LINEAR DIFFERENTIAL EQUATIONS

Consider the second-order linear homogeneous differential equation

$$
\begin{equation*}
\rho_{0} \frac{d^{2} y(t)}{d t^{2}}+\rho_{1} \frac{d y(t)}{d t}+\rho_{2} y(t)=0 \tag{1}
\end{equation*}
$$

The general solution is given by

$$
\begin{equation*}
y(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \tag{2}
\end{equation*}
$$

where λ_{1}, λ_{2} are the roots of the auxiliary equation

$$
\begin{align*}
\rho_{0} x^{2}+\rho_{1} x+\rho_{2} & =\rho_{0}\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \\
& \left.=\rho_{0}\left\{x^{2}-\left(\lambda_{1}+\lambda_{2}\right) x+\lambda_{1} \lambda_{2}\right)\right\}=0 . \tag{3}
\end{align*}
$$

The roots are given by

$$
\begin{equation*}
\lambda_{1}, \lambda_{2}=\frac{-\rho_{1} \pm \sqrt{\rho_{1}^{2}-4 \rho_{0} \rho_{2}}}{2 \rho_{0}} \tag{4}
\end{equation*}
$$

In the case where $\rho_{1}^{2}<4 \rho_{0} \rho_{2}$, this becomes

$$
\begin{align*}
\lambda, \lambda^{*} & =\frac{-\rho_{1} \pm i \sqrt{4 \rho_{0} \rho_{2}-\rho_{1}^{2}}}{2 \rho_{0}} \tag{5}\\
& =\eta \pm i \omega ;
\end{align*}
$$

and the auxiliary equation can then be written as

$$
\begin{equation*}
\rho_{0} x^{2}+\rho_{1} x+\rho_{2}=\rho_{0}\left\{x^{2}-2 \eta x+\left(\eta^{2}+\omega^{2}\right)\right\}=0 . \tag{6}
\end{equation*}
$$

In the case of complex roots, the general solution assumes the form of

$$
\begin{align*}
y(t) & =c e^{(\eta+i \omega) t}+c^{*} e^{(\eta-i \omega) t} \\
& =e^{\eta t}\left\{c e^{i \omega t}+c^{*} e^{-i \omega t}\right\} . \tag{7}
\end{align*}
$$

This is a real-valued sequence; and, since a real term must equal its own conjugate, we require c and c^{*} to be conjugate numbers of the form

$$
\begin{align*}
c^{*}=\rho(\cos \theta+i \sin \theta) & =\rho e^{i \theta} \tag{8}\\
c=\rho(\cos \theta-i \sin \theta) & =\rho e^{-i \theta}
\end{align*}
$$

Thus we have

$$
\begin{align*}
y(t) & =\rho e^{\eta t}\left\{e^{i(\omega t-\theta)}+e^{-i(\omega t-\theta)}\right\} \tag{9}\\
& =2 \rho e^{\eta t} \cos (\omega t-\theta)
\end{align*}
$$

Example. An idealised physical model of an oscillatory system consists of a weight of mass m suspended from a helical spring of negligible mass which exerts a force proportional to its extension. Let y be the displacement of the weight from its position of rest and let h be Hooke's modulus which is the force exerted by the spring per unit of extension. Then Newton's second law of motion gives the equation

$$
\begin{equation*}
m \frac{d^{2} y}{d t^{2}}+h y=0 \tag{10}
\end{equation*}
$$

This is an instance of a second-order differential equation. The solution is

$$
\begin{equation*}
y(t)=2 \rho \cos \left(\omega_{n} t-\theta\right) \tag{11}
\end{equation*}
$$

where $\omega_{n}=\sqrt{h / m}$ is the so-called natural frequency and ρ and θ are constants determined by the initial conditions. There is no damping or frictional force in the system and its motion is perpetual.

In a system which is subject to viscous damping, the resistance to the motion is proportional to its velocity. The differenential equation becomes

$$
\begin{equation*}
m \frac{d^{2} y}{d t^{2}}+c \frac{d y}{d t}+h y=0 \tag{12}
\end{equation*}
$$

where c is the damping coefficient. The auxiliary equation of the system is

$$
\begin{align*}
m x^{2}+c x+h & =m\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \tag{13}\\
& =0
\end{align*}
$$

and the roots are given by

$$
\begin{equation*}
\lambda_{1}, \lambda_{2}=\frac{-c \pm \sqrt{c^{2}-4 m h}}{2 m} \tag{14}
\end{equation*}
$$

The character of the system's motion depends upon the discriminant $c^{2}-4 m h$. If $c^{2}<4 m h$, then the motion will be oscillatory, whereas, if $c^{2}>4 m h$, the displaced weight will return to its position of rest without overshooting. If $c^{2}=4 m h$, then the system is said to be critically damped. The critical damping coefficient is defined by

$$
\begin{equation*}
c_{c}=2 \sqrt{m h}=2 m \omega_{n} \tag{15}
\end{equation*}
$$

where ω_{n} is the natural frequency of the undamped system. On defining the so-called damping ratio $\zeta=c / c_{c}$ we may write equation (14) as

$$
\begin{equation*}
\lambda_{1}, \lambda_{2}=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1} \tag{16}
\end{equation*}
$$

