
DIFFERENCE AND DIFFERENTIAL EQUATIONS COMPARED

Frequency Response Function: Continuous Systems

Given the unit impulse response h(t) of a continuous-time system, the
mapping from the system’s input x(t) to its output y(t) can be expressed via
the following convolution integral:

(1) y(t) =
∫ ∞

∞
h(τ)x(t − τ)dτ.

The frequency response of the system is the output associated with a sinusoidal
input 2 cos(ωt) = eiωt + e−iωt or with a complex exponential input x(t) = eiωt.
The convolution integral gives

(2)

y(t) =
∫ ∞

∞
h(τ)eiω(t−τ)dτ

= eiωt

∫ ∞

∞
h(τ)e−iωτdτ

= eiωtH(iω)

Here, H(iω) constitutes the frequency response function of the system. The
relationship

(3) H(iω) =
∫ ∞

∞
h(τ)e−iωτdτ

and its inverse indicate that the impulse response and the frequency response
are a Fourier pair, and we may write h(τ) ←→ H(iω).

Imagine that the system is governed by a differential equation that can be
written as

(4) φ(D)y(t) = θ(D)x(t),

where φ(D) and θ(D) are polynomials in the differential operator D = d/dt.
Then, according the result (5.65)(i) of T.S.D., there is φ(D)eκt = φ(κ)eκt.
Therefore, on setting x(t) = eiωt and y(t) = eiωtH(iω) in (4), we get

(5) H(iω)φ(iω)eiωt = θ(iω)eiωt,

from which it follows that

(6) H(iω) =
θ(iω)
φ(iω)

.

Usually, we depict the effect of the frequency response function in terms of its
gain effect and its phase effect. This entails expressing the complex function
H(iω) = Hre(iω) + iHim(iω) in polar form:

(7)
H(iω) = |H(iω)|eiθ(ω), where tan θ(ω) =

Him(iω)
Hre(iω)

and |H(iω)|2 = H(iω)H(−iω) = {Hre(iω)}2 + {Him(iω)}2.
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Example. Consider a second-order oscillatory system subject to viscous damp-
ing and with a sinusoidal forcing function:

(8) m
d2y

dt2
+ c

dy

dt
+ hy = cos(ωt).

This can be written as φ(D)y(t) = x(t), where φ(D) = mD2 + cD + h. we
wish to find |H(iω)|2 = {φ(iω)φ(−iω)}−1. The following table is helpful in
performing the multiplications:

m(−iω)2 c(−iω) h

m(iω)2 m2ω4 −icmω3 −hmω2

c(iω) icmω3 c2ω2 ihcω

h −hmω2 −ihcω h2

The outcome is that

(9) |H(iω)|2 =
1

(h − mω2)2 + (cω)2
and tan θ =

cω

h − mω2
.

In giving this expression an intepretation, we may observe that the natural
frequency of an undamped system, obtained by setting c = 0 in (8), is just
ωn =

√
h/m. This gives h = mω2

n. Putting the latter into (9) shows that
the amplitude gain is greatest when the driving frequency ω coincides with the
natural resonant frequency ωn of the system.

Frequency Response Function: Discrete Systems

Given the impulse response ψ(j) = {φj} of a discrete-time system, the
mapping from the system’s input x(t) to its output can be expressed via the
following discrete-time convolution:

(10) y(t) =
∑

j

φjx(t − j).

The frequency response of the system may be defined as the mapping φ(ω)
from a complex exponential input x(t) = eiωt to the corresponding output
y(t) = φ(ω)eiωt. We have

(11) y(t) =
∑

j

φje
iωt−j = eiωt

∑
j

φje
−iωj = eiωtφ(ω)

from which we get

(12) φ(ω) =
∑

j

αje
−iωj .
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Consider a difference equation system expressed in terms of the lag oper-
ator L by

(13) α(L)y(t) = β(L)x(t).

Substituting x(t) = eiωt and y(t) = φ(ω)eiωt into the equation gives us

(14)

φ(ω)
∑

αje
iωt−j = φ(ω)eiωt

∑
αje

−iωj

=
∑

βje
iωt−j

= eiωt
∑

βje
−iωj

This indicates that the frequency response function can be expressed as

(15) φ(ω) =
∑

βje
−iωj∑

αje−iωj
=

α(e−iω)
β(e−iω)

.

Here α(e−iω) and β(e−iω) may be formed from the polynomials α(z) = α0 +
α1z + · · · + αpz

p and β(z) by setting z = e−iω.
As in the case of the continuous-time system, we usually require the fre-

quency response function to be expressed in terms of the factors affecting the
gain and the phase of the sinusoidal input. The factorisation is

(16)
φ(ω) = |φ(ω)|eiθ(ω), where tan θ(ω) =

φim(ω)
φre(ω)

and |φ(ω)|2 = φ(ω)φ(−ω) = {φre(ω)}2 + {φim(ω)}2.

Example. Consider a second-order difference equation that can we written as

(17) (α0 + α1L + α2L
2)y(t) = cos(ωt)

or, more summarily, as α(L)y(t) = x(t). The following table is helpful in
performing the multiplications α(z)α(z−1), whereafter we may set z = e−iω to
obtain the squared modulus of the frequency response function:

α0 α1z
−1 α2z

−2

α0 α2
0 α0α1z

−1 α0α2z
−2

α1z α0α1z α2
1 α1α2z

−1

α2z
2 α0α2z

2 α1α2z α2
2

On gathering the terms and setting z + z−1 = 2 cos(ω), z2 + z−2 = 2 cos(2ω),
the outcome is

(18) |φ(ω)|2 =
1

(α2
0 + α2

1 + α2
2) + 2α0α1 cos(ω) + 2α0α1(2ω)

.
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On recognising that e−iω = cos(ω) − i sin(ω), one can also see that

(19)
φre(ω) = α0 + α1 cos(ω) + α2 cos(2ω) and

φim(ω) = α0 + α1 sin(ω) + α2 sin(2ω).

