PREDICTION-ERROR DECOMPOSITION OF THE LIKELIHOOD FUNCTION OF AN ARMA MODEL

The likelihood function associated with a dynamic time series model can be expressed in terms of a prediction-error decomposition. The normal probability density function $N\left(y_{1}, \ldots, y_{T}\right)$ of a sample of T observations can be written as the product of a sequence of conditional density functions. Thus

$$
\begin{equation*}
N\left(y_{1}, \ldots, y_{T}\right)=N\left(y_{1}\right) N\left(y_{2} \mid y_{1}\right) \cdots N\left(y_{T} \mid y_{1}, \ldots, y_{T-1}\right) . \tag{1}
\end{equation*}
$$

Let $\mathcal{I}_{t}=\left\{y_{1}, \ldots, y_{t}, \mathcal{I}_{0}\right\}$ denote all of the information regarding the density function that is available at time t, including previously observed data points and the a priori information. Then the decomposition of the density function can be represented by

$$
\begin{equation*}
N\left(y_{1}, \ldots, y_{T} ; \mathcal{I}_{0}\right)=N\left(y_{1} ; \mathcal{I}_{0}\right) \prod_{t=2}^{T} N\left(y_{t} \mid \mathcal{I}_{t-1}\right) \tag{2}
\end{equation*}
$$

Given that it is a normal density function, the generic factor $N\left(y_{t} \mid \mathcal{I}_{t-1}\right)$ of this decomposition is characterised completely by the conditional mean $E\left(y_{t} \mid \mathcal{I}_{t-1}\right)=\hat{y}_{t \mid t-1}$ and the conditional dispersion matrix $D\left(y_{t} \mid \mathcal{I}_{t-1}\right)=F_{t}$, which is the dispersion of the prediction error.

The time series model in question can often be represented via a state space model comprising two equations:

$$
\begin{array}{lr}
y_{t}=H \xi_{t}+\eta_{t}, & \text { Observation Equation } \\
\xi_{t}=\Phi \xi_{t-1}+\nu_{t}, & \text { Transition Equation } \tag{4}
\end{array}
$$

where y_{t} is the observation on the system and ξ_{t} is the state vector. The observation error η_{t} and the state disturbance ν_{t} are mutually uncorrelated random vectors of zero mean with dispersion matrices

$$
\begin{equation*}
D\left(\eta_{t}\right)=\Omega \quad \text { and } \quad D\left(\nu_{t}\right)=\Psi . \tag{5}
\end{equation*}
$$

The Kalman-filter equations determine the state-vector estimates $x_{t \mid t-1}=$ $E\left(\xi_{t} \mid \mathcal{I}_{t-1}\right)$ and $x_{t}=E\left(\xi_{t} \mid \mathcal{I}_{t}\right)$ and their associated dispersion matrices $P_{t \mid t-1}$ and P_{t}. From $x_{t \mid t-1}$, the prediction $\hat{y}_{t \mid t-1}=H x_{t \mid t-1}$ is formed which has a dispersion matrix F_{t}. A summary of these equations is as follows:

$$
\begin{align*}
E\left(\xi_{t} \mid \mathcal{I}_{t-1}\right)=x_{t \mid t-1} & =\Phi x_{t-1}, & & \text { State Prediction } \tag{6}\\
D\left(\xi_{t} \mid \mathcal{I}_{t-1}\right)=P_{t \mid t-1} & =\Phi P_{t-1} \Phi^{\prime}+\Psi, & & \text { Prediction Dispersion } \tag{7}\\
E\left(y_{t} \mid \mathcal{I}_{t-1}\right)=\hat{y}_{t \mid t-1} & =H x_{t \mid t-1}, & & \text { Observation Prediction } \tag{8}\\
D\left(y_{t} \mid \mathcal{I}_{t-1}\right)=F_{t} & =H P_{t \mid t-1} H^{\prime}+\Omega, & & \text { Error Dispersion } \tag{9}\\
K_{t} & =P_{t \mid t-1} H^{\prime} F_{t}^{-1}, & & \text { Kalman Gain } \tag{10}\\
E\left(\xi_{t} \mid \mathcal{I}_{t}\right)=x_{t} & =x_{t \mid t-1}+K_{t} e_{t}, & & \text { State Estimate } \tag{11}\\
D\left(\xi_{t} \mid \mathcal{I}_{t}\right)=P_{t} & =\left(I-K_{t} H\right) P_{t \mid t-1} . & & \text { Estimate Dispersion } \tag{12}
\end{align*}
$$

The error from predicting y_{t} on the basis of the information available at time $t-1$ is $e_{t}=y_{t}-H x_{t \mid t-1}$.

