
LECTURE 2

Regression Analysis

The Multiple Regression Model in Matrices

Consider the regression equation

(1) y = β0 + β1x1 + · · · + βkxk + ε,

and imagine that T observations on the variables y, x1, . . . , xk are available,
which are indexed by t = 1, . . . , T . Then, the T realisations of the relationship
can be written in the following form:

(2)

⎡
⎢⎢⎣

y1

y2
...

yT

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 x11 . . . x1k

1 x21 . . . x2k
...

...
...

1 xT1 . . . xTk

⎤
⎥⎥⎦

⎡
⎢⎢⎣

β0

β1
...

βk

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

ε1

ε2
...

εT

⎤
⎥⎥⎦ .

This can be represented in summary notation by

(3) y = Xβ + ε.

Our object is to derive an expression for the ordinary least-squares es-
timates of the elements of the parameter vector β = [β0, β1, . . . , βk]′. The
criterion is to minimise a sum of squares of residuals, which can be written
variously as

(4)

S(β) = ε′ε

= (y − Xβ)′(y − Xβ)
= y′y − y′Xβ − β′X ′y + β′X ′Xβ

= y′y − 2y′Xβ + β′X ′Xβ.

Here, to reach the final expression, we have used the identity β′X ′y = y′Xβ,
which comes from the fact that the transpose of a scalar—which may be con-
strued as a matrix of order 1 × 1—is the scalar itself.
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The first-order conditions for the minimisation are found by differentia-
tiating the function with respect to the vector β and by setting the result to
zero. According to the rules of matrix differentiation, which are easily verified,
the derivative is

(5)
∂S

∂β
= −2y′X + 2β′X ′X.

Setting this to zero gives 0 = β′X ′X − y′X, which is transposed to provide the
so-called normal equations:

(6) X ′Xβ = X ′y.

On the assumption that the inverse matrix exists, the equations have a unique
solution, which is the vector of ordinary least-squares estimates:

(7) β̂ = (X ′X)−1X ′y.

The Decomposition of the Sum of Squares

Ordinary least-squares regression entails the decomposition the vector y
into two mutually orthogonal components. These are the vector Py = Xβ̂,
which estimates the systematic component of the regression equation, and the
residual vector e =y−Xβ̂, which estimates the disturbance vector ε. The con-
dition that e should be orthogonal to the manifold of X in which the systematic
component resides, such that X ′e = X ′(y − Xβ̂) = 0, is exactly the condition
that is expressed by the normal equations (6).

Corresponding to the decomposition of y, there is a decomposition of the
sum of squares y′y. To express the latter, let us write Xβ̂ = Py and e =
y − Xβ̂ = (I − P )y, where P = X(X ′X)−1X ′ is a symmetric idempotent
matrix, which has the properties that P = P ′ = P 2. Then, in consequence of
these conditions and of the equivalent condition that P ′(I − P ) = 0, it follows
that

(8)

y′y =
{
Py + (I − P )y

}′{
Py + (I − P )y

}
= y′Py + y′(I − P )y

= β̂′X ′Xβ̂ + e′e.

This is an instance of Pythagoras theorem; and the identity is expressed by say-
ing that the total sum of squares y′y is equal to the regression sum of squares

2



REGRESSION ANALYSIS IN MATRIX ALGEBRA

y

e

γ

Xβ
^

Figure 1. The vector Py = Xβ̂ is formed by the orthogonal projection of

the vector y onto the subspace spanned by the columns of the matrix X .

β̂′X ′Xβ̂ plus the residual or error sum of squares e′e. A geometric interpre-
tation of the orthogonal decomposition of y and of the resulting Pythagorean
relationship is given in Figure 1.

It is clear from intuition that, by projecting y perpendicularly onto the
manifold of X, the distance between y and Py = Xβ̂ is minimised. In order to
establish this point formally, imagine that γ = Pg is an arbitrary vector in the
manifold of X. Then, the Euclidean distance from y to γ cannot be less than
the distance from y to Xβ̂. The square of the former distance is

(9)
(y − γ)′(y − γ) =

{
(y − Xβ̂) + (Xβ̂ − γ)

}′{(y − Xβ̂) + (Xβ̂ − γ)
}

=
{
(I − P )y + P (y − g)

}′{(I − P )y + P (y − g)
}
.

The properties of the projector P , which have been used in simplifying equation
(9), indicate that

(10)
(y − γ)′(y − γ) = y′(I − P )y + (y − g)′P (y − g)

= e′e + (Xβ̂ − γ)′(Xβ̂ − γ).

Since the squared distance (Xβ̂ − γ)′(Xβ̂ − γ) is nonnegative, it follows that
(y − γ)′(y − γ) ≥ e′e, where e = y − Xβ̂; and this proves the assertion.

A summary measure of the extent to which the ordinary least-squares
regression accounts for the observed vector y is provided by the coefficient of
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determination. This is defined by

(11) R2 =
β̂′X ′Xβ̂

y′y
=

y′Py

y′y
.

