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BIVARIATE SPECTRAL ANALYSIS

Let x(t) and y(t) be two stationary stochastic processes with E{x(t)} = E{y(t)}
= 0. These processes have the following spectral representations:

(1)
x(t) =

Z π

0
{cos(ωt)dAx(ω) + sin(ωt)dBx(ω)} ,

y(t) =
Z π

0
{cos(ωt)dAy(ω) + sin(ωt)dBy(ω)} .

The weighting functions Aj(ω), Bj(ω); j = x, y are a pair of mutually inde-
pendent stochastic processes defined over the interval [0,π]. Their realisations
correspond to the realisations of the temporal processes x(t) and y(t) to which
they pertain.

Several conditions must be fulfilled by Aj(ω), Bj(ω) to ensure that x(t) and
y(t) are stationary and that their autocovariances are invariant over time. A
further set of conditions must be fulfilled to ensure that the cross-covariances
between the two processes are time-invariant. We shall begin with the as-
sumptions that are internal to the two processes. Then we shall examine the
assumptions that relate one process to the other.

The Assumptions Internal to the Processes

It is assumed that the functions dAj(ω) and dBj(ω) represent a pair of
stochastic processes of zero mean that are indexed on the continuous frequency
parameter ω ∈ [0,π]. Thus

(2) E
©
dAj(ω)

™
= E

©
dBj(ω)

™
= 0.

Next, it is assumed that Aj(ω) and Bj(ω) are mutually uncorrelated and
that non-overlapping increments within each process are uncorrelated. Thus

(3)
E

©
dAj(ω)dBj(λ)

™
= 0 for all ω,λ,

E
©
dAj(ω)dAj(λ)

™
= 0 if ω 6= λ,

E
©
dBj(ω)dBj(λ)

™
= 0 if ω 6= λ.

The final assumption affecting the individual processes x(t) or y(t) is that
the variance of the increments is given by

(4)
V

©
dAj(ω)

™
= V

©
dBj(ω)

™
= 2dFj(ω)
= 2fj(ω)dω.
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Here, Fj(ω) is a continuous differentiable function, in contrast to Aj(ω) and
Bj(ω), which are continuous almost everywhere but which are nowhere differen-
tiable. The function Fj(ω) and its derivative fj(ω) are the spectral distribution
function and the spectral density function, respectively.

To understand the effect of these various assumptions, one can begin with
(4), which indicates that the increments of Aj(ω) and Bj(ω) have the same vari-
ance. The effect of the assumption is that the phase angle of the trigonometrical
function at frequency ω, which is formed from the weighed combination of the
sine and the cosine, is distributed uniformly over the interval [−0,π]. It would
be difficult to justify a different assumption.

Next are the assumptions concerning the autocovariances of the processes.
Consider

(5)

E(ytys) =
Z π

0

Z π

0

£
cos(ωt) cos(λs)E{dAy(ω)dAy(λ)}

+ cos(ωt) sin(λs)E{dAy(ω)dBy(λ)}
+ sin(ωt) cos(λs)E{dBy(ω)dAy(λ)}
+ sin(ωt) sin(λs)E{dBy(ω)dBy(λ)}

§
.

Given the assumptions of (3) concerning the absence of correlations amongst
non-overlapping increments of Ay(ω) and By(ω) and the absence of correlation
between the two processes, this becomes

(6)
E(ytys) = 2

Z π

0

©
cos(ωt) cos(ωs)fy(ω) + sin(ωt) sin(ωs)fy(ω)

™
dω

= 2
Z π

0
cos(ω[t− s])fy(ω)dω,

which follows in view of the identity cos(A − B) = cosA cosB + sinA sinB.
Thus, the autocovariance E(ytys) = γyy

|t−s| is a function of the temporal sepa-
ration of the elements yt, ys that is independent of their absolute dates. This
is a necessary condition for the stationarity of the process y(t).

