The 2nd-order Difference Equation with Complex Roots

Consider the 2nd-order equation

(1)
$$\alpha_0 y(t) + \alpha_1 y(t-1) + \alpha_2 y(t-2) = 0,$$

and imagine that the auxilliary equation

(2)
$$\alpha_0 z^2 + \alpha_1 z + \alpha_2 = 0$$

has complex roots μ and μ_* . These can be written as

(3)
$$\mu = \gamma + i\delta = \kappa(\cos\omega + i\sin\omega) = \kappa e^{i\omega}, \mu_* = \gamma - i\delta = \kappa(\cos\omega - i\sin\omega) = \kappa e^{-i\omega}.$$

where $\kappa = \sqrt{\gamma^2 + \delta^2}$ and $\omega = \tan^{-1}(\delta/\gamma)$. The general solution of the difference equation is given by

(4)
$$y(t) = c\mu^t + c_*(\mu_*)^t.$$

This is a real-valued sequence, and, since a real term must equal its own conjugate, we require c and c_* to be conjugate numbers of the form

(5)
$$c_* = \rho(\cos\theta + i\sin\theta) = \rho e^{i\theta}, \\ c = \rho(\cos\theta - i\sin\theta) = \rho e^{-i\theta}.$$

Thus we have

(6)
$$y(t) = c\mu^{t} + c_{*}(\mu_{*})^{t} = \rho e^{-i\theta} (\kappa e^{i\omega})^{t} + \rho e^{i\theta} (\kappa e^{-i\omega})^{t}$$
$$= \rho \kappa^{t} \Big\{ e^{i(\omega t - \theta)} + e^{-i(\omega t - \theta)} \Big\}$$
$$= 2\rho \kappa^{t} \cos(\omega t - \theta).$$

It is convenient to write this in the form of

$$y(t) = \kappa^t \alpha \cos(\omega t) + \kappa^t \beta \sin(\omega t),$$

where $\alpha = 2\rho \cos\theta$ and $\beta = 2\rho \sin\theta$. This comes from using the identity $\cos(\omega t - \theta) = \cos\theta \cos(\omega t) + \sin\theta \sin(\omega t)$

Let $\alpha_1 = -1.2$ and $\alpha_2 = 0.72$ in equation (1). Then

(7)
$$\gamma \pm i\delta = 0.6 \pm 0.6$$
$$\omega = \frac{\pi}{4}, \text{ and}$$
$$\kappa = \sqrt{0.72}.$$

With $y_0 = 4$ and $y_1 = 3$ we have

(8)
$$\kappa^{0} \{ \alpha \cos 0 + \beta \sin 0 \} = 4 \text{ and} \\ \kappa \left\{ \alpha \cos \frac{\pi}{4} + \beta \sin \frac{\pi}{4} \right\} = 3.$$

Since $\cos 0 = 1$ and $\sin 0 = 0$, the first equation yields $\alpha = 4$. Since $\cos \pi/4 = \sin \pi/4 = 1/\sqrt{2}$, the second equation becomes

(9)
$$\frac{1}{\sqrt{2}}\{\alpha+\beta\} = \frac{3}{\kappa},$$

which yields $\beta = (3\sqrt{2}/\sqrt{0.72}) - 4 = 1.$