The measure is just the square of the cosine of the angle between the vectors
y and Py = Xβ̂; and the inequality 0 ≤ R2 ≤ 1 follows from the fact that the
cosine of any angle must lie between −1 and +1.

The Partitioned Regression Model

Consider taking the regression equation of (3) in the form of

(12) y = [X1 X2 ]
[

β1

β2

]
+ ε = X1β1 + X2β2 + ε.

Here, [X1, X2] = X and [β′
1, β

′
2]

′ = β are obtained by partitioning the matrix
X and vector β in a conformable manner. The normal equations of (6) can
be partitioned likewise. Writing the equations without the surrounding matrix
braces gives

X ′
1X1β1 + X ′

1X2β2 = X ′
1y,(13)

X ′
2X1β1 + X ′

2X2β2 = X ′
2y.(14)

From (13), we get the equation X ′
1X1β1 = X ′

1(y − X2β2) which gives an ex-
pression for the leading subvector of β̂ :

(15) β̂1 = (X ′
1X1)−1X ′

1(y − X2β̂2).

To obtain an expression for β̂2, we must eliminate β1 from equation (14). For
this purpose, we multiply equation (13) by X ′

2X1(X ′
1X1)−1 to give

(16) X ′
2X1β1 + X ′

2X1(X ′
1X1)−1X ′

1X2β2 = X ′
2X1(X ′

1X1)−1X ′
1y.

When the latter is taken from equation (14), we get

(17)
{

X ′
2X2 − X ′

2X1(X ′
1X1)−1X ′

1X2

}
β2 = X ′

2y − X ′
2X1(X ′

1X1)−1X ′
1y.

On defining

(18) P1 = X1(X ′
1X1)−1X ′

1,

equation (17) can be written as

(19)
{

X ′
2(I − P1)X2

}
β2 = X ′

2(I − P1)y,
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whence

(20) β̂2 =
{

X ′
2(I − P1)X2

}−1

X ′
2(I − P1)y.

The Regression Model with an Intercept

Now consider again the equations

(21) yt = α + xt.β + εt, t = 1, . . . , T,

which comprise T observations of a regression model with an intercept term
α, denoted by β0 in equation (1), and with k explanatory variables in xt. =
[xt1, xt2, . . . , xtk]. These equations can also be represented in a matrix notation
as

(22) y = ια + Zβ + ε.

Here, the vector ι = [1, 1, . . . , 1]′, which consists of T units, is described alter-
natively as the dummy vector or the summation vector, whilst Z = [xtj ; t =
1, . . . T ; j = 1, . . . , k] is the matrix of the observations on the explanatory vari-
ables.

Equation (22) can be construed as a case of the partitioned regression
equation of (12). By setting X1 = ι and X2 = Z and by taking β1 = α,
β2 = βz in equations (15) and (20), we derive the following expressions for the
estimates of the parameters α, βz:

(23) α̂ = (ι′ι)−1ι′(y − Zβ̂z),

(24)
β̂z =

{
Z ′(I − Pι)Z

}−1
Z ′(I − Pι)y, with

Pι = ι(ι′ι)−1ι′ =
1
T

ιι′.

To understand the effect of the operator Pι in this context, consider the follow-
ing expressions:

(25)

ι′y =
T∑

t=1

yt,

(ι′ι)−1ι′y =
1
T

T∑
t=1

yt = ȳ,

Pιy = ιȳ = ι(ι′ι)−1ι′y = [ȳ, ȳ, . . . , ȳ]′.
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Here, Pιy = [ȳ, ȳ, . . . , ȳ]′ is a column vector containing T repetitions of the
sample mean. From the expressions above, it can be understood that, if x =
[x1, x2, . . . xT ]′ is vector of T elements, then

(26) x′(I − Pι)x =
T∑

t=1

xt(xt − x̄) =
T∑

t=1

(xt − x̄)xt =
T∑

t=1

(xt − x̄)2.

The final equality depends on the fact that
∑

(xt − x̄)x̄ = x̄
∑

(xt − x̄) = 0.

The Regression Model in Deviation Form

Consider the matrix of cross-products in equation (24). This is

(27) Z ′(I − Pι)Z = {(I − Pι)Z}′{Z(I − Pι)} = (Z − Z̄)′(Z − Z̄).

Here, Z̄ = [(x̄j ; j = 1, . . . , k)t; t = 1, . . . , T ] is a matrix in which the generic row
(x̄1, . . . , x̄k), which contains the sample means of the k explanatory variables,
is repeated T times. The matrix (I − Pι)Z = (Z − Z̄) is the matrix of the
deviations of the data points about the sample means, and it is also the matrix
of the residuals of the regressions of the vectors of Z upon the summation vector
ι. The vector (I − Pι)y = (y − ιȳ) may be described likewise.

