0 & 0 \\
\alpha_{1} & \alpha_{0} & 0 & 0 & 0 & 0 \\
\alpha_{2} & \alpha_{1} & \alpha_{0} & 0 & 0 & 0 \\
\alpha_{3} & \alpha_{2} & \alpha_{1} & \alpha_{0} & 0 & 0 \\
0 & \alpha_{3} & \alpha_{2} & \alpha_{1} & \alpha_{0} & 0 \\
0 & 0 & \alpha_{3} & \alpha_{2} & \alpha_{1} & \alpha_{0}
\end{array}\right] .
$$

From (2), we obtain the following expressions for y and ε :

$$
\begin{align*}
& y=A^{-1} M \varepsilon+A^{-1}\left(M_{*} \varepsilon_{*}-A_{*} y_{*}\right) \tag{4}\\
& \varepsilon=M^{-1} A y-M^{-1}\left(A_{*} y_{*}-M_{*} \varepsilon_{*}\right) \tag{5}
\end{align*}
$$

We wish to generate the vector ε of the within-sample disturbances knowing the parameter matrices and the data. Equation (5) indicates a way of generating ε that would be available if the presmaple values of y_{*} and ε_{*} were known. In the absence of known values, we might think of using the conditional expectations $E\left(y_{*} \mid y\right)$ and $E\left(\varepsilon_{*} \mid y\right)$. Whereas $E\left(\varepsilon_{*} \mid y\right)=0$, we could obtain the elements of $E\left(y_{*} \mid y\right)$ by a process of "backwards forecasting" that applies the conventional ARMA forecasting technique in reverse time. However, this requires a knowledge of elements of the vector ε that are, as yet, unknown to us.

Using y_{0}, \ldots, y_{p-1} as starting values and setting $\varepsilon_{0}=\cdots=\varepsilon_{q-1}=0$, we can generate initial estimates of $\varepsilon_{p}, \ldots, \varepsilon_{T-1}$ via a recursion based on (1). Then, presample values of $y(t)$ can be estimated that can be used in generating fresh estimates of the values of $\varepsilon(t)$ within the sample period. Thereafter, new presample values of $y(t)$ can be estimated, and so on, back and forth. This kind of procedure was used by Box and Jenkins (1976).

A more fruitful approach is to concentrate on finding the conditional expectation $E(\varepsilon \mid y)$ directly. The formula is

$$
\begin{equation*}
E(\varepsilon \mid y)=E(\varepsilon)+C(\varepsilon, y) D^{-1}(y)\{y-E(y)\} \tag{6}
\end{equation*}
$$

where $E(\varepsilon)=0$ and $E(y)=0$ are unconditional expectations, $D(y)=\sigma^{2} Q$ is the dispersion matrix of y and $C(\varepsilon, y)$ is the matrix of the covariances of ε and y. The essential result is that

$$
\begin{align*}
C(\varepsilon, y) & =E\left(\varepsilon \varepsilon^{\prime}\right) M^{\prime} A^{\prime-1} \\
& =\sigma^{2} M^{\prime} A^{\prime-1} . \tag{7}
\end{align*}
$$

From this, we get

$$
\begin{align*}
E(\varepsilon \mid y) & =C(\varepsilon, y) D^{-1}(y) y \tag{8}\\
& =M^{\prime} A^{\prime-1} Q^{-1} y .
\end{align*}
$$

The dispersion matrix of the estimate is

$$
\begin{align*}
D\{E(\varepsilon \mid y)\} & =C(\varepsilon, y) D^{-1}(y) C(y, \varepsilon) \tag{9}\\
& =\sigma^{2} M^{\prime} A^{\prime-1} Q^{-1} A^{-1} M .
\end{align*}
$$

By combining (8) and (9), we find that

$$
\begin{equation*}
E^{\prime}(\varepsilon \mid y) D^{-1}\{E(\varepsilon \mid y)\} E(\varepsilon \mid y)=\frac{1}{\sigma^{2}} y^{\prime} Q^{-1} y \tag{10}
\end{equation*}
$$

which is as we might expect.
Next, there is the question of how to represent the dispersion matrix $D(y)=\sigma^{2} Q$, how it might be approximated and how to deal with it in the process of computing the disturbance vector ε. Pollock (1999) has provided the expressions

