
D.S.G. POLLOCK : BRIEF NOTES ON TIME SERIES

Processes with Autoregressive Conditionally Heteroskedastic
(ARCH) Disturbances

In the classical time-series models of the ARMA variety, it is assumed that the
disturbances constitute a white-noise sequence of independently and identically
distributed random variables. If the values of the structural parameters—ie of
the autoregressive and the moving-average coefficients—are known, then the
disturbances are synonymous with the one-step-ahead prediction errors.

In the analysis of economic data, it is sometimes observed that large and
small forecast errors occur in clusters; which suggests that, in certain periods,
the indices become more or less volatile than usual. It was suggested by Engle
(1982) that this phenomenon could be modelled by making the variance of the
disturbances the subject of a stochastic process.

The effect should be to achieve a model which fits the data better within
the sample as well as giving a more adequate representation of the reliability
of the forecasts. The latter feature might be valuable if, for example, the series
in question where that of an interest rate or a stock price. This is because the
attractiveness of a financial asset is both directly related to its expected rate
of return and inversely related to its risk, which is a function of the variance of
the rate of return.

Let ε(t) = {εt} be the sequence of disturbances to an ARMA process y(t)
described by the equation α(L)y(t) = µ(L)ε(t). Then the simplest of ARCH
models is one which proposes that

(1) εt = υtht where h2
t = θ0 + θ1ε

2
t−1,

with υ(t) = {υt} as a white-noise process with unit variance. The condition
that V {υ(t)} = 1 imposes no restriction, since the scaling of the process ε(t) is
accomplished via the value of θ0. Both the conditional and the unconditional
expectation of the ARCH process are zeros. That is

(2)
E(εt|εt−1) = E(εt|ht) = 0, and

E(εt) = E(υt)E(ht) = 0.

The conditional variance of the ARCH process is

(3)
V (εt|εt−1) = h2

tV (υ2
t )

= h2
t = θ0 + θ1ε

2
t−1,

whereas the unconditional variance of the process is

(4)
V (εt) = E

{
V (εt|εt−1)

}
= θ0 + θ1V (εt−1).
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Assuming that it is well-defined and stationary with V (εt) = V (εt−1), it follows
that the unconditional variance is given by

(5) V (εt) =
θ0

1− θ1
.

In the sense that its disturbances are mutually independent with a constant
variance, the unconditional model is not distinguished from the classical ARMA
model. The distinction comes when some account is taken of the conditional
variance. Give that θ0, θ1 > 0, which is to ensure tha the variance is positive,
the necessary and sufficient condition for the existence of the unconditional
variance is simply that the ARCH process under (1) should be stable, for which
the equation θ0 + θ1z = 0 must have its root outside the unit circle. This is
also the condition for the stability of an ordinary AR(1) process described by
the equation (θ0 + θ1L)y(t) = η(t) wherein η(t) is white noise.

Generalised Processes

An obvious direction in which to generalise the ARCH process of (1) is to
increase the number of lagged values of ε(t) which enter the determination of
the variance. Thus an ARCH model of order q, as distinct from the first-order
model, may be obtained by specifying that

(6) εt = υtht where h2
t = θ0 + θ1ε

2
t−1 + · · ·+ θqε

2
t−q.

A more extensive generalisation is the Generalised Autoregressive Conditionally
Heteroskedastic GARCH(p, q) model which has been propounded by Bollerslev
(1986). In this case, the conditional variance is specified by

(7) h2
t = θ0 + θ1ε

2
t−1 + · · ·+ θqε

2
t−q + φ1h

2
t−1 + · · ·+ φqh

2
t−p.

The formulation is that of an ARMA(p, q − 1) model with an allowance for a
nonzero mean. The model may be written in the form of

(8) h2(t) = θ0 + θ(L)ε2(t− 1) + φ(L)h2(t− 1).

It is proved by Bollerslev that the GARCH(p, q) process ε(t) = h(t)υ(t) is
stationary with E{ε(t)} = 0 and V {ε(t)} = µ0{1− θ(1)− φ(1)} if and only if
θ(1) + φ(1) < 1.

The advantage of the GARCH model is that, for relatively low orders
of p and q, it enables quite complicated patterns of heteroskedasticity to be
modelled which would require a high order of q in the pure ARCH(q) model.
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