To begin the recursive filtering operation, values are needed for the initial estimate x_{0} of the state vector ξ_{0} at time $t=0$ and for its dispersion matrix $D\left(\xi_{0}\right)=P_{0}$. On the assumption that the process is stationary, these are provided by its unconditional moments. Taking expectations in the transition equation gives $E\left(\xi_{0}\right)=x_{0}=0$. The dispersion of the transition equation is given by $D\left(\xi_{t}\right)=\Phi D\left(\xi_{t-1}\right) \Phi^{\prime}+D\left(\nu_{t}\right)$; and the assumption of stationarity implies that $D\left(\xi_{t}\right)=D\left(\xi_{t-1}\right)=P_{0}$. Thus the initial state dispersion matrix is provided by the solution of the equation

$$
\begin{equation*}
D\left(\xi_{0}\right)=P_{0}=\Phi P_{0} \Phi^{\prime}+\Psi . \tag{13}
\end{equation*}
$$

The log of the likelihood of the sample y_{1}, \ldots, y_{T} can be expressed in terms of the prediction errors:

$$
\begin{align*}
& L\left(y_{1}, \ldots, y_{T} \mid \xi_{0}, P_{0}, \Phi, \Psi\right) \\
& \quad=-\frac{1}{2} \log 2 \pi-\frac{1}{2} T \log \sigma^{2}-\frac{1}{2} \sum_{t} \log \left|F_{t}\right|-\frac{1}{2} \sum_{t} e_{t}^{\prime} F_{t}^{-1} e_{t} \tag{14}
\end{align*}
$$

Now consider an ARMA model in the form of $\alpha(L) y(t)=\mu(L) \varepsilon(t)$. The model can be written in state-space from in a variety of ways. A convenient way is to specify transition equation $\xi_{t}=\Phi \xi_{t-1}+\eta_{t}$ as

$$
\left[\begin{array}{c}
\xi_{0}(t) \tag{15}\\
\xi_{1}(t) \\
\vdots \\
\xi_{r-2}(t) \\
\xi_{r-1}(t)
\end{array}\right]=\left[\begin{array}{ccccc}
-\alpha_{1} & 1 & 0 & \ldots & 0 \\
-\alpha_{2} & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\alpha_{r-1} & 0 & 0 & \ldots & 1 \\
-\alpha_{r} & 0 & 0 & \ldots & 0
\end{array}\right]\left[\begin{array}{c}
\xi_{0}(t-1) \\
\xi_{1}(t-1) \\
\vdots \\
\xi_{r-2}(t-1) \\
\xi_{r-1}(t-1)
\end{array}\right]+\left[\begin{array}{c}
\mu_{0} \\
\mu_{1} \\
\vdots \\
\mu_{r-2} \\
\mu_{r-1}
\end{array}\right] \varepsilon(t)
$$

In that case, the observation equation is provided by

$$
\begin{equation*}
y(t)=[1,0, \ldots, 0] \xi(t) \tag{16}
\end{equation*}
$$

Here there is $H=[1,0, \ldots, 0]$ whilst the observation error is $\eta_{t}=0$, which implies that $D\left(\eta_{t}\right)=\Omega=0$.

We shall illustrate this specification with the first-order moving-average MA(1) model model $y(t)=\varepsilon(t)-\theta \varepsilon(t-1)$. For this model, the transition equation is

$$
\left[\begin{array}{l}
\xi_{0}(t) \tag{17}\\
\xi_{1}(t)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\xi_{0}(t-1) \\
\xi_{1}(t-1)
\end{array}\right]+\left[\begin{array}{c}
1 \\
-\theta
\end{array}\right] \varepsilon(t)
$$

The estimate of the initial state vector is $x_{0}=0$. The initial state dispersion matrix is obtained by solving the equation

$$
\left[\begin{array}{ll}
p_{11} & p_{12} \tag{18}\\
p_{21} & p_{22}
\end{array}\right]_{0}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right]_{0}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+\sigma_{\varepsilon}^{2}\left[\begin{array}{cc}
1 & -\theta \\
-\theta & \theta^{2}
\end{array}\right]
$$

which gives

$$
P_{0}=\left[\begin{array}{ll}
p_{11} & p_{12} \tag{19}\\
p_{21} & p_{22}
\end{array}\right]_{0}=\sigma_{\varepsilon}^{2}\left[\begin{array}{cc}
1+\theta^{2} & -\theta \\
-\theta & \theta^{2}
\end{array}\right]
$$

Observe that the initial state prediction is $x_{1 \mid 0}=0$, whilst its dispersion is $P_{1 \mid 0}=P_{0}$. The prediction error of the observation is $e_{1}=y_{1}$, and the corresponding prediction-error dispersion is $F_{1}=\sigma_{\varepsilon}^{2}\left(1+\theta^{2}\right)$. This is the familiar unconditional variance of an MA(1) process.

The Kalman gain at this stage is $K_{1}=[1, \theta /(1+\theta)]^{\prime}$ and so the state estimate and its dispersion are

$$
x_{1}=\left[\begin{array}{c}
y_{1} \tag{20}\\
\frac{y_{1} \theta}{1+\theta^{2}}
\end{array}\right], \quad P_{1}=\left[\begin{array}{cc}
0 & 0 \\
0 & \frac{\theta^{4}}{1+\theta^{2}}
\end{array}\right] .
$$