It follows that the estimate of βz is precisely the value which would be ob-
tained by applying the technique of least-squares regression to a meta-equation

(28)

⎡
⎢⎢⎣

y1 − ȳ
y2 − ȳ

...
yT − ȳ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x11 − x̄1 . . . x1k − x̄k

x21 − x̄1 . . . x2k − x̄k
...

...
xT1 − x̄1 . . . xTk − x̄k

⎤
⎥⎥⎦

⎡
⎢⎢⎣

β1

...

βk

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

ε1 − ε̄
ε2 − ε̄

...
εT − ε̄

⎤
⎥⎥⎦ ,

which lacks an intercept term. In summary notation, the equation may be
denoted by

(29) y − ιȳ = [Z − Z̄]βz + (ε − ε̄).

Observe that it is unnecessary to take the deviations of y. The result is the
same whether we regress y or y − ιȳ on [Z − Z̄]. The result is due to the
symmetry and idempotency of the operator (I − Pι) whereby Z ′(I − Pι)y =
{(I − Pι)Z}′{(I − Pι)y}.

Once the value for β̂ is available, the estimate for the intercept term can
be recovered from the equation (23) which can be written as

(30)

ᾱ = ȳ − Z̄β̂z

= ȳ −
k∑

j=1

x̄j β̂j .
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The Assumptions of the Classical Linear Model

In characterising the properties of the ordinary least-squares estimator of
the regression parameters, some conventional assumptions are made regarding
the processes which generate the observations.

Let the regression equation be

(31) y = β0 + β1x1 + · · · + βkxk + ε,

which is equation (1) again; and imagine, as before, that there are T observa-
tions on the variables. Then, these can be arrayed in the matrix form of (2)
for which the summary notation is

(32) y = Xβ + ε,

where y = [y1, y2, . . . , yT ]′, ε = [ε1, ε2, . . . , εT ]′, β = [β0, β1, . . . , βk]′ and X =
[xtj ] with xt0 = 1 for all t.

The first of the assumptions regarding the disturbances is that they have
an expected value of zero. Thus

(33) E(ε) = 0 or, equivalently, E(εt) = 0, t = 1, . . . , T.

Next it is assumed that the disturbances are mutually uncorrelated and that
they have a common variance. Thus
(34)

D(ε) = E(εε′) = σ2I or, equivalently, E(εtεs) =

{
σ2, if t = s;

0, if t �= s.

If t is a temporal index, then these assumptions imply that there is no
inter-temporal correlation in the sequence of disturbances. In an econometric
context, this is often implausible; and the assumption will be relaxed at a later
stage.

The next set of assumptions concern the matrix X of explanatory variables.
A conventional assumption, borrowed from the experimental sciences, is that

(35) X is a nonstochastic matrix with linearly independent columns.

The condition of linear independence is necessary if the separate effects of
the k variables are to be distinguishable. If the condition is not fulfilled, then
it will not be possible to estimate the parameters in β uniquely, although it
may be possible to estimate certain weighted combinations of the parameters.

Often, in the design of experiments, an attempt is made to fix the explana-
tory or experimental variables in such a way that the columns of the matrix
X are mutually orthogonal. The device of manipulating only one variable at a
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time will achieve the effect. The danger of miss-attributing the effects of one
variable to another is then minimised.

In an econometric context, it is often more appropriate to regard the ele-
ments of X as random variables in their own right, albeit that we are usually
reluctant to specify in detail the nature of the processes that generate the
variables. Thus, it may be declared that

(36)
The elements of X are random variables which are
distributed independently of the elements of ε.

The consequence of either of these assumptions (35) or (36) is that

(37) E(X ′ε|X) = X ′E(ε) = 0.

In fact, for present purposes, it makes little difference which of these assump-
tions regarding X is adopted; and, since the assumption under (35) is more
briefly expressed, we shall adopt it in preference.

The first property to be deduced from the assumptions is that

(38)
The ordinary least-square regression estimator

β̂ = (X ′X)−1X ′y is unbiased such that E(β̂) = β.

To demonstrate this, we may write

(39)

β̂ = (X ′X)−1X ′y

= (X ′X)−1X ′(Xβ + ε)

= β + (X ′X)−1X ′ε.

Taking expectations gives

(40)
E(β̂) = β + (X ′X)−1X ′E(ε)

= β.

Notice that, in the light of this result, equation (39) now indicates that

(41) β̂ − E(β̂) = (X ′X)−1X ′ε.

The next deduction is that

(42)
The variance–covariance matrix of the ordinary least-squares

regression estimator is D(β̂) = σ2(X ′X)−1.
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To demonstrate the latter, we may write a sequence of identities:

(43)

D(β̂) = E
{[

β̂ − E(β̂)
][

β̂ − E(β̂)
]′}

= E
{
(X ′X)−1X ′εε′X(X ′X)−1

}
= (X ′X)−1X ′E(εε′)X(X ′X)−1

= (X ′X)−1X ′{σ2I}X(X ′X)−1

= σ2(X ′X)−1.

