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LINEAR DIFFERENTIAL EQUATIONS

Consider the second-order linear homogeneous differential equation

(1) ρ0
d2y(t)
dt2

+ ρ1
dy(t)
dt

+ ρ2y(t) = 0.

The general solution is given by

(2) y(t) = c1e
λ1t + c2e

λ2t,

where λ1, λ2 are the roots of the auxiliary equation

(3)
ρ0x

2 + ρ1x+ ρ2 = ρ0(x− λ1)(x− λ2)

= ρ0

{
x2 − (λ1 + λ2)x+ λ1λ2)

}
= 0.

The roots are given by

(4) λ1, λ2 =
−ρ1 ±

√
ρ2

1 − 4ρ0ρ2

2ρ0
.

In the case where ρ2
1 < 4ρ0ρ2, this becomes

(5)
λ, λ∗ =

−ρ1 ± i
√

4ρ0ρ2 − ρ2
1

2ρ0

= η ± iω;

and the auxiliary equation can then be written as

(6) ρ0x
2 + ρ1x+ ρ2 = ρ0

{
x2 − 2ηx+ (η2 + ω2)

}
= 0.

In the case of complex roots, the general solution assumes the form of

(7)
y(t) = ce(η+iω)t + c∗e(η−iω)t

= eηt{ceiωt + c∗e−iωt}.

This is a real-valued sequence; and, since a real term must equal its own con-
jugate, we require c and c∗ to be conjugate numbers of the form

(8)
c∗ = ρ(cos θ + i sin θ) = ρeiθ,

c = ρ(cos θ − i sin θ) = ρe−iθ.

Thus we have

(9)
y(t) = ρeηt{ei(ωt−θ) + e−i(ωt−θ)}

= 2ρeηt cos(ωt− θ).

1



D.S.G. POLLOCK : MECHANICAL VIBRATIONS

Example. An idealised physical model of an oscillatory system consists of
a weight of mass m suspended from a helical spring of negligible mass which
exerts a force proportional to its extension. Let y be the displacement of the
weight from its position of rest and let h be Hooke’s modulus which is the
force exerted by the spring per unit of extension. Then Newton’s second law
of motion gives the equation

(10) m
d2y

dt2
+ hy = 0.

This is an instance of a second-order differential equation. The solution is

(11) y(t) = 2ρ cos(ωnt− θ),

where ωn =
√
h/m is the so-called natural frequency and ρ and θ are constants

determined by the initial conditions. There is no damping or frictional force in
the system and its motion is perpetual.

In a system which is subject to viscous damping, the resistance to the
motion is proportional to its velocity. The differenential equation becomes

(12) m
d2y

dt2
+ c

dy

dt
+ hy = 0,

where c is the damping coefficient. The auxiliary equation of the system is

(13)
mx2 + cx+ h = m(x− λ1)(x− λ2)

= 0,

and the roots are given by

(14) λ1, λ2 =
−c±

√
c2 − 4mh

2m
.

The character of the system’s motion depends upon the discriminant c2−4mh.
If c2 < 4mh, then the motion will be oscillatory, whereas, if c2 > 4mh, the
displaced weight will return to its position of rest without overshooting. If
c2 = 4mh, then the system is said to be critically damped. The critical damping
coefficient is defined by

(15) cc = 2
√
mh = 2mωn,

where ωn is the natural frequency of the undamped system. On defining the
so-called damping ratio ζ = c/cc we may write equation (14) as

(16) λ1, λ2 = −ζωn ± ωn
√
ζ2 − 1.
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In the case of light damping, where ζ < 1, the equation of the roots becomes

(17)
λ, λ∗ = −ζωn ± iωn

√
1− ζ2

= η ± iω;

and the motion of the system is given by

(18)
y(t) = 2ρeηt cos(ωt− θ)

= 2ρe−ζωnt cos
{

(1− ζ2)1/2ωnt− θ
}
.

The damping ratio of an oscillatory system can be expressed in terms of
the complex roots η± iω of the auxiliary equation mx2 + cx+ h = 0 as well as
in terms of the parameters of the equation. From

(19) η2 = ζ2ω2
n and ω2 = (1− ζ2)ω2

n,

we can deduce that

(20) ζ2 =
η2

η2 + ω2
.

LINEAR DIFFERENCE EQUATIONS

Consider the second-order linear homogeneous differential equation

(21) α0y(t) + α1y(t− 1) + α2y(t− 2) = 0.

The general solution is given by

(22) y(t) = c1µ
t
1 + c2µ

t
2,

where µ1, µ2 are the roots of the auxiliary equation

(23)
α0z

2 + α1z + α2 = α0(z − µ1)(z − µ2)

= α0

{
z2 − (µ1 + µ2)z + µ1µ2)

}
= 0.

The roots are given by

(24) µ1, µ2 =
−α1 ±

√
α2

1 − 4α0α2

2α0
.
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In the case where α2
1 < 4α0α2, this becomes

(25)
µ, µ∗ =

−α1 ± i
√

4α0α2 − α2
1

2α0

= γ ± iδ;

and the auxiliary equation can then be written as

(26) α0z
2 + α1z + α2 = α0

{
z2 − 2γz + (γ2 + δ2)

}
= 0.

The complex roots can be written in three alternative ways:

(27)
µ = γ + iδ = κ(cosω + i sinω) = κeiω,

µ∗ = γ − iδ = κ(cosω − i sinω) = κe−iω.

Here we have

(28) κ = γ2 + δ2 and ω = tan−1

(
δ

γ

)
.

The general solution of the difference equation in the case of complex root may
be expressed as

(29) y(t) = cµt + c∗(µ∗)t.

This is a real-valued sequence; and, since a real variable must equal its own
conjugate, we require c and c∗ to be conjugate numbers of the form

(30)
c∗ = ρ(cos θ + i sin θ) = ρeiθ,

c = ρ(cos θ − i sin θ) = ρe−iθ.

Thus we have

(31)

cµt + c∗(µ∗)t = ρe−iθ(κeiω)t + ρeiθ(κe−iω)t

= ρκt
{
ei(ωt−θ) + e−i(ωt−θ)

}
= 2ρκt cos(ωt− θ).

It may be useful to express some of the parameters of this equation in
terms of the coefficients of the original difference equation under (21). Thus
we can find that

(32) ω = tan−1

(√
4α0α2 − α2

1

α1

)
and κ =

α2

α0
.
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