$$
\begin{align*}
& D(y)=\sigma^{2} A^{-1}\left(V \Omega V^{\prime}+M M^{\prime}\right) A^{\prime-1} \text { and } \tag{11}\\
& \begin{aligned}
D^{-1}(y) & =\frac{1}{\sigma^{2}} A^{\prime} M^{\prime-1}\left[I_{T}-M^{-1} V\left\{\Omega^{-1}\right.\right. \\
& \left.\left.+V^{\prime}\left(M M^{\prime}\right)^{-1} V\right\} V^{\prime} M^{\prime-1}\right] M^{-1} A .
\end{aligned}
\end{align*}
$$

where

$$
V=\left[\begin{array}{ll}
-A_{*} & M_{*}
\end{array}\right] \quad \text { and } \quad \Omega=D\left(u_{*}\right) \quad \text { with } \quad u_{*}=\left[\begin{array}{l}
y_{*} \tag{13}\\
\varepsilon_{*}
\end{array}\right] .
$$

D.S.G. POLLOCK: BRIEF NOTES ON TIME SERIES

The purpose of these expressions was to provide a portmanteau which contains the expression of the pure autoregressive (AR) process and a pure moving average (MA) process as special cases.

For the AR case, there are

$$
\begin{align*}
D(y) & =\sigma^{2} A^{-1}\left\{I-A_{*}\left(A_{*}^{\prime} A_{*}+I\right) A_{*}^{\prime}\right\} A^{\prime-1} \text { and } \tag{14}\\
D^{-1}(y) & =\frac{1}{\sigma^{2}}\left\{A^{\prime} A-A_{*} A_{*}^{\prime}\right\} . \tag{15}
\end{align*}
$$

whereas, for the MA case there, are

$$
\begin{align*}
D(y) & =\sigma^{2}\left(M M^{\prime}+M_{*} M_{*}^{\prime}\right) \quad \text { and } \tag{16}\\
D^{-1}(y) & =\frac{1}{\sigma^{2}} M^{\prime-1}\left[I-M^{-1} M_{*}\left\{I_{q}\right.\right. \\
& \left.\left.\quad+M_{*}^{\prime}\left(M M^{\prime}\right)^{-1} M_{*}\right\}^{-1} M_{*}^{\prime} M^{\prime-1}\right] M^{-1} . \tag{17}
\end{align*}
$$

The commonest form of approximations arise from ignoring the matrices A_{*} and M_{*} within (14) and (16) respectively by setting them to zero. Within (11), it is a matter of ignoring the matrix $V \Omega V^{\prime}$. The effect of these simplifications within (8) is to give the approximation

$$
\begin{align*}
E(\varepsilon \mid y) & \simeq M^{\prime} A^{\prime-1}\left\{A^{\prime} M^{\prime-1} M^{-1} A\right\} y \tag{18}\\
& \simeq M^{-1} A y,
\end{align*}
$$

which is what we would expect on the basis of equation (5). However, it is the very inadequacy of this approximation that has motivated us to find a exact expression for $E(\varepsilon \mid y)$.

A computational rendering of the algebra of (11), which is sparing of computer storage, has been provided in Pollock (1999). The algorithm is relatively complex; and its complexities can be avoided at the cost of using more storage space.

The essential computational task is to evaluate the expression $p=Q^{-1} y$, which is found in equation (8). To begin with, it is straightforward to find the autocovariances of an ARMA process which constitute the elements of the dispersion matrix $D(y)=\sigma^{2} Q$. In the case of an MA process or an ARMA process, we need to avoid the direct inversion of Q, which is a large matrix full of nonzero elements.

To these ends, we may compute the Cholesky factorisation $Q=L L^{\prime}$, in which L stands for a lower-triangular matrix. Then we may write the equation $Q p=y$ as $L L^{\prime} p=L d=y$. We proceed to find d from $L d=y$ by a simple process of forwards recursions. Thereafter, we find p from $L^{\prime} p=d$ by a backwards recursion. The remaining steps in finding $E(\varepsilon \mid y)$ consist of a backward recursion, for finding $g=A^{\prime-1} p$ from $A^{\prime} g=p$, and a direct multiplication, for finding $E(\varepsilon \mid y)=M^{\prime} g$.

References

Box, G.E.P., and G.M. Jenkins, (1976), Time Series Analysis: Forecasting and Control, Revised Edition, Holden-Day, San Francisco.
Pollock, (1999), Time-Series Analysis, Signal Processing and Dynamics, The Academic Press, London.