The second of these equalities follows directly from equation (41).

A Note on Matrix Traces

The trace of a square matrix A = [aij ; i, j = 1, . . . , n] is just the sum of its
diagonal elements:

(44) Trace(A) =
n∑

i=1

aii.

Let A = [aij ] be a matrix of order n × m and let B = [bk�] a matrix of order
m × n. Then

(45)

AB = C = [ci�] with ci� =
m∑

j=1

aijbj� and

BA = D = [dkj ] with dkj =
n∑

�=1

bk�a�j .

Now,

(46)

Trace(AB) =
n∑

i=1

m∑
j=1

aijbji and

Trace(BA) =
m∑

j=1

n∑
�=1

bj�a�j =
n∑

�=1

m∑
j=1

a�jbj�.

But, apart from a minor change of notation, where 	 replaces i, the expressions
on the RHS are the same. It follows that Trace(AB) = Trace(BA). The
result can be extended to cover the cyclic permutation of any number of matrix
factors. In the case of three factors A, B, C, we have

(47) Trace(ABC) = Trace(CAB) = Trace(BCA).
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A further permutation would give Trace(BCA) = Trace(ABC), and we should
be back where we started.

Estimating the Variance of the Disturbance

The principle of least squares does not, of its own, suggest a means of
estimating the disturbance variance σ2 = V (εt). However it is natural to esti-
mate the moments of a probability distribution by their empirical counterparts.
Given that et = yt − xt.β̂ is an estimate of εt, it follows that T−1

∑
t e2

t may
be used to estimate σ2. However, it transpires that this is biased. An unbiased
estimate is provided by

(48)
σ̂2 =

1
T − k

T∑
t=1

e2
t

=
1

T − k
(y − Xβ̂)′(y − Xβ̂).

The unbiasedness of this estimate may be demonstrated by finding the
expected value of (y − Xβ̂)′(y − Xβ̂) = y′(I − P )y. Given that (I − P )y =
(I − P )(Xβ + ε) = (I − P )ε in consequence of the condition (I − P )X = 0, it
follows that

(49) E
{
(y − Xβ̂)′(y − Xβ̂)

}
= E(ε′ε) − E(ε′Pε).

The value of the first term on the RHS is given by

(50) E(ε′ε) =
T∑

t=1

E(e2
t ) = Tσ2.

The value of the second term on the RHS is given by

(51)

E(ε′Pε) = Trace
{
E(ε′Pε)

}
= E

{
Trace(ε′Pε)

}
= E

{
Trace(εε′P )

}
= Trace

{
E(εε′)P

}
= Trace

{
σ2P

}
= σ2Trace(P )

= σ2k.

The final equality follows from the fact that Trace(P ) = Trace(Ik) = k. Putting
the results of (50) and (51) into (49), gives

(52) E
{
(y − Xβ̂)′(y − Xβ̂)

}
= σ2(T − k);

and, from this, the unbiasedness of the estimator in (48) follows directly.
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Statistical Properties of the OLS Estimator

The expectation or mean vector of β̂, and its dispersion matrix as well,
may be found from the expression

(53)
β̂ = (X ′X)−1X ′(Xβ + ε)

= β + (X ′X)−1X ′ε.

The expectation is

(54)
E(β̂) = β + (X ′X)−1X ′E(ε)

= β.

Thus, β̂ is an unbiased estimator. The deviation of β̂ from its expected value
is β̂ − E(β̂) = (X ′X)−1X ′ε. Therefore, the dispersion matrix, which contains
the variances and covariances of the elements of β̂, is

(55)

D(β̂) = E
[{

β̂ − E(β̂)
}{

β̂ − E(β̂)
}′]

= (X ′X)−1X ′E(εε′)X(X ′X)−1

= σ2(X ′X)−1.

The Gauss–Markov theorem asserts that β̂ is the unbiased linear estimator
of least dispersion. This dispersion is usually characterised in terms of the
variance of an arbitrary linear combination of the elements of β̂, although it
may also be characterised in terms of the determinant of the dispersion matrix
D(β̂). Thus,

(56) If β̂ is the ordinary least-squares estimator of β in the classical
linear regression model, and if β∗ is any other linear unbiased
estimator of β, then V (q′β∗) ≥ V (q′β̂), where q is any constant
vector of the appropriate order.

Proof. Since β∗ = Ay is an unbiased estimator, it follows that E(β∗) =
AE(y) = AXβ = β which implies that AX = I. Now let us write A =
(X ′X)−1X ′ + G. Then, AX = I implies that GX = 0. It follows that

(57)

D(β∗) = AD(y)A′

= σ2
{
(X ′X)−1X ′ + G

}{
X(X ′X)−1 + G′}

= σ2(X ′X)−1 + σ2GG′

= D(β̂) + σ2GG′.