In the case of light damping, where $\zeta<1$, the equation of the roots becomes

$$
\begin{align*}
\lambda, \lambda^{*} & =-\zeta \omega_{n} \pm i \omega_{n} \sqrt{1-\zeta^{2}} \tag{17}\\
& =\eta \pm i \omega
\end{align*}
$$

and the motion of the system is given by

$$
\begin{align*}
y(t) & =2 \rho e^{\eta t} \cos (\omega t-\theta) \\
& =2 \rho e^{-\zeta \omega_{n} t} \cos \left\{\left(1-\zeta^{2}\right)^{1 / 2} \omega_{n} t-\theta\right\} \tag{18}
\end{align*}
$$

The damping ratio of an oscillatory system can be expressed in terms of the complex roots $\eta \pm i \omega$ of the auxiliary equation $m x^{2}+c x+h=0$ as well as in terms of the parameters of the equation. From

$$
\begin{equation*}
\eta^{2}=\zeta^{2} \omega_{n}^{2} \quad \text { and } \quad \omega^{2}=\left(1-\zeta^{2}\right) \omega_{n}^{2} \tag{19}
\end{equation*}
$$

we can deduce that

$$
\begin{equation*}
\zeta^{2}=\frac{\eta^{2}}{\eta^{2}+\omega^{2}} \tag{20}
\end{equation*}
$$

LINEAR DIFFERENCE EQUATIONS

Consider the second-order linear homogeneous differential equation

$$
\begin{equation*}
\alpha_{0} y(t)+\alpha_{1} y(t-1)+\alpha_{2} y(t-2)=0 . \tag{21}
\end{equation*}
$$

The general solution is given by

$$
\begin{equation*}
y(t)=c_{1} \mu_{1}^{t}+c_{2} \mu_{2}^{t} \tag{22}
\end{equation*}
$$

where μ_{1}, μ_{2} are the roots of the auxiliary equation

$$
\begin{align*}
\alpha_{0} z^{2}+\alpha_{1} z+\alpha_{2} & =\alpha_{0}\left(z-\mu_{1}\right)\left(z-\mu_{2}\right) \\
& \left.=\alpha_{0}\left\{z^{2}-\left(\mu_{1}+\mu_{2}\right) z+\mu_{1} \mu_{2}\right)\right\}=0 . \tag{23}
\end{align*}
$$

The roots are given by

$$
\begin{equation*}
\mu_{1}, \mu_{2}=\frac{-\alpha_{1} \pm \sqrt{\alpha_{1}^{2}-4 \alpha_{0} \alpha_{2}}}{2 \alpha_{0}} \tag{24}
\end{equation*}
$$

In the case where $\alpha_{1}^{2}<4 \alpha_{0} \alpha_{2}$, this becomes

$$
\begin{align*}
\mu, \mu^{*} & =\frac{-\alpha_{1} \pm i \sqrt{4 \alpha_{0} \alpha_{2}-\alpha_{1}^{2}}}{2 \alpha_{0}} \tag{25}\\
& =\gamma \pm i \delta ;
\end{align*}
$$

and the auxiliary equation can then be written as

$$
\begin{equation*}
\alpha_{0} z^{2}+\alpha_{1} z+\alpha_{2}=\alpha_{0}\left\{z^{2}-2 \gamma z+\left(\gamma^{2}+\delta^{2}\right)\right\}=0 . \tag{26}
\end{equation*}
$$

The complex roots can be written in three alternative ways:

$$
\begin{align*}
\mu=\gamma+i \delta & =\kappa(\cos \omega+i \sin \omega) \tag{27}
\end{align*}=\kappa e^{i \omega}, ~ 子 ~(\cos \omega-i \sin \omega)=\kappa e^{-i \omega} .
$$

Here we have

$$
\begin{equation*}
\kappa=\gamma^{2}+\delta^{2} \quad \text { and } \quad \omega=\tan ^{-1}\left(\frac{\delta}{\gamma}\right) \tag{28}
\end{equation*}
$$

The general solution of the difference equation in the case of complex root may be expressed as

$$
\begin{equation*}
y(t)=c \mu^{t}+c^{*}\left(\mu^{*}\right)^{t} . \tag{29}
\end{equation*}
$$

This is a real-valued sequence; and, since a real variable must equal its own conjugate, we require c and c^{*} to be conjugate numbers of the form

$$
\begin{align*}
c^{*}=\rho(\cos \theta+i \sin \theta) & =\rho e^{i \theta} \\
c=\rho(\cos \theta-i \sin \theta) & =\rho e^{-i \theta} \tag{30}
\end{align*}
$$

Thus we have

$$
\begin{align*}
c \mu^{t}+c^{*}\left(\mu^{*}\right)^{t} & =\rho e^{-i \theta}\left(\kappa e^{i \omega}\right)^{t}+\rho e^{i \theta}\left(\kappa e^{-i \omega}\right)^{t} \\
& =\rho \kappa^{t}\left\{e^{i(\omega t-\theta)}+e^{-i(\omega t-\theta)}\right\} \tag{31}\\
& =2 \rho \kappa^{t} \cos (\omega t-\theta)
\end{align*}
$$

It may be useful to express some of the parameters of this equation in terms of the coefficients of the original difference equation under (21). Thus we can find that

$$
\begin{equation*}
\omega=\tan ^{-1}\left(\frac{\sqrt{4 \alpha_{0} \alpha_{2}-\alpha_{1}^{2}}}{\alpha_{1}}\right) \quad \text { and } \quad \kappa=\frac{\alpha_{2}}{\alpha_{0}} . \tag{32}
\end{equation*}
$$

