
D.S.G. POLLOCK: TOPICS IN ECONOMETRICS

THE CLASSICAL SIMULTANEOUS-EQUATIONS MODEL

Consider the system

y1 = y2γ21 + ε1 : The Demand Equation,(1)

y2 = y1γ12 + xβ + ε2 : The Supply Equation.(2)

Here

y1 represents the quantity of popcorn consumed and produced
y2 represents the price of popcorn, and
x represents the cost of maize.

These variables, which are deviations from mean values, have expected values of zero. The
effect of taking deviations is to simplify the algebra; for the intercept terms are thereby
eliminated from the equations.

Another feature to take note of is the use of indices. The subscripts on the parameter
γ21, for example, indicate a mapping from y2, which is the dependent variable of the second
equation, to y1, which is the dependent variable of the first equation. We shall assume
that the disturbances ε1 and ε2 are independent of the variable x, which is described as
an exogenous variable to indicate that it is generated in a context which lies outside the
model.

The notion which lies behind this model is that the consumers of popcorn, whose
behaviour is represented by the demand equation, respond to the price of popcorn, whereas
the producers, whose behaviour is represented by the supply equation, set the price in view
of the demand for their product and in view of their costs of production. The market is
in a state of equilibrium where the quantity produced is equal to the quantity consumed.

Although the cost of maize is not the only cost of production, we shall assume, for
the moment, that it is the only one which varies. The other costs, which are fixed, will
have an effect which is subsumed in an intercept term which has been eliminated. The
factors, other than price, which determine the demand for popcorn are likewise assumed
to be constant and are subsumed in another intercept.

There are markets where output is ostensibly determined by supply factors and where
the price adjusts to ensure that all of the output is sold. Some markets for agricultural
produce are examples. In such cases, we might wish to place y2 on the LHS of equation
(1) and y1 on the LHS of equation (2). However, there is no need to adapt the equations;
for, in a situation of equilibrium, where both sides of the market are reconciled, it cannot
be said that either is peculiarly responsible for the price of the item or for the quantity
produced.

The economist Alfred Marshall, who may be credited with formulating much of mod-
ern microeconomic theory, likened the supply and demand equations of a market in equi-
librium to the blades of scissors. It is no more appropriate to ask which of the equations
determines the price and which of them determines the quantity than it is to ask which of
blades is cutting a sheet of paper.

It follows that, given a state of equilibrium, the choice of dependent variables in
equations (1) and (2) is arbitrary. Nevertheless, the choice should reflect our understanding
of how the two parties might behave in the process of achieving the equilibrium.
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Now let us consider using a method of moments in estimating the parameters of the
system. This entails finding expressions for the parameters which are in terms of the
moments of the observable variables. Once these expressions have been found, we may
consider replacing the theoretical moments by the empirical counterparts to derive the
estimating equations.

To find an expression for γ21, we multiply the demand equation (1) by x and we take
expectations. This gives

(3) E(xy1) = E(xy2)γ21,

from which we see that

(4) γ21 =
E(xy1)
E(xy2)

.

When we attempt to apply the same method to the supply equation (2), we find that
there is not sufficient information to determine the two remaining parameters. Multiplying
the equation by x and taking expectations leads to

(5) E(xy2) = E(xy1)γ12 + E(x2)β.

If we seek another equation by multiplying equation (2) by y1 and by taking expectations,
then we shall introduce another unknown quantity which is the nonzero moment E(y1ε2):

(6) E(y1y2) = E(y2
1)γ12 + E(y1x)β + E(y1ε2).

We have an equal lack of success in attempting to form an estimating equation by multi-
plying the equation (2) by y2 and taking expectations.

In view of its role in generating estimating equations, the exogenous variable x is apt
to be described as an instrumental variable. The problem of the supply equation is the
impossibility of estimating two parameters γ12 and β when there is only one instrumental
variable. The two parameters are said to be unidentified. A necessary condition for the
identification of the parameters of any equation is that their number should not exceed
the number of the available instrumental variables.

Example. An attempt to estimate equation (1) by the ordinary method of regression
would lead to a biased estimator. The method is inappropriate because the disturbance
term ε1 is correlated with the variable y2 which is the putative regressor. This correlation
is evident in the fact that we can trace a connection running from ε1 to y1, within equation
(1) and thence from y1 to y2 through equation (2). To find an expression for the covariance
of y2 and ε1, we may substitute equation (1) into equation (2) to give

(7) y2 = (y2γ21 + ε1)γ12 + xβ + ε2.

Rearranging this gives

(8) y2 =
xβ

1− γ21γ12
+
ε1γ12 + ε2

1− γ21γ12
.
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Therefore

(9) C(y2, ε1) =
V (ε1)γ12 + C(ε1, ε2)

1− γ21γ12
.