11
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Therefore, for any constant vector q of order k, there is the identity

(58)
V (q′β∗) = q′D(β̂)q + σ2q′GG′q

≥ q′D(β̂)q = V (q′β̂);

and thus the inequality V (q′β∗) ≥ V (q′β̂) is established.

Orthogonality and Omitted-Variables Bias

Let us now investigate the effect that a condition of orthogonality amongst
the regressors might have upon the ordinary least-squares estimates of the
regression parameters. Let us take the partitioned regression model of equation
(12) which was written as

(59) y = [X1, X2 ]
[

β1

β2

]
+ ε = X1β1 + X2β2 + ε.

We may assume that the variables in this equation are in deviation form. Let
us imagine that the columns of X1 are orthogonal to the columns of X2 such
that X ′

1X2 = 0. This is the same as imagining that the empirical correlation
between variables in X1 and variables in X2 is zero.

To see the effect upon the ordinary least-squares estimator, we may exam-
ine the partitioned form of the formula β̂ = (X ′X)−1X ′y. Here, there is

(60) X ′X =
[

X ′
1

X ′
2

]
[X1 X2 ] =

[
X ′

1X1 X ′
1X2

X ′
2X1 X ′

2X2

]
=

[
X ′

1X1 0
0 X ′

2X2

]
,

where the final equality follows from the condition of orthogonality. The inverse
of the partitioned form of X ′X in the case of X ′

1X2 = 0 is

(61) (X ′X)−1 =
[

X ′
1X1 0
0 X ′

2X2

]−1

=
[

(X ′
1X1)−1 0

0 (X ′
2X2)−1

]
.

Ther is also

(62) X ′y =
[

X ′
1

X ′
2

]
y =

[
X ′

1y

X ′
2y

]
.

On combining these elements, we find that

(63)

[
β̂1

β̂2

]
=

[
(X ′

1X1)−1 0

0 (X ′
2X2)−1

] [
X ′

1y

X ′
2y

]
=

[
(X ′

1X1)−1X ′
1y

(X ′
2X2)−1X ′

2y

]
.

12
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In this special case, the coefficients of the regression of y on X = [X1, X2] can
be obtained from the separate regressions of y on X1 and y on X2.

It should be recognised that this result does not hold true in general. The
general formulae for β̂1 and β̂2 are those that have been given already under
(15) and (20):

(64)
β̂1 = (X ′

1X1)−1X ′
1(y − X2β̂2),

β̂2 =
{
X ′

2(I − P1)X2

}−1
X ′

2(I − P1)y, P1 = X1(X ′
1X1)−1X ′

1.

It is readily confirmed that these formulae do specialise to those under (63) in
the case of X ′

1X2 = 0.
The purpose of including X2 in the regression equation when, in fact, our

interest is confined to the parameters of β1 is to avoid falsely attributing the
explanatory power of the variables of X2 to those of X1.

Let us investigate the effects of erroneously excluding X2 from the regres-
sion. In that case, our estimate will be

(65)

β̃1 = (X ′
1X1)−1X ′

1y

= (X ′
1X1)−1X ′

1(X1β1 + X2β2 + ε)

= β1 + (X ′
1X1)−1X ′

1X2β2 + (X ′
1X1)−1X ′

1ε.

On applying the expectations operator to these equations, we find that

(66) E(β̃1) = β1 + (X ′
1X1)−1X ′

1X2β2,

since E{(X ′
1X1)−1X ′

1ε} = (X ′
1X1)−1X ′

1E(ε) = 0. Thus, in general, we have
E(β̃1) �= β1, which is to say that β̃1 is a biased estimator. The only circum-
stances in which the estimator will be unbiased are when either X ′

1X2 = 0 or
β2 = 0. In other circumstances, the estimator will suffer from a problem which
is commonly described as omitted-variables bias.

We need to ask whether it matters that the estimated regression parame-
ters are biased. The answer depends upon the use to which we wish to put the
estimated regression equation. The issue is whether the equation is to be used
simply for predicting the values of the dependent variable y or whether it is to
be used for some kind of structural analysis.

If the regression equation purports to describe a structural or a behavioral
relationship within the economy, and if some of the explanatory variables on
the RHS are destined to become the instruments of an economic policy, then
it is important to have unbiased estimators of the associated parameters. For
these parameters indicate the leverage of the policy instruments. Examples of
such instruments are provided by interest rates, tax rates, exchange rates and
the like.
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On the other hand, if the estimated regression equation is to be viewed
solely as a predictive device—that it to say, if it is simply an estimate of the
function E(y|x1, . . . , xk) which specifies the conditional expectation of y given
the values of x1, . . . , xn—then, provided that the underlying statistical mech-
anism which has generated these variables is preserved, the question of the
unbiasedness of the regression parameters does not arise.

