
D.S.G. POLLOCK: BRIEF NOTES ON TIME SERIES

THE STARTING-VALUE PROBLEM
ASSOCIATED WITH ARMA PROCESSES

The ARMA(p, q) model can be represented by the equation

(1)
p∑

i=0

αiy(t − i) =
q∑

i=0

µiε(t − i), with α0 = 1,

where ε(t) is a white-noise process with a variance of σ2. In matrix terms, the
system that generates a sample y = [y0, y1, . . . , yT−1]′ of T observations, can
be written as

(2) Ay + A∗y∗ = Mε + M∗ε∗.

Here, ε = [ε0, ε1, . . . , εT−1]′ is a vector of independently and identically dis-
tributed elements, whilst y∗ = [y−p, . . . , y−2, y−1]′ and ε∗ = [ε−q, . . . , ε−2, ε−1]′

are vectors of presample elements.
The matrices A and M , which are of a lower-triangular Toeplitz form,

are completely characterised by their leading columns, which are the vectors
[α0, α1, . . . αp, 0, . . . , 0]′ and [µ0, µ1, . . . , µq, 0, . . . 0]′, respectively.

The matrices A∗ = [A′
∗∗, 0]′ and M∗ = [M ′

∗∗, 0]′ contain the parameters
associated with the presample elements. The principal minor of A∗ = [A′

∗∗, 0]′

is a nonsingular upper-triangular matrix A∗∗ of order p. Likewise, M∗∗, which
is the leading minor of M∗, is a nonsingular matrix of order q.

An example is provided by the following display that relates to the case
where the autoregressive order is p = 3 and the size of the sample is T = 6:

(3) A∗ =


α3 α2 α1

0 α3 α2

0 0 α3

0 0 0
0 0 0
0 0 0

 A =


α0 0 0 0 0 0
α1 α0 0 0 0 0
α2 α1 α0 0 0 0
α3 α2 α1 α0 0 0
0 α3 α2 α1 α0 0
0 0 α3 α2 α1 α0

 .

From (2), we obtain the following expressions for y and ε:

y = A−1Mε + A−1(M∗ε∗ − A∗y∗),(4)

ε = M−1Ay − M−1(A∗y∗ − M∗ε∗).(5)

We wish to generate the vector ε of the within-sample disturbances know-
ing the parameter matrices and the data. Equation (5) indicates a way of
generating ε that would be available if the presmaple values of y∗ and ε∗ were
known. In the absence of known values, we might think of using the conditional
expectations E(y∗|y) and E(ε∗|y). Whereas E(ε∗|y) = 0, we could obtain the
elements of E(y∗|y) by a process of “backwards forecasting” that applies the
conventional ARMA forecasting technique in reverse time. However, this re-
quires a knowledge of elements of the vector ε that are, as yet, unknown to
us.
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Using y0, . . . , yp−1 as starting values and setting ε0 = · · · = εq−1 = 0,
we can generate initial estimates of εp, . . . , εT−1 via a recursion based on (1).
Then, presample values of y(t) can be estimated that can be used in generating
fresh estimates of the values of ε(t) within the sample period. Thereafter, new
presample values of y(t) can be estimated, and so on, back and forth. This
kind of procedure was used by Box and Jenkins (1976).

A more fruitful approach is to concentrate on finding the conditional ex-
pectation E(ε|y) directly. The formula is

(6) E(ε|y) = E(ε) + C(ε, y)D−1(y){y − E(y)},

where E(ε) = 0 and E(y) = 0 are unconditional expectations, D(y) = σ2Q is
the dispersion matrix of y and C(ε, y) is the matrix of the covariances of ε and
y. The essential result is that

(7)
C(ε, y) = E(εε′)M ′A′−1

= σ2M ′A′−1.

From this, we get

(8)
E(ε|y) = C(ε, y)D−1(y)y

= M ′A′−1Q−1y.

The dispersion matrix of the estimate is

(9)
D{E(ε|y)} = C(ε, y)D−1(y)C(y, ε)

= σ2M ′A′−1Q−1A−1M.

By combining (8) and (9), we find that

(10) E′(ε|y)D−1{E(ε|y)}E(ε|y) =
1
σ2

y′Q−1y,

which is as we might expect.
Next, there is the question of how to represent the dispersion matrix

D(y) = σ2Q, how it might be approximated and how to deal with it in the
process of computing the disturbance vector ε. Pollock (1999) has provided
the expressions

D(y) = σ2A−1(V ΩV ′ + MM ′)A′−1 and(11)

D−1(y) =
1
σ2

A′M ′−1[IT − M−1V {Ω−1

+ V ′(MM ′)−1V }V ′M ′−1]M−1A.(12)

where

(13) V = [−A∗ M∗ ] and Ω = D(u∗) with u∗ =
[

y∗
ε∗

]
.
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The purpose of these expressions was to provide a portmanteau which contains
the expression of the pure autoregressive (AR) process and a pure moving
average (MA) process as special cases.

For the AR case, there are

D(y) = σ2A−1{I − A∗(A′
∗A∗ + I)A′

∗}A′−1 and(14)

D−1(y) =
1
σ2

{A′A − A∗A
′
∗}.(15)

whereas, for the MA case there, are

D(y) = σ2(MM ′ + M∗M
′
∗) and(16)

D−1(y) =
1
σ2

M ′−1[I − M−1M∗{Iq

+ M ′
∗(MM ′)−1M∗}−1M ′

∗M
′−1]M−1.(17)

The commonest form of approximations arise from ignoring the matrices
A∗ and M∗ within (14) and (16) respectively by setting them to zero. Within
(11), it is a matter of ignoring the matrix V ΩV ′. The effect of these simplifi-
cations within (8) is to give the approximation

(18)
E(ε|y) � M ′A′−1{A′M ′−1M−1A}y

� M−1Ay,

which is what we would expect on the basis of equation (5). However, it is the
very inadequacy of this approximation that has motivated us to find a exact
expression for E(ε|y).

A computational rendering of the algebra of (11), which is sparing of com-
puter storage, has been provided in Pollock (1999). The algorithm is relatively
complex; and its complexities can be avoided at the cost of using more storage
space.

The essential computational task is to evaluate the expression p = Q−1y,
which is found in equation (8). To begin with, it is straightforward to find
the autocovariances of an ARMA process which constitute the elements of the
dispersion matrix D(y) = σ2Q. In the case of an MA process or an ARMA
process, we need to avoid the direct inversion of Q, which is a large matrix full
of nonzero elements.

To these ends, we may compute the Cholesky factorisation Q = LL′, in
which L stands for a lower-triangular matrix. Then we may write the equation
Qp = y as LL′p = Ld = y. We proceed to find d from Ld = y by a simple
process of forwards recursions. Thereafter, we find p from L′p = d by a back-
wards recursion. The remaining steps in finding E(ε|y) consist of a backward
recursion, for finding g = A′−1p from A′g = p, and a direct multiplication, for
finding E(ε|y) = M ′g.
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