Equation (6) can expressed more elegantly in terms of complex exponen-
tials. Let the domain of the fy(ω) be extended over the negative frequencies
such that fy(−ω) = fy(ω). Then, using cos(ωτ) = {exp(iωτ) + exp(−iωτ)}/2,
where τ = |s− t|, and denoting the autocovariance by γyy

τ = E(ytys), equation
(6) can be rendered as

(7) γyy
τ =

Z π

−π
fy(ω)eiωτdω.
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The inverse mapping from the autocovariances to the spectrum is given by

(8)

fy(ω) =
1
2π

∞X

τ=−∞
γyy

τ e−iωτ

=
1
2π

n
γyy
0 + 2

∞X

τ=1

γyy
τ cos(ωτ)

o
.

This becomes a cosine Fourier transform in consequence of the symmetry of
the autocovariance function whereby γyy

τ = γyy
−τ .

The essential interpretation of the spectral density function is indicated by
the equation

(9) γyy
0 =

Z π

−π
fy(ω)dω,

which comes from setting τ = 0 in equation (7). This equation shows the
measure in which the variance or ‘power’ of y(t), which is γyy

0 , is attributed by
the spectral density function to the various cyclical components of which the
process is composed.

The Assumptions Connecting the Processes

In order to determine the relatedness of the two processes x(t), y(t), some
assumptions are needed regarding the covariances across the processes Ax(ω),
Ay(ω) and Bx(ω), By(ω). First, there is the assumption that there are no
correlations across the frequencies:

(10)

E{dAx(ω)dAy(λ)} = 0 if ω 6= λ,

E{dAx(ω)dBy(λ)} = 0 if ω 6= λ,

E{dBx(ω)dBy(λ)} = 0 if ω 6= λ.

Next, there are two covariance relationships:

(11)
E{dAx(ω)dAy(ω)} = E{dBx(ω)dBy(ω)} = 2dCxy(ω)

= 2cxy(ω)dω

and

(12)
E{dAx(ω)dBy(ω)} = −E{dBx(ω)dAy(ω)} = 2dQ(ω)

= 2qxy(ω)dω.

The first of these functions is co-spectrum cxy(ω), which defines the covariances
of the amplitudes of cosine components of x(t) and y(t) that are in phase at
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the frequency ω. The second is the quadrature spectrum qxy(ω), which defines
the covariance of the amplitudes of the sine and the cosine components of x(t)
and y(t), which are in quadrature at the frequency ω, which is to say that they
are out of phase to the extent of π/2 radians.

The effects of these assumptions may be examined in connection with the
spectral representation of the covariances of x(t) and y(t). From the spectral
representations of (1), the following quadratic product is derived:

(13)

E(xtys) =
Z π

0

Z π

0

£
cos(ωt) cos(λs)E{dAx(ω)dAy(λ)}

+ cos(ωt) sin(λs)E{dAx(ω)dBy(λ)}
+ sin(ωt) cos(λs)E{dBx(ω)dAy(λ)}
+ sin(ωt) sin(λs)E{dBx(ω)dBy(λ)}

§
.

However, according to (10), the random increments for the frequency ω in one
process are uncorrelated with the random increments for the frequency λ in the
other process. Therefore, the double integral collapses to an single integral in
respect of one frequency, and, from (11) and (12), it follows that

(14)

E(xtys) =
Z π

0

£
cos(ωt) cos(ωs)dCxy(ω)

+ cos(ωt) sin(ωs)dQxy(ω)
+ sin(ωt) cos(ωs)dQxy(ω)
+ sin(ωt) sin(ωs)dCxy(ω)

§
.

Finally, by virtue of two trigonometrical identities, which are the cosine identi-
ties quoted above, and the analogous sine identity sin(A− B) = sinA cosB −
cosA sinB, we find that

(15) E(xtys) = 2
Z π

0

©
cos(ω[t− s])dCxy(ω) + sin(ω[t− s])dQxy(ω)

™
.

