THE SHANNON-WHITTAKER SAMPLING THEOREM

According to the Shannon–Whittaker sampling theorem, any square integrable piecewise continuous function $x(t) \longleftrightarrow \xi(\omega)$ that is band-limited in the frequency domain, with $\xi(\omega) = 0$ for $\omega > \pi$, has the series expansion

(1)
$$x(t) = \sum_{k=-\infty}^{\infty} x_k \frac{\sin\{\pi(t-k)\}}{\pi(t-k)} = \sum_{k=-\infty}^{\infty} x_k \psi_{(0)}(t-k),$$

where $x_k = x(k)$ is the value of the function x(t) at the point t = k. It follow that the continuous function x(t) can be reconstituted from its sampled values $\{x_t, t \in \mathcal{I}\}.$

Proof. Since x(t) is a square-integrable function, it is amenable to a Fourier integral transform which gives

(2)
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \xi(\omega) e^{i\omega t} d\omega$$
, where $\xi(\omega) = \int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt$.

But $\xi(\omega)$ is a continuous function defined of the interval $(-\pi, \pi]$ that may also be regarded as a periodic function of a period of 2π . Therefore, $\xi(\omega)$ is amenable to a classical Fourier analysis; and it may be expanded as

(3)
$$\xi(\omega) = \sum_{k=-\infty}^{\infty} c_k e^{-ik\omega}, \quad \text{where} \quad c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} \xi(\omega) e^{ik\omega} d\omega.$$

By comparing (2) with (3), we see that the coefficients c_k are simply the ordinates of the function x(t) sampled at the integer points; and we may write them as

$$(4) c_k = x_k = x(k).$$

Next, we must show how the continuous function x(t) may be reconstituted from its sampled values. Using (4) in (3) gives

(4)
$$\xi(\omega) = \sum_{k=-\infty}^{\infty} x_k e^{-ik\omega}.$$

Putting this in (2), and taking the integral over $(-\pi, \pi]$ in consequence of the band-limited nature of the function x(t), gives

(5)
$$x(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left\{ \sum_{k=-\infty}^{\infty} x_k e^{-ik\omega} \right\} e^{i\omega t} d\omega = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} x_k \int_{-\pi}^{\pi} e^{i\omega(t-k)} d\omega.$$

The integral on the RHS is evaluated as

(6)
$$\int_{-\pi}^{\pi} e^{i\omega(t-k)} d\omega = 2 \frac{\sin\{\pi(t-k)\}}{t-k}.$$

Putting this into the RHS of (5) gives the result of (1).