Now let us consider some circumstances which would enable us to estimate both the
supply equation and the demand equation. Consider the system

y1 = y2γ21 + x1β11 + ε1 : The Demand Equation,(10)

y2 = y1γ12 + x2β22 + ε2 : The Supply Equation.(11)

Compared with equation (1), the revised demand equation incorporates an extra variable
x1 which represents the price of candy floss. If candy floss and popcorn are attractive
to the same people, then one may expect the demand for popcorn to fall if the price of
candy floss is reduced. Given the additional instrumental variable, we can now estimate
the parameters of both equations, which have an identical structure.

To derive estimating equations for the parameters of the demand equation, we multiply
the latter in turn by x1 and x2 and we take expectations. The results are

E(x1y1) = E(x1y2)γ21 + E(x2
1)β11,(12)

E(x2y1) = E(x2y2)γ21 + E(x2x1)β11.(13)

These equations serve simultaneously to determine both γ21 and β11. Their empirical
counterparts, which are derived by replacing the theoretical moments by the corresponding
sample moments serve as estimating equations for the parameters. We may use exactly
the same device in estimating the supply equation.

We must avoid the false impression that new variables may be introduced at will. The
presence, in the demand equation, of the price of candy floss can be justified only if the
latter has an active effect on the level of demand. That is to say, x1 must vary within
the sample of observations if it is to assist in identifying the parameters of the model. If
this price is constant, then its effect will be subsumed, as before, in the intercept term of
the demand equation. It is also required that the price of candy floss should not enter the
supply equation for popcorn, which seems plausible.

Now let us consider a third possibility which puts a different construction on the
problem of estimation. Consider the system

y1 = y2γ21 + ε1 : The Demand Equation,(14)

y2 = y1γ12 + x1β12 + x2β22 + ε2 : The Supply Equation.(15)

Here

x1 represents the cost of maize, and
x2 represents the cost of pink sugar.
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The price of candy floss no longer enters the demand equation; and we might imagine
that the makers of candy floss no longer occupy their stalls on the seaside promenade.
There are now two instrumental variables which can serve to identify the demand equation.
Thus

E(x1y1) = E(x1y2)γ21,(16)

E(x2y1) = E(x2y2)γ21.(17)

The parameter γ21 is said to be overidentified.
In practice, when we replace the theoretical moments by their empirical counterparts,

the estimates which are generated by the two equations are liable to differ. Since both
of the estimates are valid, we should attempt, in the interests of statistical efficiency, to
combine them.

In order to resolve the conflict between the two estimates of γ21 we shall resort to
a procedure which involves the errors-in-variables estimator. We begin by deriving the
so-called reduced-form equations. Substituting equation (15) into equation (14) gives

(18) y1 = (y1γ12 + x1β12 + x2β22)γ21 + (ε1 + ε2γ21).

On rearranging this we get

(19)

y1 =
(x1β12 + x2β22)γ21

1− γ12γ21
+
ε1 + ε2γ21

1− γ12γ21

= x1π11 + x2π21 + η1

= ξ1 + η1,

which is the so-called reduced-form equation for y1. Substituting equation (14) into equa-
tion (15) gives

(20) y2 = y2γ21γ12 + x1β12 + x2β22 + (ε2 + ε1γ12).

On rearranging this we get

(21)

y2 =
x1β12 + x2β22

1− γ21γ12
+
ε2 + ε1γ12

1− γ21γ12

= x1π12 + x2π22 + η2

= ξ2 + η2,

which is the reduced-form equation for y2. On comparing equations (19) and (21), it can
be seen that

(22) y1 − η1 = (y2 − η2)γ21.

This is the equation of an errors-in-variables model wherein one of the parameters has
been normalised with a value of −1.
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We can use the errors-in-variables estimator for γ21 provided that we can find values
for the variances and covariances for the errors η1 and η2 which are, in fact, the disturbances
of the reduced-form regression equations. Let

(23)
h1t = y1t − x1tπ̂11 − x2tπ̂21 and

h2t = y2t − x1tπ̂12 − x2tπ̂22

be the residuals from using the ordinary method of regression in fitting the reduced-from
equations to a sample of T observations. Then the moments of the reduced-form distur-
bances may be estimated as follows:

(24)

ω̂11 =
1
T

T∑
t=1

h2
1t,

ω̂22 =
1
T

T∑
t=1

h2
2t,

ω̂12 =
1
T

T∑
t=1

h1th2t.

Using equation (15) as a model, we can now construct an estimating equation for γ21 in
the form of

(25)

{[
s11 s12

s21 s22

]
− λ

[
ω̂11 ω̂12

ω̂21 ω̂22

]}[
−1

γ21

]
=

[
0

0

]
.

This gives

(26) γ̂21 =
s11 − λω̂11

s12 − λω̂12
=
s21 − λω̂21

s22 − λω̂22
.

The value of λ which guarantees the equality above, is found by solving the determinental
equation

(27) 0 = Det

[
s11 − λω̂11 s12 − λω̂12

s21 − λω̂21 s22 − λω̂22

]
,

which is a quadratic equation. The root which is closest to unity is taken. As the various
empirical moments tend to their true values, so λ will tend to unity.