Let us set dCxy(ω) = cxy(ω)dω and dQxy(ω) = qxy(ω)dω in accordance
with the assumption that the spectral functions are differentiable, which will be
true in the absence of perfectly regular periodic components in the processes
x(t) and y(t). Then, on setting t − s = τ and using the notation γxy

τ =
E(xt, yt−τ ), equation (15) can be rewritten as

(16) γxy
τ = 2

Z π

0

©
cos(ωτ)cxy(ω)dω + sin(ωτ)qxy(ω)

™
dω.

In order to express (16) in terms of complex exponentials, the so-called
cross-spectrum is defined:

(17)
gxy(ω) = cxy(ω) + iqxy(ω)

= {c2
xy(ω) + q2

xy(ω)}1/2eθ(ω),
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where θ(ω) = tan−1{qxy(ω)/cxy(ω)}. Also, the domain of the integration is
extended from [0,π] to (−π,π] by regarding cxy(ω) as an even function such
that cxy(ω) = cxy(−ω) and by regarding qxy(ω) as an odd function such that
qxy(ω) = −qxy(−ω). Then, since cos(ωt) = {exp(iωt) + exp(−iωt)}/2 and
sin(ωt) = −i{exp(iωt)− exp(−iωt)}/2, there is

(18) γxy
τ =

Z π

−π
gxy(ω)eiωτdω.

The inverse of this relationship indicates that the cross spectrum is the
Fourier transform of the covariances of x(t) and y(t) in the same way that the
spectral density function of y(t), which is to be found under (8), is the Fourier
transform of the sequence of its autocovariances:

(19) gxy(ω) =
1
2π

∞X

τ=−∞
γxy

τ e−iωτ .

Notice, however, that since, in general, γxy
τ 6= γxy

−τ , this does not entail a cosine
Fourier transform as does the corresponding definition of the spectrum as the
transform of the autocovariance function.

The even function cxy(ω) is the cosine portion of gxy(ω) and the odd
function q(ω) is its sine portion. These quantities are defined separately by

cxy(ω) =
1
2π

∞X

τ=−∞

γxy
τ + γxy

−τ

2
e−iωτ =

1
2π

∞X

τ=−∞
γxy

τ cos(ωτ),(20)

iqxy(ω) =
1
2π

∞X

τ=−∞

γxy
τ − γxy

−τ

2
e−iωτ =

−i
2π

∞X

τ=−∞
γxy

τ sin(ωτ),(21)

where (γxy
τ + γxy

−τ )/2 and cos(ωτ) are even or symmetric functions and (γxy
τ −

γxy
−τ )/2 and sin(ωτ) are odd or anti-symmetric functions. It can be confirmed

that

(22)
(i) cxy(ω) = cxy(−ω), and that

(ii) qxy(ω) = −qxy(−ω) and (iii) qxy(ω) = qyx(−ω).

An insight into the nature of the cross spectrum is indicated by the equa-
tion

(23) γxy
0 =

Z π

−π
gxy(ω)dω =

Z π

−π
cxy(ω)dω,
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which comes from setting τ = 0 in equation (18) and from observing that the
integral of the odd functin qxy(ω) is zero. This equation shows the ordinary
contemporaneous covariance between the processes x(t) and y(t) relates only
to the cyclical components that are in phase. The concept of spectral coher-
ence, which is expounded in the next section, also accommodates relationships
between components that are out of phase.

Measures of Relatedness between Two Series

The relatedness of two stationary stochastic processes can be measured
by their spectral coherence. The coherence function, which is defined over the
interval [0,π], gives the correlation of the cyclical components of the sequences
at each frequency. The coherence of x(t) and y(t) at the frequency ω is defined
by

(24) ρxy(ω) =
|gxy(ω)|

{fxx(ω)fyy(ω)}1/2
=

(
c2
xy(ω) + q2

xy(ω)
fxx(ω)fyy(ω)

)1/2

.