Restricted Least-Squares Regression

Sometimes, we find that there is a set of a priori restrictions on the el-
ements of the vector β of the regression coefficients which can be taken into
account in the process of estimation. A set of j linear restrictions on the vector
β can be written as Rβ = r, where r is a j × k matrix of linearly independent
rows, such that Rank(R) = j, and r is a vector of j elements.

To combine this a priori information with the sample information, we
adopt the criterion of minimising the sum of squares (y−Xβ)′(y−Xβ) subject
to the condition that Rβ = r. This leads to the Lagrangean function

(67)
L = (y − Xβ)′(y − Xβ) + 2λ′(Rβ − r)

= y′y − 2y′Xβ + β′X ′Xβ + 2λ′Rβ − 2λ′r.

On differentiating L with respect to β and setting the result to zero, we get the
following first-order condition ∂L/∂β = 0:

(68) 2β′X ′X − 2y′X + 2λ′R = 0,

whence, after transposing the expression, eliminating the factor 2 and rearrang-
ing, we have

(69) X ′Xβ + R′λ = X ′y.

When these equations are compounded with the equations of the restrictions,
which are supplied by the condition ∂L/∂λ = 0, we get the following system:

(70)
[

X ′X R′

R 0

] [
β
λ

]
=

[
X ′y
r

]
.

For the system to have a unique solution, that is to say, for the existence of an
estimate of β, it is not necessary that the matrix X ′X should be invertible—it
is enough that the condition

(71) Rank
[

X
R

]
= k

14
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should hold, which means that the matrix should have full column rank. The
nature of this condition can be understood by considering the possibility of
estimating β by applying ordinary least-squares regression to the equation

(72)
[

y
r

]
=

[
X
R

]
β +

[
ε
0

]
,

which puts the equations of the observations and the equations of the restric-
tions on an equal footing. It is clear that an estimator exits on the condition
that (X ′X + R′R)−1 exists, for which the satisfaction of the rank condition is
necessary and sufficient.

Let us simplify matters by assuming that (X ′X)−1 does exist. Then equa-
tion (68) gives an expression for β in the form of

(73)
β∗ = (X ′X)−1X ′y − (X ′X)−1R′λ

= β̂ − (X ′X)−1R′λ,

where β̂ is the unrestricted ordinary least-squares estimator. Since Rβ∗ = r,
premultiplying the equation by R gives

(74) r = Rβ̂ − R(X ′X)−1R′λ,

from which

(75) λ = {R(X ′X)−1R′}−1(Rβ̂ − r).

On substituting this expression back into equation (73), we get

(76) β∗ = β̂ − (X ′X)−1R′{R(X ′X)−1R′}−1(Rβ̂ − r).

This formula is more intelligible than it might appear to be at first, for it
is simply an instance of the prediction-error algorithm whereby the estimate
of β is updated in the light of the information provided by the restrictions.
The error, in this instance, is the divergence between Rβ̂ and E(Rβ̂) = r.
Also included in the formula are the terms D(Rβ̂) = σ2R(X ′X)−1R′ and
C(β̂, Rβ̂) = σ2(X ′X)−1R′.

The sampling properties of the restricted least-squares estimator are easily
established. Given that E(β̂ − β) = 0, which is to say that β̂ is an unbiased
estimator, then, on he supposition that the restrictions are valid, it follows that
E(β∗ − β) = 0, so that β∗ is also unbiased.

Next, consider the expression

(77)
β∗ − β = [I − (X ′X)−1R′{R(X ′X)−1R′}−1R](β̂ − β)

= (I − PR)(β̂ − β),

15
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where

(78) PR = (X ′X)−1R′{R(X ′X)−1R′}−1R.

The expression comes from taking β from both sides of (76) and from recognis-
ing that Rβ̂ − r = R(β̂ − β). It can be seen that PR is an idempotent matrix
that is subject to the conditions that

(79) PR = P 2
R, PR(I − PR) = 0 and P ′

RX ′X(I − PR) = 0.

From equation (77), it can be deduced that

(80)

D(β∗) = (I − PR)E{(β̂ − β)(β̂ − β)′}(I − PR)

= σ2(I − PR)(X ′X)−1(I − PR)

= σ2[(X ′X)−1 − (X ′X)−1R′{R(X ′X)−1R′}−1R(X ′X)−1].

Regressions on Orthogonal Variables

The probability that two vectors of empirical observations should be pre-
cisely orthogonal each other must be zero, unless such a circumstance has been
carefully contrived by designing an experiment. However, there are some impor-
tant cases where the explanatory variables of a regression are artificial variables
that are either designed to be orthogonal, or are naturally orthogonal.

An important example concerns polynomial regressions. A simple ex-
periment will serve to show that a regression on the powers of the integers
t = 0, 1, . . . , T , which might be intended to estimate a function that is trending
with time, is fated to collapse if the degree of the polynomial to be estimated is
in excess 3 or 4. The problem is that the matrix X = [1, t, t2, . . . , tn; t = 1, . . . T ]
of the powers of the integer t is notoriously ill-conditioned. The consequence is
that cross-product matrix X ′X will be virtually singular. The proper recourse
is to employ a basis set of orthogonal polynomials as the regressors.

