THE PERIODOGRAM AND THE CIRCULAR AUTOCOVARIANCES

A natural way of representing the serial dependence of the elements of the data sequence $\left[y_{0}, y_{1}, \ldots, y_{T-1}\right]$ is to estimate their autocovariances. The empirical autocovariance of lag τ is defined by the formula

$$
\begin{equation*}
c_{\tau}=\frac{1}{T} \sum_{t=\tau}^{T-1}\left(y_{t}-\bar{y}\right)\left(y_{t-\tau}-\bar{y}\right) . \tag{1}
\end{equation*}
$$

The empirical autocorrelation of $\operatorname{lag} \tau$ is defined by $r_{\tau}=c_{\tau} / c_{0}$ where c_{0}, which is formally the autocovariance of lag 0 , is the variance of the sequence. The autocorrelation provides a measure of the relatedness of data points separated by τ periods which is independent of the units of measurement.

The periodogram may be written as

$$
\begin{equation*}
I\left(\omega_{j}\right)=\frac{T}{2} \rho_{j}^{2}=\frac{2}{T}\left[\left\{\sum_{t=0}^{T-1} \cos \left(\omega_{j} t\right)\left(y_{t}-\bar{y}\right)\right\}^{2}+\left\{\sum_{t=0}^{T-1} \sin \left(\omega_{j} t\right)\left(y_{t}-\bar{y}\right)\right\}^{2}\right] \tag{2}
\end{equation*}
$$

where $\omega_{j}=2 \pi j / T$ is the j th Fourier frequency, which relates to the trigonometrical function that completes j cycles in the period spanned by the data. We should also be aware of the identity $\sum_{t} \cos \left(\omega_{j} t\right)\left(y_{t}-\bar{y}\right)=\sum_{t} \cos \left(\omega_{j} t\right) y_{t}$, which follows from the fact that, by construction, $\sum_{t} \cos \left(\omega_{j} t\right)=0$ for all j. The inclusion of \bar{y} in (2) is to assist in the ensuing developmemts.

It is straightforward to establish the relationship between the periodogram and the sequence of autocovariances. Expanding the RHS of (2) gives

$$
\begin{align*}
I\left(\omega_{j}\right)= & \frac{2}{T}\left\{\sum_{t} \sum_{s} \cos \left(\omega_{j} t\right) \cos \left(\omega_{j} s\right)\left(y_{t}-\bar{y}\right)\left(y_{s}-\bar{y}\right)\right\} \\
& +\frac{2}{T}\left\{\sum_{t} \sum_{s} \sin \left(\omega_{j} t\right) \sin \left(\omega_{j} s\right)\left(y_{t}-\bar{y}\right)\left(y_{s}-\bar{y}\right)\right\} \tag{3}
\end{align*}
$$

and, by using the identity $\cos (A) \cos (B)+\sin (A) \sin (B)=\cos (A-B)$, we can rewrite this as

$$
\begin{equation*}
I\left(\omega_{j}\right)=\frac{2}{T}\left\{\sum_{t} \sum_{s} \cos \left(\omega_{j}[t-s]\right)\left(y_{t}-\bar{y}\right)\left(y_{s}-\bar{y}\right)\right\} \tag{4}
\end{equation*}
$$

Next, on defining $\tau=t-s$ and writing $c_{\tau}=\sum_{t}\left(y_{t}-\bar{y}\right)\left(y_{t-\tau}-\bar{y}\right) / T$, we can reduce the latter expression to

$$
\begin{equation*}
I\left(\omega_{j}\right)=2 \sum_{\tau=1-T}^{T-1} \cos \left(\omega_{j} \tau\right) c_{\tau}=2\left\{c_{0}+2 \sum_{\tau=1}^{T-1} \cos \left(\omega_{j} \tau\right) c_{\tau}\right\} \tag{5}
\end{equation*}
$$

D.S.G. POLLOCK: TIME-SERIES ANALYSIS

which is a Fourier transform of the sequence of empirical autocovariances.
From the definition of the frequency ω_{j}, it follows that $\cos \left(\omega_{j}\{T-\tau\}\right)=$ $\cos \left(\omega_{j} \tau\right)$, which is to say that the cosine is an even function of the index $\tau=$ $0, \ldots, T-1$. Therefore, (5) can be rewritten as

$$
\begin{equation*}
I\left(\omega_{j}\right)=2\left\{c_{0}+\sum_{\tau=1}^{T-1} \cos \left(\omega_{j} \tau\right)\left(c_{\tau}+c_{T-\tau}\right)\right\} \tag{6}
\end{equation*}
$$

Here, the values $\tilde{c}_{0}=c_{0}, \tilde{c}_{\tau}=c_{\tau}+c_{T-\tau} ; \tau=1, \ldots T-1$ constitute the so-called circular autocovariances.

It is easy to see that there is a one-to-one correspondence between the sequence of circular autocovariances $\tilde{c}_{0}, \ldots, \tilde{c}_{T-1}$ and the sequence of periodogram ordinates I_{0}, \ldots, I_{T-1}. We have already seen in (6) that

$$
\begin{equation*}
I_{j}=\frac{T}{2} \rho_{j}^{2}=2 \sum_{\tau=0}^{T-1} \tilde{c}_{\tau} \cos \left(\omega_{j} \tau\right) \tag{7}
\end{equation*}
$$

To show that, conversely,

$$
\begin{equation*}
\tilde{c}_{\tau}=\frac{1}{T} \sum_{j=0}^{T-1} I_{j} \cos \left(\omega_{j} \tau\right) \tag{8}
\end{equation*}
$$

we may substitute into the latter the expression for I_{j}. The result should be an identity. Thus we find that

$$
\begin{align*}
\tilde{c}_{\tau} & =\frac{2}{T} \sum_{j=0}^{T-1} \cos \left(\omega_{j} \tau\right)\left\{\sum_{\kappa=0}^{T-1} \tilde{c}_{\kappa} \cos \left(\omega_{j} \kappa\right)\right\} \\
& =\frac{2}{T} \sum_{\kappa=0}^{T-1} \tilde{c}_{\kappa} \sum_{j=0}^{T-1} \cos \left(\omega_{j} \kappa\right) \cos \left(\omega_{j} \tau\right) \tag{9}
\end{align*}
$$

But the orthogonality relationships affecting the cosine functions at the Fourier frequencies imply that

$$
\sum_{j=0}^{T-1} \cos \left(\omega_{j} \kappa\right) \cos \left(\omega_{j} \tau\right)= \begin{cases}0, & \text { if } \kappa \neq \tau \tag{10}\\ \frac{T}{2}, & \text { if } \kappa=\tau\end{cases}
$$

Using these results in (9) reduces the RHS to \tilde{c}_{τ}, which establishes the necessary identity.