There are other ways of estimating the parameter which become virtually equivalent
to the errors-in-variables method when the sample size is large. One possibility is to use a
system which is modelled on equation (23):

(28)

{[
s11 − ω̂11 s12 − ω̂12

s21 − ω̂21 s22 − ω̂22

]
− µ

[
1 0

0 0

]}[
−1

γ21

]
=

[
0

0

]
.
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In comparison with equation (25), it can be seen that λ has been set to unity. Since λ is
no longer available for the purpose of rendering the equations algebraically consistent, a
new factor µ has been introduced to perform this task. Whereas λ will tend to unity with
the convergence of the moments to the true values, the value of µ will to zero.

The solution of equation (28) is

(29) γ̂21 =
s21 − ω̂21

s22 − ω̂22
.

This is, in fact, the so-called two-stage least-squares estimator of γ21; and it differs from
the ordinary least-squares estimator by virtue of the adjustments which are made to the
moments s21 and s22.

Two-Stage Least Squares and

Limited-Information Maximum Likelihood.

The estimator of the demand equation which we have derived under the guise of
the errors-in-variables model was originally derived as the limited-information maximum-
likelihood (LIML) estimator by Anderson and Rubin in 1949, when they were members of
the Cowles Commission for Research in Economics. The Commission consisted of a group
of statisticians and economists whose research was funded by the American industrialist
Alfred Cowles. It is arguable the era of modern econometrics began with the work of the
Commission.

The derivation of the LIML estimator was a tour de force. Its complexity was due
in part to the the fact that the likelihood function of a full simultaneous-equation model
was taken as a starting point. An alternative derivation, which was no less complicated,
was provided shortly afterward by Hood and Koopmans. The inaccessibility of both these
derivations deterred econometricians from using the estimator. It was not until the alterna-
tive two-stage least-squares estimator was invented independently by Theil and Basmann
in the late 1950’s that the techniques of simultaneous-equation estimation began to be
applied.

The affinity of the 2SLS and the LIML estimators is not evident from a comparison of
the original derivations. Nor might it be clear to someone familiar with the 2SLS estimator
that it corresponds to what is presented under (28) and (29). Therefore we shall give a
version of the familiar derivation before showing how the equivalence may be demonstrated.

The point of departure for the original derivation of the 2SLS estimator is the recog-
nition that, in a structural equation such as (14), the disturbance term is liable to be
correlated with some of the variables on the RHS. We have already demonstrated, in an
example, the correlation between y2 and ε1 within equation (1), which is equation (14) in
a different context.

The question arising is how we might purge the variable y2 of the component which
is correlated with ε1. An effective way, if it were available, would be to replace y2 by the
predicted value ξ2 = x1π12 + x2π22 which comes from the reduced-form equation. In fact,
by substituting the reduced-form expression for y2 given by (21) into the equation (14),
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we obtain

(30)
y1 = y2γ21 + ε1

= (x1π12 + x2π22)γ21 + (ε1 + η2γ21)
= ξ2γ21 + ζ1.

The composite disturbance term ζ1 = ε1 + η2γ21 is clearly uncorrelated with ξ2 since ε1

and η2 are uncorrelated with x1 and x2. Therefore a consistent estimator of γ21 would be
obtained from the regression of y1 on ξ2.

In fact, we cannot put the unknown value of ξ2 in place of y2, and we have to make
do with its estimate ŷ2 = x1π̂12 + x2π̂22 which can be expected to converge to ξ2 as the
sample size increases. The resulting estimator of γ21 is

(31)

γ̂21 =
∑
ŷ2ty1t∑
ŷ2

2t

=
∑
ŷ2tŷ1t∑
ŷ2

2t

.

The second equality depends upon the result that
∑
ŷ2ty1t =

∑
ŷ2tŷ1t. The latter is due

to the fact that the reduced-from disturbance h1 within y1 = ŷ1 + h1 is uncorrelated with
the reduced-form regressors x1 and x2 and hence with ŷ2 = x1π̂12 + x2π̂22.

The equivalence between the expression for the 2SLS estimator under (31) and the
expression under (29), follows from the identities

(32)

1
T

T∑
t=1

y2
2t =

1
T

T∑
t=1

ŷ2
2t +

1
T

T∑
t=1

h2
2t and

1
T

T∑
t=1

y1ty2t =
1
T

T∑
t=1

ŷ1tŷ2t +
1
T

T∑
t=1

h1th2t.

Using the definitions of (14) and (24), and remembering that the varaibles are in deviation
form, we see that these can be rewritten as

(33)

1
T

T∑
t=1

ŷ2
2t = s22 − ω̂22 and

1
T

T∑
t=1

ŷ1tŷ2t = s12 − ω̂12;

and the equivalence of (29) and (31) follows immediately
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