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The Poles and Zeros of the Filter

The characteristics of a linear filter ψ(L) = δ(L)/γ(L), which are manifested in its
frequency-response function, can be explained in terms of the location in the complex plane
of the poles and zeros of ψ(z−1) = δ(z−1)/γ(z−1) which include the roots of the constituent
polynomials γ(z−1) and δ(z−1). Consider therefore the expression

(1) ψ(z−1) = zg−d
δ0z

d + δ1z
d−1 + · · ·+ δd

γ0zg + γ1zg−1 + · · ·+ γg
.

This stands for a causal or backward-looking filter. In fact, the restriction of causality is
unnecessary, and the action of the filter can be shifted in time without affecting its essential
properties. Such an shift would be represented by multiplying the filter by a power of z.
There would be no effect upon the gain of the filter, whilst the effect upon the phase would
be linear, in the sense that each component of a signal, regardless of its frequency, would be
advanced (if the power were positive) or delayed (if the power were negative) by the same
amount of time.

The numerator and denominator of ψ(z−1) may be factorised to give

(2) ψ(z−1) = zg−d
δ0
γ0

(z − µ1)(z − µ2) · · · (z − µd)
(z − κ1)(z − κ2) · · · (z − κg)

,

where µ1, µ2, . . . , µd are zeros of ψ(z−1) and κ1, κ2, . . . , κg are poles. The term zg−d con-
tributes a further g zeros and d poles at the origin. If these do not cancel completely, then
they will leave, as a remainder, a positive or negative power of z whose phase-shifting effect
has been mentioned above.

The BIBO stability condition requires that ψ(z−1) must be finite-valued for all z with
|z| ≥ 1, for which it is necessary and sufficient that |κj | < 1 for all j = 1, . . . , g.

The effect of the filter can be assessed by plotting its poles and zeros on an Argand
diagram. The frequency-response function is simply the set of the values which are assumed
by the complex function ψ(z−1) as z travels around the unit circle; and, at any point on the
circle, we can assess the contribution which each pole and zero makes to the gain and phase
of the filter. Setting z = eiω in (2), which places z on the circumference of the unit circle,
gives

(3) ψ(e−iω) = ei(g−d)ω δ0
γ0

(eiω − µ1)(eiω − µ2) · · · (eiω − µd)
(eiω − κ1)(eiω − κ2) · · · (eiω − κg)

.

The generic factors in this expression can be written in polar form as

(4)
eiω − µj = |eiω − µj |eiφj(ω)

= ρj(ω)eiφj(ω)
and

eiω − κj = |eiω − κj |eiϕj(ω)

= λj(ω)eiϕj(ω).

When the frequency-response function as a whole is written in polar form, it becomes ψ(ω) =
|ψ(ω)|e−iθ(ω), with

(5)
|ψ(e−iω)| =

∣∣∣∣ δ0γ0

∣∣∣∣ |eiω − µ1| |eiω − µ2| · · · |eiω − µd|
|eiω − κ1| |eiω − κ2| · · · |eiω − κg|

=
∣∣∣∣ δ0γ0

∣∣∣∣ ∏ ρj(ω)∏
λj(ω)

.
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and

(6) θ(ω) = (d− g)ω −
{
φ1(ω) + · · ·+ φd(ω)

}
+
{
ϕ1(ω) + · · ·+ ϕg(ω)

}
.

The value of λj = |eiω−κj | is simply the distance from the pole κj to the point z = eiω

on the unit circle whose radius makes an angle of ω with the positive real axis. It can be seen
that the value of λj is minimised when ω = Arg(κj) and maximised when ω = π + Arg(κj).
Since λj is a factor in the denominator of the function |ψ(ω)|, it follows that the pole κj
makes its greatest contribution to the gain of the filter when ω = Arg(κj) and its least
contribution when ω = π + Arg(κj). Moreover, if κj is very close to the unit circle, then
its contribution to the gain at ω = Arg(κj) will be very large. The effect of the zeros upon
the gain of the filter is the opposite of the effect of the poles. In particular, a zero µj which
lies on the perimeter of the unit circle will cause the gain of the filter to become zero at the
frequency value which coincides with the zero’s argument—that is to say, when ω = Arg(µj).
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Figure 7. The pair of conjugate zeros µj , j = 1, 2 are evaluated at the point z = eiω on

the unit circle by finding the modulii ρj = |z−µj | and the arguments φj = Arg(z−µj)
of the corresponding factors.

The effect of the placement of the poles and zeros upon the phase of the filter may also
be discerned from the Argand diagram. Thus it can be seen that the value of the derivative
dArg(eiω − µj)/dω is maximised an the point on the circle where ω = Arg(µj). Moreover,
the value of the maximum increases with the diminution of |eiω − µj |, which is the distance
between the root and the point on the circle.

The results of this section may be related to the Argument Principle which declares
that the number of times the trajectory of a function f(z) encircles the origin as z = eiω

travels around the unit circle is equal to the number N of the zeros of f(z) which lie within
the circle less the number P of the poles which lie within the circle.

In applying the principle in the present context, some account has to be taken of the
fact that the polynomials comprised by the rational function ψ(z−1) are in terms of negative
powers of z. Thus, on factorising numerator polynomial δ(z−1) = δ0 + δ1z

−1 + · · ·+ δdz
−d,

it is found that δ(z−1) = δ0
∏
j(1 − µj/z) = z−dδ0

∏
j(z − µ), which indicates that the

polynomial contributes d poles as well as d zeros to the rational function.
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