THE PERIODOGRAM AND THE CIRCULAR AUTOCOVARIANCES

A natural way of representing the serial dependence of the elements of the data sequence $[y_0, y_1, \ldots, y_{T-1}]$ is to estimate their autocovariances. The empirical autocovariance of lag τ is defined by the formula

(1)
$$c_{\tau} = \frac{1}{T} \sum_{t=\tau}^{T-1} (y_t - \bar{y})(y_{t-\tau} - \bar{y}).$$

The empirical autocorrelation of lag τ is defined by $r_{\tau} = c_{\tau}/c_0$ where c_0 , which is formally the autocovariance of lag 0, is the variance of the sequence. The autocorrelation provides a measure of the relatedness of data points separated by τ periods which is independent of the units of measurement.

The periodogram may be written as

(2)
$$I(\omega_j) = \frac{T}{2}\rho_j^2 = \frac{2}{T} \left[\left\{ \sum_{t=0}^{T-1} \cos(\omega_j t)(y_t - \bar{y}) \right\}^2 + \left\{ \sum_{t=0}^{T-1} \sin(\omega_j t)(y_t - \bar{y}) \right\}^2 \right],$$

where $\omega_j = 2\pi j/T$ is the *j*th Fourier frequency, which relates to the trigonometrical function that completes *j* cycles in the period spanned by the data. We should also be aware of the identity $\sum_t \cos(\omega_j t)(y_t - \bar{y}) = \sum_t \cos(\omega_j t)y_t$, which follows from the fact that, by construction, $\sum_t \cos(\omega_j t) = 0$ for all *j*. The inclusion of \bar{y} in (2) is to assist in the ensuing developments.

It is straightforward to establish the relationship between the periodogram and the sequence of autocovariances. Expanding the RHS of (2) gives

(3)
$$I(\omega_j) = \frac{2}{T} \left\{ \sum_t \sum_s \cos(\omega_j t) \cos(\omega_j s) (y_t - \bar{y}) (y_s - \bar{y}) \right\} + \frac{2}{T} \left\{ \sum_t \sum_s \sin(\omega_j t) \sin(\omega_j s) (y_t - \bar{y}) (y_s - \bar{y}) \right\},$$

and, by using the identity $\cos(A)\cos(B) + \sin(A)\sin(B) = \cos(A - B)$, we can rewrite this as

(4)
$$I(\omega_j) = \frac{2}{T} \bigg\{ \sum_t \sum_s \cos(\omega_j [t-s])(y_t - \bar{y})(y_s - \bar{y}) \bigg\}.$$

Next, on defining $\tau = t - s$ and writing $c_{\tau} = \sum_{t} (y_t - \bar{y})(y_{t-\tau} - \bar{y})/T$, we can reduce the latter expression to

(5)
$$I(\omega_j) = 2 \sum_{\tau=1-T}^{T-1} \cos(\omega_j \tau) c_\tau = 2 \bigg\{ c_0 + 2 \sum_{\tau=1}^{T-1} \cos(\omega_j \tau) c_\tau \bigg\},$$

D.S.G. POLLOCK: TIME-SERIES ANALYSIS

which is a Fourier transform of the sequence of empirical autocovariances.

From the definition of the frequency ω_j , it follows that $\cos(\omega_j \{T - \tau\}) = \cos(\omega_j \tau)$, which is to say that the cosine is an even function of the index $\tau = 0, \ldots, T - 1$. Therefore, (5) can be rewritten as

(6)
$$I(\omega_j) = 2 \bigg\{ c_0 + \sum_{\tau=1}^{T-1} \cos(\omega_j \tau) (c_\tau + c_{T-\tau}) \bigg\},$$

Here, the values $\tilde{c}_0 = c_0$, $\tilde{c}_\tau = c_\tau + c_{T-\tau}$; $\tau = 1, \ldots T-1$ constitute the so-called circular autocovariances.

It is easy to see that there is a one-to-one correspondence between the sequence of circular autocovariances $\tilde{c}_0, \ldots, \tilde{c}_{T-1}$ and the sequence of periodogram ordinates I_0, \ldots, I_{T-1} . We have already seen in (6) that

(7)
$$I_{j} = \frac{T}{2}\rho_{j}^{2} = 2\sum_{\tau=0}^{T-1} \tilde{c}_{\tau} \cos(\omega_{j}\tau).$$

To show that, conversely,

(8)
$$\tilde{c}_{\tau} = \frac{1}{T} \sum_{j=0}^{T-1} I_j \cos(\omega_j \tau),$$

we may substitute into the latter the expression for I_j . The result should be an identity. Thus we find that

(9)
$$\tilde{c}_{\tau} = \frac{2}{T} \sum_{j=0}^{T-1} \cos(\omega_j \tau) \left\{ \sum_{\kappa=0}^{T-1} \tilde{c}_{\kappa} \cos(\omega_j \kappa) \right\}$$
$$= \frac{2}{T} \sum_{\kappa=0}^{T-1} \tilde{c}_{\kappa} \sum_{j=0}^{T-1} \cos(\omega_j \kappa) \cos(\omega_j \tau).$$

But the orthogonality relationships affecting the cosine functions at the Fourier frequencies imply that

(10)
$$\sum_{j=0}^{T-1} \cos(\omega_j \kappa) \cos(\omega_j \tau) = \begin{cases} 0, & \text{if } \kappa \neq \tau; \\ \frac{T}{2}, & \text{if } \kappa = \tau. \end{cases}$$

Using these results in (9) reduces the RHS to \tilde{c}_{τ} , which establishes the necessary identity.