Another important example of orthogonal regressors concerns a Fourier
analysis. Here, the explanatory variables are sampled from a set of trigon-
ometric functions that have angular velocities or frequencies that are evenly
distributed in an interval running from zero to π radians per sample period.

If the sample is indexed by t = 0, 1, . . . T − 1, then the frequencies in
question will be defined by ωj = 2πj/T ; j = 0, 1, . . . , [T/2], where [T/2] denotes
the integer quotient of the division of T by 2. These are the so-called Fourier
frequencies. The object of a Fourier analysis is to express the elements of the
sample as a weighted sum of sine and cosine functions as follows:

(81) yt = α0 +
[T/2]∑
j=1

{αj cos(ωjt) + β sin(ωjt)} ; t = 0, 1, . . . , T − 1.
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A trigonometric function with a frequency of ωj completes exactly j cycles
in the T periods that are spanned by the sample. Moreover, there will be
exactly as many regressors as there are elements within the sample. This is
evident is the case where T = 2n is an even number. At first sight, it might
appear that the are T + 2 trigonometrical functions. However, for integral
values of t, is transpires that

(82)
cos(ω0t) = cos 0 = 1, sin(ω0t) = sin 0 = 0,
cos(ωnt) = cos(πt) = (−1)t, sin(ωnt) = sin(πt) = 0;

so, in fact, there are only T nonzero functions.
Equally, it can be see that, in the case where T is odd, there are also exactly

T nonzero functions defined on the set of Fourier frequencies. These consist of
the cosine function at zero frequency, which is the constant function associated
with α0, together with sine and cosine functions at the Fourier frequencies
indexed by j = 1, . . . , (T − 1)/2.

The vectors of the generic trigonometric regressors may be denoted by

(83) cj = [c0j , c1j , . . . cT−1,j ]′ and sj = [s0j , s1j , . . . sT−1,j ]′,

where ctj = cos(ωjt) and stj = sin(ωjt). The vectors of the ordinates of
functions of different frequencies are mutually orthogonal. Therefore, amongst
these vectors, the following orthogonality conditions hold:

(84)
c′icj = s′isj = 0 if i �= j,

and c′isj = 0 for all i, j.

In addition, there are some sums of squares which can be taken into account
in computing the coefficients of the Fourier decomposition:

(85)
c′0c0 = ι′ι = T, s′0s0 = 0,

c′jcj = s′jsj = T/2 for j = 1, . . . , [(T − 1)/2]

Th proofs ar given in a brief appendix at the end of this section. When T = 2n,
there is ωn = π and, therefore, in view of (82), there is also

(86) s′nsn = 0, and c′ncn = T.

The “regression” formulae for the Fourier coefficients can now be given.
First, there is

(87) α0 = (i′i)−1i′y =
1
T

∑
t

yt = ȳ.
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Then, for j = 1, . . . , [(T − 1)/2], there are

(88) αj = (c′jcj)−1c′jy =
2
T

∑
t

yt cos ωjt,

and

(89) βj = (s′jsj)−1s′jy =
2
T

∑
t

yt sinωjt.

If T = 2n is even, then there is no coefficient βn and there is

(90) αn = (c′ncn)−1c′ny =
1
T

∑
t

(−1)tyt.

By pursuing the analogy of multiple regression, it can be seen, in view of
the orthogonality relationships, that there is a complete decomposition of the
sum of squares of the elements of the vector y, which is given by

(91) y′y = α2
0ι

′ι +
[T/2]∑
j=1

{
α2

jc
′
jcj + β2

j s′jsj

}
.

Now consider writing α2
0ι

′ι = ȳ2ι′ι = ȳ′ȳ, where ȳ′ = [ȳ, ȳ, . . . , ȳ] is a vector
whose repeated element is the sample mean ȳ. It follows that y′y − α2

0ι
′ι =

y′y− ȳ′ȳ = (y− ȳ)′(y− ȳ). Then, in the case where T = 2n is even, the equation
can be writen as

(92) (y − ȳ)′(y − ȳ) =
T

2

n−1∑
j=1

{
α2

j + β2
j

}
+ Tα2

n =
T

2

n∑
j=1

ρ2
j .

where ρj = α2
j + β2

j for j = 1, . . . , n − 1 and ρn = 2αn. A similar expression
exists when T is odd, with the exceptions that αn is missing and that the
summation runs to (T − 1)/2. It follows that the variance of the sample can
be expressed as

(93)
1
T

T−1∑
t=0

(yt − ȳ)2 =
1
2

n∑
j=1

(α2
j + β2

j ).