Since it takes account of both the co-spectrum and the quadrature spectrum,
the measure is unaffected by the relative phase alignment of the two compo-
nents.

One should recall, in this connection, that the ordinary correlation coef-
ficient of two sinusoids of the same frequency that are in quadrature would
be zero. The familiar example of a pair of trigonometric functions that are in
quadrature, i.e. that are separated by a phase displacement of π/2 radians or
90◦, are cos(ωt) and sin(ωt), which are well known to be mutually orthogonal.

The coherence at any frequency ω is, in effect, the ordinary measure of
correlation which would be obtained by bringing the components of the two
sequences into phase alignment. Consider the components

(25)
x(ω, t) = cos(ωt)dAx(ω) + sin(ωt)dBx(ω),

y(ω, t) = cos(ωt− θ)dAy(ω) + sin(ωt− θ)dBy(ω),

which are extracted from the spectral representation of the two sequences spec-
ified by (1). The second component has been translated through a phase angle
of θ which we intend to adjust so as to maximise the covariance of the two
component. By the algebra that has given rise to equation (15), it is found
that the covariance of these components is

(26)
1
2
E{x(ω, t), y(ω, t)} = cxy(ω) cos θ + qxy(ω) sin θ.

The condition for a maximum, which is found by differentiating the func-
tion above with respect to θ and setting the result to zero, is −cxy(ω) sin θ +
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qxy(ω) cos θ = 0. For the condition to be satisfied, there must be sin(θ) =
αqxy(ω) and cos(θ) = −αcxy(ω) for some factor α. Since sin2(θ) + cos2(θ) = 1,
it follows that α = {c2

xy(ω) + q2
xy(ω)}−1/2, and there are

(27) sin θ =
qxy(ω)

{c2
xy(ω) + q2

xy(ω)}1/2
and cos θ =

−cxy(ω)
{c2

xy(ω) + q2
xy(ω)}1/2

,

On substituting these into (26), it is found that

(28) cxy(ω) cos θ + qxy(ω) sin θ = {c2
xy(ω) + q2

xy(ω)}1/2.

This maximised covariance measure is the numerator of the coherence function
ρ(ω) of (24).

The function

(29) θ(ω) = tan−1

Ω
qxy(ω)
cxy(ω)

æ
.

constitutes the phase spectrum of x(t) and y(t). It indicates, for each frequency,
the extent to which the components of y(t) lead or lag behind those of x(t).

It has been shown that the measure of spectral coherence is unaffected by
a changes in the phase of the sinusoidal components of which the processes
are composed. It is also unaffected by systematic changes in their amplitudes.
Thus, if the two processes x(t) and y(t) are transformed by linear filters and if
the transfer functions of the filters have none of their poles or zeros on the unit
circle, then their coherence is not affected.

Let α(L) and β(L) be two filters and let

(30) ξ(t) = α(L)x(t) and ζ(t) = β(L)y(t).

Also let α(ω) =
P

j αj exp(−iω) and β(ω) =
P

j βj exp(−iω) be the corre-
sponding frequency response functions. Then, the spectra of ξ(t) and ζ(t)
together with their co-spectrum are given by

(31)
fξξ(ω) = |α(ω)|2fxx(ω), fζζ(ω) = |β(ω)|2fyy(ω)

and gξζ(ω) = α∗(ω)β(ω)gxy(ω).

The modulus of the cross spectrum of ξ(t) and ζ(t) is

(32) |gξζ(ω)| = |α(ω)||β(ω)||gxy(ω)|.

Therefore, the coherence of the transformed processes is

(33) ρξζ(ω) =
|gξζ(ω)|

{fξξ(ω)fζζ(ω)}1/2
=

|gxy(ω)|
{fxx(ω)fyy(ω)}1/2

= ρxy(ω),

which is equal to the original coherence of x(t) and y(t).
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