
PREDICTION-ERROR DECOMPOSITION OF THE
LIKELIHOOD FUNCTION OF AN ARMA MODEL

The likelihood function associated with a dynamic time series model can be
expressed in terms of a prediction-error decomposition. The normal probability
density function N(y1, . . . , yT ) of a sample of T observations can be written as
the product of a sequence of conditional density functions. Thus

N(y1, . . . , yT ) = N(y1)N(y2|y1) · · ·N(yT |y1, . . . , yT−1). (1)

Let It = {y1, . . . , yt, I0} denote all of the information regarding the density
function that is available at time t, including previously observed data points
and the a priori information. Then the decomposition of the density function
can be represented by

N(y1, . . . , yT ; I0) = N(y1; I0)
T∏
t=2

N(yt|It−1). (2)

Given that it is a normal density function, the generic factor N(yt|It−1) of
this decomposition is characterised completely by the conditional mean
E(yt|It−1) = ŷt|t−1 and the conditional dispersion matrix D(yt|It−1) = Ft,
which is the dispersion of the prediction error.

The time series model in question can often be represented via a state
space model comprising two equations:

yt = Hξt + ηt, Observation Equation (3)

ξt = Φξt−1 + νt, Transition Equation (4)

where yt is the observation on the system and ξt is the state vector. The
observation error ηt and the state disturbance νt are mutually uncorrelated
random vectors of zero mean with dispersion matrices

D(ηt) = Ω and D(νt) = Ψ. (5)

The Kalman-filter equations determine the state-vector estimates xt|t−1 =
E(ξt|It−1) and xt = E(ξt|It) and their associated dispersion matrices Pt|t−1

and Pt. From xt|t−1, the prediction ŷt|t−1 = Hxt|t−1 is formed which has a
dispersion matrix Ft. A summary of these equations is as follows:

E(ξt|It−1) = xt|t−1 = Φxt−1, State Prediction (6)
D(ξt|It−1) = Pt|t−1 = ΦPt−1Φ′ + Ψ, Prediction Dispersion (7)
E(yt|It−1) = ŷt|t−1 = Hxt|t−1, Observation Prediction (8)

D(yt|It−1) = Ft = HPt|t−1H
′ + Ω, Error Dispersion (9)

Kt = Pt|t−1H
′F−1
t , Kalman Gain (10)

E(ξt|It) = xt = xt|t−1 +Ktet, State Estimate (11)
D(ξt|It) = Pt = (I −KtH)Pt|t−1. Estimate Dispersion (12)
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The error from predicting yt on the basis of the information available at time
t− 1 is et = yt −Hxt|t−1.

To begin the recursive filtering operation, values are needed for the initial
estimate x0 of the state vector ξ0 at time t = 0 and for its dispersion ma-
trix D(ξ0) = P0. On the assumption that the process is stationary, these are
provided by its unconditional moments. Taking expectations in the transition
equation gives E(ξ0) = x0 = 0. The dispersion of the transition equation is
given by D(ξt) = ΦD(ξt−1)Φ′ +D(νt); and the assumption of stationarity im-
plies that D(ξt) = D(ξt−1) = P0. Thus the initial state dispersion matrix is
provided by the solution of the equation

D(ξ0) = P0 = ΦP0Φ′ + Ψ. (13)

The log of the likelihood of the sample y1, . . . , yT can be expressed in terms of
the prediction errors:

L(y1, . . . , yT |ξ0, P0,Φ,Ψ)

= −1
2

log 2π − 1
2
T log σ2 − 1

2

∑
t

log |Ft| −
1
2

∑
t

e′tF
−1
t et.

(14)

Now consider an ARMA model in the form of α(L)y(t) = µ(L)ε(t). The
model can be written in state-space from in a variety of ways. A convenient
way is to specify transition equation ξt = Φξt−1 + ηt as


ξ0(t)
ξ1(t)

...
ξr−2(t)
ξr−1(t)

 =


−α1 1 0 . . . 0
−α2 0 1 . . . 0

...
...

...
. . .

...
−αr−1 0 0 . . . 1
−αr 0 0 . . . 0




ξ0(t− 1)
ξ1(t− 1)

...
ξr−2(t− 1)
ξr−1(t− 1)

+


µ0

µ1
...

µr−2

µr−1

 ε(t). (15)

In that case, the observation equation is provided by

y(t) = [1, 0, . . . , 0]ξ(t). (16)

Here there is H = [1, 0, . . . , 0] whilst the observation error is ηt = 0, which
implies that D(ηt) = Ω = 0.

We shall illustrate this specification with the first-order moving-average
MA(1) model model y(t) = ε(t) − θε(t − 1). For this model, the transition
equation is [

ξ0(t)
ξ1(t)

]
=
[

0 1
0 0

] [
ξ0(t− 1)
ξ1(t− 1)

]
+
[

1
−θ

]
ε(t) (17)
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The estimate of the initial state vector is x0 = 0. The initial state dispersion
matrix is obtained by solving the equation[

p11 p12

p21 p22

]
0

=
[

0 1
0 0

] [
p11 p12

p21 p22

]
0

[
0 0
1 0

]
+ σ2

ε

[
1 −θ
−θ θ2

]
(18)

which gives

P0 =
[
p11 p12

p21 p22

]
0

= σ2
ε

[
1 + θ2 −θ
−θ θ2

]
. (19)

Observe that the initial state prediction is x1|0 = 0, whilst its dispersion is
P1|0 = P0. The prediction error of the observation is e1 = y1, and the corre-
sponding prediction-error dispersion is F1 = σ2

ε(1 + θ2). This is the familiar
unconditional variance of an MA(1) process.

The Kalman gain at this stage is K1 = [1, θ/(1 + θ)]′ and so the state
estimate and its dispersion are

x1 =

 y1

y1θ

1 + θ2

 , P1 =

 0 0

0
θ4

1 + θ2

 . (20)
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