The proportion of the variance which is attributable to the component at fre-
quency ωj is (α2

j + β2
j )/2 = ρ2

j/2, where ρj is the amplitude of the component.
The number of the Fourier frequencies increases at the same rate as the

sample size T . Therefore, if the variance of the sample remains finite, and
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Figure 9. The plot of 132 monthly observations on the U.S. money supply,

beginning in January 1960. A quadratic function has been interpolated

through the data.
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Figure 10. The periodogram of the residuals of the logarithmic money-

supply data.

if there are no regular harmonic components in the process generating the
data, then we can expect the proportion of the variance attributed to the
individual frequencies to decline as the sample size increases. If there is such
a regular component within the process, then we can expect the proportion of
the variance attributable to it to converge to a finite value as the sample size
increases.

In order provide a graphical representation of the decomposition of the
sample variance, we must scale the elements of equation (36) by a factor of T .
The graph of the function I(ωj) = (T/2)(α2

j +β2
j ) is know as the periodogram.

Figure 9 shows the logarithms of a monthly sequence of 132 observations of
the US money supply through which a quadratic function has been interpolated.
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This provides a simple way of characterising the growth of the money supply
over the period in question. The pattern of seasonal fluctuations is remarkably
regular, as can be see from the residuals from the quadratic detrending.

The peridogram of the residual sequence is shown in Figure 10. This has a
prominent spike at the frequency value of π/6 radians or 30 degrees per month,
which is the fundamental seasonal frequency. Smaller spikes are seen at 60, 90,
120, and 150 degrees, which are the harmonics of the fundamental frequency.
Their presence reflects the fact that the pattern of the seasonal fluctuations is
more complicated than that of a simple sinusoidal fluctuation at the seasonal
frequency.

The peridodogram also shows a significant spectral mass within the fre-
quency range [0π/6]. This mass properly belongs to the trend; and, if the
trend had been adequately estimated, then its effect would not be present in
the residual, which would then show even greater regularity. In lecture 9, we
will show how a more fitting trend function can be estimated.

Appendix: Harmonic Cycles

If a trigonometrical function completes an integral number of cycles in T
periods, then the sum of its ordinates at the points t = 0, 1, . . . , T − 1 is zero.
We state this more formally as follows:

(94) Let ωj = 2πj/T where j ∈ {0, 1, . . . , T/2}, if T is even, and
j ∈ {0, 1, . . . , (T − 1)/2}, if T is odd. Then

T−1∑
t=0

cos(ωjt) =
T−1∑
t=0

sin(ωjt) = 0.

Proof. We have

T−1∑
t=0

cos(ωjt) =
1
2

T−1∑
t=0

{exp(iωjt) + exp(−iωjt)}

=
1
2

T−1∑
t=0

exp(i2πjt/T ) +
1
2

T−1∑
t=0

exp(−i2πjt/T ).

By using the formula 1 + λ + · · · + λT−1 = (1 − λT )/(1 − λ), we find that

T−1∑
t=0

exp(i2πjt/T ) =
1 − exp(i2πj)

1 − exp(i2πj/T )
.

But Euler’s equation indicates that exp(i2πj) = cos(2πj) + i sin(2πj) = 1, so
the numerator in the expression above is zero, and hence

∑
t exp(i2πj/T ) = 0.

20



REGRESSION ANALYSIS IN MATRIX ALGEBRA

By similar means, it can be show that
∑

t exp(−i2πj/T ) = 0; and, therefore,
it follows that

∑
t cos(ωjt) = 0.

An analogous proof shows that
∑

t sin(ωjt) = 0.

The proposition of (94) is used to establish the orthogonality conditions
affecting functions with an integral number of cycles.

(95) Let ωj = 2πj/T and ψk = 2πk/T where j, k ∈ 0, 1, . . . , T/2 if T
is even and j, k ∈ 0, 1, . . . , (T − 1)/2 if T is odd. Then

(a)
T−1∑
t=0

cos(ωjt) cos(ψkt) = 0 ifj �= k,

T−1∑
t=0

cos2(ωjt) = T/2,

(b)
T−1∑
t=0

sin(ωjt) sin(ψkt) = 0 ifj �= k,

T−1∑
t=0

sin2(ωjt) = T/2,

(c)
T−1∑
t=0

cos(ωjt) sin(ψkt) = 0 ifj �= k.

Proof. From the formula cosA cos B = 1
2{cos(A + B) + cos(A−B)}, we have

T−1∑
t=0

cos(ωjt) cos(ψkt) =
1
2

∑
{cos([ωj + ψk]t) + cos([ωj − ψk]t)}

=
1
2

T−1∑
t=0

{cos(2π[j + k]t/T ) + cos(2π[j − k]t/T )} .

We find, in consequence of (94), that if j �= k, then both terms on the RHS
vanish, which gives the first part of (a). If j = k, then cos(2π[j − k]t/T ) =
cos 0 = 1 and so, whilst the first term vanishes, the second terms yields the
value of T under summation. This gives the second part of (a).

The proofs of (b) and (c) follow along similar lines once the relevant
trigonometrical identities have been invoked.
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