The Newton-Raphson Method

The Newton-Raphson method for minimising a function $S=S(\theta)$ is based on the following quadratic approximation to S :

$$
\begin{equation*}
S_{q}(\theta)=S\left(\theta_{r}\right)+\gamma_{r}^{\prime}\left(\theta-\theta_{r}\right)+\frac{1}{2}\left(\theta-\theta_{r}\right)^{\prime} H_{r}\left(\theta-\theta_{r}\right) \tag{1}
\end{equation*}
$$

Here $\gamma_{r}=\partial S\left(\theta_{r}\right) / \partial \theta$ stands for the derivative of the function evaluated at θ_{r}, whilst $H_{r}=\partial\left\{\partial S\left(\theta_{r}\right) / \partial \theta\right\}^{\prime} / \partial \theta$ is the Hessian matrix comprising the scondorder partial derivatives of the function, also evaluated at θ_{r}. By differentiating S_{q} in respect of θ and setting the result to zero, we obtain the condition

$$
\begin{equation*}
0=\gamma_{r}^{\prime}+\left(\theta-\theta_{r}\right)^{\prime} H_{r} . \tag{2}
\end{equation*}
$$

The value which minimises the function is therefore

$$
\begin{equation*}
\theta_{r+1}=\theta_{r}-H_{r}^{-1} \gamma_{r} \tag{3}
\end{equation*}
$$

and this expression describes the $(r+1)$ th iteration of the Newton-Raphson algorithm. If the function to be minimised is indeed a concave quadratic, then the Newton-Raphson procedure will attain the minimum in a single step. Notice also that, if $H=I$, then the method coincides with the method of steepest descent. In the case of $H=I$, the contours of the quadratic function are circular.

The disadvantages of the Newton-Raphson procedure arise when the value of the Hessian matrix at θ_{r} is not positive definite. In that case, the step from θ_{r} to θ_{r+1} is liable to be in a direction which is away from the minimum value. This hazard can be illustrated by a simple diagram which relates to the problem of finding the minimum of a function defined over the real line. The problems only arise when the approximation θ_{r} is remote from the true minimum of the function. Of course, in the neighbourhood the minimising value, the function is concave; and, provided that the initial approximation θ_{0}, with which the iterations begin, is within this neighbourhood, the Newton-Raphson procedure is likely to perform well.

The Minimisation of a Sum of Squares

In statistics, we often encounter the kind of optimisation problem which requires us to minimise a sum-of-squares function

$$
\begin{equation*}
S(\theta)=\varepsilon^{\prime}(\theta) \varepsilon(\theta), \tag{4}
\end{equation*}
$$

wherein $\varepsilon(\theta)$ is a vector of residuals which is a nonlinear function of a vector θ. The value of θ corresponding to the minimum of the function commonly

D.S.G. POLLOCK : BRIEF NOTES-OPTIMISATION

represents the least-squares estimate of the parameters of a statistical model. Such problems may be approached using the Newton-Raphson method which we described in the previous section. However, the specialised nature of the function $S(\theta)$ allow us to pursue a method which avoids the trouble of finding its second-order derivatives and which has other advantages as well. This is the Gauss-Newton method, and it depends upon using a linear approximation of the function $\varepsilon=\varepsilon(\theta)$. In the neighbourhood of θ_{r}, the approximating function is

$$
\begin{equation*}
e=\varepsilon\left(\theta_{r}\right)+\frac{\partial \varepsilon\left(\theta_{r}\right)}{\partial \theta}\left(\theta-\theta_{r}\right), \tag{5}
\end{equation*}
$$

where $\partial \varepsilon\left(\theta_{r}\right) / \partial \theta$ stands for the first derivative of $\varepsilon(\theta)$ evaluated at $\theta=\theta_{r}$. This gives rise, in turn, to an approximation to S in the form of

$$
\begin{align*}
S_{g}= & \varepsilon^{\prime}\left(\theta_{r}\right) \varepsilon\left(\theta_{r}\right)+\left(\theta-\theta_{r}\right)^{\prime}\left\{\frac{\partial \varepsilon\left(\theta_{r}\right)}{\partial \theta}\right\}^{\prime}\left\{\frac{\partial \varepsilon\left(\theta_{r}\right)}{\partial \theta}\right\}\left(\theta-\theta_{r}\right) \tag{6}\\
& +2 \varepsilon^{\prime}\left(\theta_{r}\right) \frac{\partial \varepsilon\left(\theta_{r}\right)}{\partial \theta}\left(\theta-\theta_{r}\right) .
\end{align*}
$$

By differentiating S_{g} in respect of θ and setting the result to zero, we obtain the condition

$$
\begin{equation*}
0=2\left(\theta-\theta_{r}\right)^{\prime}\left\{\frac{\partial \varepsilon\left(\theta_{r}\right)}{\partial \theta}\right\}^{\prime}\left\{\frac{\partial \varepsilon\left(\theta_{r}\right)}{\partial \theta}\right\}+2 \varepsilon^{\prime}\left(\theta_{r}\right) \frac{\partial \varepsilon\left(\theta_{r}\right)}{\partial \theta} \tag{7}
\end{equation*}
$$

The value which minimises the function S_{g} is therefore

$$
\begin{equation*}
\theta_{r+1}=\theta_{r}-\left[\left\{\frac{\partial \varepsilon\left(\theta_{r}\right)}{\partial \theta}\right\}^{\prime}\left\{\frac{\partial \varepsilon\left(\theta_{r}\right)}{\partial \theta}\right\}\right]^{-1}\left\{\frac{\partial \varepsilon\left(\theta_{r}\right)}{\partial \theta}\right\}^{\prime} \varepsilon\left(\theta_{r}\right) \tag{8}
\end{equation*}
$$

This equation represents the algorithm of the Gauss-Newton procedure, and it provides the formula by which we can find the $(r+1)$ th approximation to the value which minimises sum of squares once we have the r th approximation.

The affinity of the Gauss-Newton and the Newton-Raphson methods is confirmed when we recognise that the matrix in (8) is simply an approximation to the Hessian matrix of the sum-of-squares function which is

$$
\begin{equation*}
\frac{\partial(\partial S / \partial \theta)^{\prime}}{\partial \theta}=2\left[\left(\frac{\partial \varepsilon}{\partial \theta}\right)^{\prime}\left(\frac{\partial \varepsilon}{\partial \theta}\right)+\sum_{t} \varepsilon_{t}\left\{\frac{\partial\left(\partial \varepsilon_{t} / \partial \theta\right)^{\prime}}{\partial \theta}\right\}^{\prime}\right] . \tag{9}
\end{equation*}
$$

The matrix of the Gauss-Newton procedure is always positive semi-definite; and, in this respect, the procedure has an advantage over the Newton-Raphson procedure.

