## The Cholesky Decomposition of a Symmetric Matrix of 5 Diagonals

Consider the following Cholesky decomposition of symmetric matrix $\Gamma$ of five bands:

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
d_{0} & s_{0} & q_{0} & 0 & 0 & 0 \\
s_{0} & d_{1} & s_{1} & q_{1} & 0 & 0 \\
q_{0} & s_{1} & d_{2} & s_{2} & q_{2} & 0 \\
0 & q_{1} & s_{2} & d_{3} & s_{3} & q_{3} \\
0 & 0 & q_{2} & s_{3} & d_{4} & s_{4} \\
0 & 0 & 0 & q_{3} & s_{4} & d_{5}
\end{array}\right] \quad\left[\begin{array}{cccccc}
1 & * & * & * & * & * \\
2 & 4 & * & * & * & * \\
3 & 5 & 7 & * & * & * \\
* & 6 & 8 & 10 & * & * \\
* & * & 9 & 11 & 13 & * \\
* & * & * & 12 & 14 & 15
\end{array}\right]} \\
& =\left[\begin{array}{cccccc}
g_{0} & 0 & 0 & 0 & 0 & 0 \\
g_{0} b_{0} & g_{1} & 0 & 0 & 0 & 0 \\
g_{0} c_{0} & g_{1} b_{1} & g_{2} & 0 & 0 & 0 \\
0 & g_{1} c_{1} & g_{2} b_{2} & g_{3} & 0 & 0 \\
0 & 0 & g_{2} c_{2} & g_{3} b_{3} & g_{4} & 0 \\
0 & 0 & 0 & g_{3} c_{3} & g_{4} b_{4} & g_{5}
\end{array}\right]\left[\begin{array}{cccccc}
1 & b_{0} & c_{0} & 0 & 0 & 0 \\
0 & 1 & b_{1} & c_{1} & 0 & 0 \\
0 & 0 & 1 & b_{2} & c_{2} & 0 \\
0 & 0 & 0 & 1 & b_{3} & c_{3} \\
0 & 0 & 0 & 0 & 1 & b_{4} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Here, we are factorising the matrix as $\Gamma=(M G) M^{\prime}$, where $G$ is a diagonal matrix. The sequence of computations that finds the elements of the lower triangular matrix $M$ is indicated by the matrix with numbers and asterisks, which is beside the matrix to be factorised:

The sequence of computations is listed below. To produce the third column, we make the substitutions $g \rightarrow d, b \rightarrow s$ and $c \rightarrow q$. These are to signify that, in a computer program, we should be overwriting the corresponding elements:

$$
\begin{gather*}
d_{0}=g_{0} \quad g_{0}=d_{0} \quad d_{0}=d_{0}  \tag{1}\\
s_{0}=g_{0} b_{0} \mu_{11} \quad b_{0}=s_{0} / g_{0} \quad s_{0}=s_{0} / d_{0} \\
q_{0}=g_{0} c_{0} \quad c_{0}=q_{0} / g_{0} \quad q_{0}=q_{0} / d_{0} \\
d_{1}=g_{0} b_{0}^{2}+g_{1} \quad g_{1}=d_{1}-g_{0} b_{0}^{2} \quad d_{1}=d_{1}-d_{0} s_{0}^{2} \\
s_{1}=g_{0} c_{0} b_{0}+g_{1} b_{1} \quad b_{1}=\left(s_{1}-g_{0} c_{0} b_{0}\right) / g_{1} \quad s_{1}=\left(s_{1}-d_{0} q_{0} s_{0}\right) / g_{1} \\
q_{1}=g_{1} c_{1} \quad c_{1}=q_{1} / g_{1} \quad q_{1}=q_{1} / d_{1}  \tag{6}\\
d_{2}=g_{0} c_{0}^{2}+g_{1} b_{1}^{2}+g_{2} \quad g_{2}=d_{2}-g_{0} c_{0}^{2}-g_{1} b_{1}^{2} \\
d_{2}=d_{2}-d_{0} q_{0}^{2}-d_{1} s_{1}^{2}  \tag{9}\\
s_{2}=g_{1} c_{1} b_{1}+g_{2} b_{2} \quad b_{2}=\left(s_{2}-g_{1} c_{1} b_{1}\right) / g_{2} \\
s_{2}=\left(s_{2}-d_{1} q_{1} s_{1}\right) / d_{2} \\
q_{2}=g_{2} c_{2} \\
c_{2}=q_{2} / g_{2} \quad q_{2}=q_{2} / d_{2}
\end{gather*}
$$

## D.S.G. POLLOCK: TIME-SERIES ANALYSIS

The generic equation is

$$
\begin{aligned}
d[j] & :=d[j]-d[j-1] * \operatorname{Sqr}(s[j-1])-d[j-2] * \operatorname{Sqr}(q[j-2]) ; \\
s[j] & :=(s[j[-d[j-1] * q[j-1] * s[j-1]) / d[j] ; \\
q[j] & :=q[j]) / d[j] ;
\end{aligned}
$$

In addition, if we begin with $j=0$, then we require the following initial conditions:

$$
d[-2]:=0.0, \quad d[-1]:=0.0, \quad s[-1]:=0.0, \quad q[-2]:=0.0, \quad q[-1]:=0.0
$$

## The Solution of a Set of Linear Equations

The purpose of the factorisation is to enable us to solve a set of linear equations in the form of $\Gamma x=M D M^{\prime} x=y$. The technique is to cast the equations as $\Gamma x=$ $L M^{\prime} x=L z=y$ where $L=M D$. Then the equations $L z=y$ may be solved for $z$ by a process of recursive forward substitution that runs through the system from top to bottom. Thereafter, the equations $M^{\prime} x=z$ can be solved for $x$ by a process that runs from bottom to top.