2nd-Order Differential and Difference Equations

In the following two sections, we shall display the analytic solutions of a
second-order differential equation and a second-order differential equation. We
shall concentrate on the cases where the solutions of the auxiliary equations
are in terms of a pair of conjugate complex roots.

In this case, the equations generate sinusoidal trajectories. Moreover, pro-
vided that the angular velocity of the sinusoids is less than the Nyquist value of
π radians per period, the differential and the difference equations can be used
interchangeably.

The correspondence between the alternative formulations can be estab-
lished via a straightforward comparison of the complex exponential solution of
the differential equation with the complex geometric solution of the difference
equation. The one-to-one mapping between the coefficients of the alternative
equations is less straightforward. It cannot be expressed via an algebra that
entails only the binary operations of addition and multiplication. It also entails
logarithmic and exponential transformations.

The Differential Equation

The second-order homogeneous differential equation can be represented by

(20) (φ0D
2 + φ1D + φ2)y(t) = 0.

The auxiliary equation is

(21)
φ0s

2 + φ1s + φ2 = φ0(s − κ1)(s − κ2)

= φ0{s2 − (κ1 + κ2)s + κ1κ2}.

The roots are

(22) κ1, κ2 =
−φ1 ±

√
φ2

1 − 4φ0φ2

2φ0

In the case of complex roots, we have

(23) κ = γ + iω and κ∗ = γ − iω,

where

(24) γ = − φ1

2φ0
and ω =

√
4φ0φ2 − φ2

1

2φ0
,
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fromm which it follows that

(25) γ2 + ω2 =
φ2

φ0
.

The roots contribute to the following expression for the solution of the differ-
ential equation:

(26)
q(t) = ce(γ+iω)t + c∗e(γ−iω)t

= eγt{ceiωt + c∗e−iωt}

Here there are the conjugate numbers

(27)
c = σ(cos θ + i sin θ) = σeiθ,

c∗ = σ(cos θ − i sin θ) = σe−iθ.

Thus, we have

(28)
q(t) = σeγt

{
ei(ωt−θ) + e−i(ωt−θ)

}
= 2σeγt cos(ωt − θ).

The Difference Equation

The second-order homogeneous difference equation can be represented by

(29) (α0 + α1L + α2L
2)y(t) = 0.

The auxiliary equation is

(30)
α0z

2 + α1z + α2 = α0(z − µ1)(z − µ2)

= α0{z2 − (µ1 + µ2)z + µ1µ2}.

The roots are

(31) µ1, µ2 =
−α1 ±

√
α2

1 − 4α0α2

2α0
.

In the case of complex roots, we have

(32)
µ = β + iδ = ρ(cos ω + i sinω) = ρeiω,

µ∗ = β − iδ = ρ(cos ω − i sinω) = ρe−iω.

where

(33) β = − α1

2α0
, δ =

4α0α2 − α2
1

2α0
, ρ = β2 + δ2 and tanω =

δ

β
.
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The roots contribute to the following expression for the solution of the difference
equation:

(34) q(t) = c(ρeiω)t + c∗(ρe−iω)t,

Here there are the conjugate numbers

(35)
c = σ(cos θ + i sin θ) = σeiθ,

c∗ = σ(cos θ − i sin θ) = σe−iθ.

Thus, we have

(36)
q(t) = σρt

{
ei(ωt−θ) + e−i(ωt−θ)

}
= 2σρt cos(ωt − θ).

The Comparison

The relationship between the differential and difference equations can be
made in terms of equations (28) and (36). First there is the damping term.
In (28), it is ρt whereas, in (36) it is eγt. Equating the two gives γ = ln ρ.
Then there is the angular velocity ω, which is common to the two equations.
From (23), we have ω = −i(κ − κ∗)/2, whereas (33) gives tan ω = δ/β, where
δ = −i(µ − µ∗)/2.

The parmeters σ and θ, which represent, respectively, the amplitude and
the phase of the damped sinusoial solution of the homogeneous equations, are
products of the initial conditions and they can be ignored.

We may also observe that, since they are homogeneous, both equation
(20) and (28) are amenable to arbitrary normalisations. It is makes sense to
set φ0 = 1 in (20) and to set α0 = 1 in (29).

Since the system is liable to be calibrated by estimating the parameters
of the difference equation from discrete time data, we are more likely to wish
to express the parameters of the differential equation in terms of those of the
difference equation than vice versa. The essential equations are (24) and (25).
The route is from ρ to γ = ln ρ. Then, we can use γ = −φ1/2φ0 to find φ1

subject to the normalisation of φ0. Finally, knowing ω, we can use φ2/φ0 =
γ2 + ω2 to find φ2 subject to the same normalisation of φ0.

The mapping from the parameters of the differential equation to those
of the difference equation is more straightforward. Given the normalisation
α0 = 1, we have

0 = z2 − (µ1 + µ2)z + µ1µ2

= z2 + α1z + α2

= z2 + 2ρ cos(ω) + ρ2.

Therefore
α2 = ρ2 = e2γ = eκ1+κ2
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Also

α1 = 2ρ cos(ω) = 2eγ

(
eiω + e−iω

2

)
.

But
eκ1 + eκ2 = eγ(eiω + e−iω) = 2eγ cos(ω),

so it follows that
α1 = eκ1 + eκ2
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