The Newton-Raphson Method

The Newton–Raphson method for minimising a function $S = S(\theta)$ is based on the following quadratic approximation to S:

(1)
$$S_q(\theta) = S(\theta_r) + \gamma'_r(\theta - \theta_r) + \frac{1}{2}(\theta - \theta_r)'H_r(\theta - \theta_r).$$

Here $\gamma_r = \partial S(\theta_r)/\partial \theta$ stands for the derivative of the function evaluated at θ_r , whilst $H_r = \partial \{\partial S(\theta_r)/\partial \theta\}'/\partial \theta$ is the Hessian matrix comprising the scondorder partial derivatives of the function, also evaluated at θ_r . By differentiating S_q in respect of θ and setting the result to zero, we obtain the condition

(2)
$$0 = \gamma'_r + (\theta - \theta_r)' H_r.$$

The value which minimises the function is therefore

(3)
$$\theta_{r+1} = \theta_r - H_r^{-1} \gamma_r;$$

and this expression describes the (r + 1)th iteration of the Newton-Raphson algorithm. If the function to be minimised is indeed a concave quadratic, then the Newton-Raphson procedure will attain the minimum in a single step. Notice also that, if H = I, then the method coincides with the method of steepest descent. In the case of H = I, the contours of the quadratic function are circular.

The disadvantages of the Newton-Raphson procedure arise when the value of the Hessian matrix at θ_r is not positive definite. In that case, the step from θ_r to θ_{r+1} is liable to be in a direction which is away from the minimum value. This hazard can be illustrated by a simple diagram which relates to the problem of finding the minimum of a function defined over the real line. The problems only arise when the approximation θ_r is remote from the true minimum of the function. Of course, in the neighbourhood the minimising value, the function is concave; and, provided that the initial approximation θ_0 , with which the iterations begin, is within this neighbourhood, the Newton-Raphson procedure is likely to perform well.

The Minimisation of a Sum of Squares

In statistics, we often encounter the kind of optimisation problem which requires us to minimise a sum-of-squares function

(4)
$$S(\theta) = \varepsilon'(\theta)\varepsilon(\theta),$$

wherein $\varepsilon(\theta)$ is a vector of residuals which is a nonlinear function of a vector θ . The value of θ corresponding to the minimum of the function commonly

D.S.G. POLLOCK : BRIEF NOTES—OPTIMISATION

represents the least-squares estimate of the parameters of a statistical model. Such problems may be approached using the Newton–Raphson method which we described in the previous section. However, the specialised nature of the function $S(\theta)$ allow us to pursue a method which avoids the trouble of finding its second-order derivatives and which has other advantages as well. This is the Gauss–Newton method, and it depends upon using a linear approximation of the function $\varepsilon = \varepsilon(\theta)$. In the neighbourhood of θ_r , the approximating function is

(5)
$$e = \varepsilon(\theta_r) + \frac{\partial \varepsilon(\theta_r)}{\partial \theta} (\theta - \theta_r),$$

where $\partial \varepsilon(\theta_r) / \partial \theta$ stands for the first derivative of $\varepsilon(\theta)$ evaluated at $\theta = \theta_r$. This gives rise, in turn, to an approximation to S in the form of

(6)
$$S_{g} = \varepsilon'(\theta_{r})\varepsilon(\theta_{r}) + (\theta - \theta_{r})' \left\{ \frac{\partial \varepsilon(\theta_{r})}{\partial \theta} \right\}' \left\{ \frac{\partial \varepsilon(\theta_{r})}{\partial \theta} \right\} (\theta - \theta_{r}) + 2\varepsilon'(\theta_{r}) \frac{\partial \varepsilon(\theta_{r})}{\partial \theta} (\theta - \theta_{r}).$$

By differentiating S_g in respect of θ and setting the result to zero, we obtain the condition

(7)
$$0 = 2(\theta - \theta_r)' \left\{ \frac{\partial \varepsilon(\theta_r)}{\partial \theta} \right\}' \left\{ \frac{\partial \varepsilon(\theta_r)}{\partial \theta} \right\} + 2\varepsilon'(\theta_r) \frac{\partial \varepsilon(\theta_r)}{\partial \theta}.$$

The value which minimises the function S_g is therefore

(8)
$$\theta_{r+1} = \theta_r - \left[\left\{ \frac{\partial \varepsilon(\theta_r)}{\partial \theta} \right\}' \left\{ \frac{\partial \varepsilon(\theta_r)}{\partial \theta} \right\} \right]^{-1} \left\{ \frac{\partial \varepsilon(\theta_r)}{\partial \theta} \right\}' \varepsilon(\theta_r).$$

This equation represents the algorithm of the Gauss–Newton procedure, and it provides the formula by which we can find the (r + 1)th approximation to the value which minimises sum of squares once we have the *r*th approximation.

The affinity of the Gauss–Newton and the Newton–Raphson methods is confirmed when we recognise that the matrix in (8) is simply an approximation to the Hessian matrix of the sum-of-squares function which is

(9)
$$\frac{\partial(\partial S/\partial\theta)'}{\partial\theta} = 2\left[\left(\frac{\partial\varepsilon}{\partial\theta}\right)'\left(\frac{\partial\varepsilon}{\partial\theta}\right) + \sum_{t}\varepsilon_{t}\left\{\frac{\partial(\partial\varepsilon_{t}/\partial\theta)'}{\partial\theta}\right\}'\right].$$

The matrix of the Gauss–Newton procedure is always positive semi-definite; and, in this respect, the procedure has an advantage over the Newton–Raphson procedure.