D.S.G. POLLOCK : BRIEF NOTES ON TIME SERIES

The 2nd-order Difference Equation with Complex Roots

Consider the 2 nd-order equation

$$
\begin{equation*}
\alpha_{0} y(t)+\alpha_{1} y(t-1)+\alpha_{2} y(t-2)=0, \tag{1}
\end{equation*}
$$

and imagine that the auxilliary equation

$$
\begin{equation*}
\alpha_{0} z^{2}+\alpha_{1} z+\alpha_{2}=0 \tag{2}
\end{equation*}
$$

has complex roots μ and μ_{*}. These can be written as

$$
\begin{align*}
\mu=\gamma+i \delta & =\kappa(\cos \omega+i \sin \omega)
\end{align*}=\kappa e^{i \omega}, ~ 子=\kappa(\cos \omega-i \sin \omega)=\kappa e^{-i \omega} .
$$

where $\kappa=\sqrt{\gamma^{2}+\delta^{2}}$ and $\omega=\tan ^{-1}(\delta / \gamma)$. The general solution of the difference equation is given by

$$
\begin{equation*}
y(t)=c \mu^{t}+c_{*}\left(\mu_{*}\right)^{t} . \tag{4}
\end{equation*}
$$

This is a real-valued sequence, and, since a real term must equal its own conjugate, we require c and c_{*} to be conjugate numbers of the form

$$
\begin{align*}
c_{*} & =\rho(\cos \theta+i \sin \theta) \\
c=\rho(\cos \theta-i \sin \theta) & =\rho e^{-i \theta} . \tag{5}
\end{align*}
$$

Thus we have

$$
\begin{align*}
y(t)=c \mu^{t}+c_{*}\left(\mu_{*}\right)^{t} & =\rho e^{-i \theta}\left(\kappa e^{i \omega}\right)^{t}+\rho e^{i \theta}\left(\kappa e^{-i \omega}\right)^{t} \\
& =\rho \kappa^{t}\left\{e^{i(\omega t-\theta)}+e^{-i(\omega t-\theta)}\right\} \tag{6}\\
& =2 \rho \kappa^{t} \cos (\omega t-\theta) .
\end{align*}
$$

It is convenient to write this in the form of

$$
y(t)=\kappa^{t} \alpha \cos (\omega t)+\kappa^{t} \beta \sin (\omega t)
$$

where $\alpha=2 \rho \cos \theta$ and $\beta=2 \rho \sin \theta$. This comes from using the identity $\cos (\omega t-\theta)=\cos \theta \cos (\omega t)+\sin \theta \sin (\omega t)$

Let $\alpha_{1}=-1.2$ and $\alpha_{2}=0.72$ in equation (1). Then

$$
\begin{align*}
\gamma \pm i \delta & =0.6 \pm 0.6 \\
\omega & =\frac{\pi}{4}, \quad \text { and } \tag{7}\\
\kappa & =\sqrt{0.72} .
\end{align*}
$$

With $y_{0}=4$ and $y_{1}=3$ we have

$$
\begin{array}{r}
\kappa^{0}\{\alpha \cos 0+\beta \sin 0\}=4 \quad \text { and } \\
\quad \kappa\left\{\alpha \cos \frac{\pi}{4}+\beta \sin \frac{\pi}{4}\right\}=3 . \tag{8}
\end{array}
$$

Since $\cos 0=1$ and $\sin 0=0$, the first equation yields $\alpha=4$. Since $\cos \pi / 4=$ $\sin \pi / 4=1 / \sqrt{2}$, the second equation becomes

$$
\begin{equation*}
\frac{1}{\sqrt{2}}\{\alpha+\beta\}=\frac{3}{\kappa} \tag{9}
\end{equation*}
$$

which yields $\beta=(3 \sqrt{2} / \sqrt{0.72})-4=1$.

