
LECTURE 10

Multivariate ARMA
Processes

A vector sequence y(t) of n elements is said to follow an n-variate ARMA
process of orders p and q if it satisfies the equation

(1)
A0y(t) + A1y(t − 1) + · · · + Apy(t − p)

= M0ε(t) + M1ε(t − 1) + · · · + Mqε(t − q),

wherein A0, A1, . . . , Ap, M0, M1, . . . , Mq are matrices of order n× n and ε(t) is
a disturbance vector of n elements determined by serially-uncorrelated white-
noise processes that may have some contemporaneous correlation.

In order to signify that the ith element of the vector y(t) is the dependent
variable of the ith equation, for every i, it is appropriate to have units for the
diagonal elements of the matrix A0. These represent the so-called normalisation
rules. Moreover, unless it is intended to explain the value of yi in terms of the
remaining contemporaneous elements of y(t), then it is natural to set A0 = I.
It is also usual to set M0 = I. Unless a contrary indication is given, it will be
assumed that A0 = M0 = I.

It is assumed that the disturbance vector ε(t) has E{ε(t)} = 0 for its
expected value. On the assumption that M0 = I, the dispersion matrix, de-
noted by D{ε(t)} = Σ, is an unrestricted positive-definite matrix of variances
and of contemporaneous covariances. However, if restriction is imposed that
D{ε(t)} = I, then it may be assumed that M0 �= I and that D(M0εt) =
M0M

′
0 = Σ.

The equations of (1) can be written in summary notation as

(2) A(L)y(t) = M(L)ε(t),

where L is the lag operator, which has the effect that Lx(t) = x(t − 1), and
where A(z) = A0 + A1z + · · · + Apz

p and M(z) = M0 + M1z + · · · + Mqz
q are

matrix-valued polynomials assumed to be of full rank. A multivariate process
of this nature is commonly described as a VARMA process—the initial letter
denoting “vector”.

Example. The multivariate first-order autoregressive VAR(1) process satisfies
the equation

(3) y(t) = Φy(t − 1) + ε(t).
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On the assumption that lim(τ → ∞)Φτ = 0, the equation may be expanded,
by a process of back-substitution, which continues indefinitely, so as become
an infinite-order moving average:

(4) y(t) =
{
ε(t) + Φε(t − 1) + Φ2ε(t − 2) + · · ·

}
.

This expansion may also be effected in terms of the algebra of the lag operator
via the expression

(5) (I − ΦL)−1 =
{
I + ΦL + Φ2L2 + · · ·

}
.

For the convergence of the sequence {Φ, Φ2, . . .}, it is necessary and sufficient
that all of the eigenvalues or latent roots of Φ should be less than unity in
modulus.

The conditions of stationarity and invertibility, which apply to a
VARMA(p, q) model A(L)y(t) = M(L)ε(t), are evident generalisations of those
that apply to scalar processes. The VARMA process is stationary if and only if
det A(z) �= 0 for all z such that |z| < 1. If this condition is fulfilled, then there
exists a representation of the process in the form of

(6)
y(t) = Ψ(L)ε(t)

=
{
Ψ0ε(t) + Ψ1ε(t − 1) + Ψ2ε(t − 2) + · · ·

}
,

wherein the matrices Ψj are determined by the equation

(7) A(z)Ψ(z) = M(z),

and where the condition A0 = M0 = I implies that Ψ0 = I. The process is
invertible, on the other hand, if and only if detM(z) �= 0 for all z such that
|z| < 1. In that case, the process can be represented by an equation in the form
of

(8)
ε(t) = Π(L)y(t)

=
{
Π0y(t) + Π1y(t − 1) + Π2y(t − 2) + · · ·

}
,

wherein the matrices Πj are determined by the equation

(9) M(z)Π(z) = A(z),

and where the condition A0 = M0 = I implies that Π0 = I.

Canonical Forms

There is a variety of ways in which a VARMA equation can be reduced
to a state-space model incorporating a transition equation that corresponds
to a first-order Markov process. One of the more common formulations is the
so-called controllable canonical state-space representation.
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Consider writing equation (2) as

(10)
y(t) = M(L)

{
A−1(L)ε(t)

}
= M(L)ξ(t),

where ξ(t) = A−1(L)ε(t). This suggests that, in generating the values of y(t),
we may adopt a two-stage procedure, which, assuming that A0 = I, begins by
calculating the values of ξ(t) via the equation

(11) ξ(t) = ε(t) −
{
A1ξ(t − 1) + · · · + Arξ(t − r)

}
and then proceeds to find those of y(t) via the equation

(12) y(t) = M0ξ(t) + M1ξ(t − 1) + · · · + Mr−1ξ(t − r + 1).

Here, r = max(p, q) and, if p �= q, then either Ai = 0 for i = p + 1, . . . , q or
Mi = 0 for i = q + 1, . . . , p.

In order to implement the recursion under (11), we define a set of r state
variables as follows:

(13)

ξ1(t) = ξ(t),
ξ2(t) = ξ1(t − 1) = ξ(t − 1),

...
ξr(t) = ξr−1(t − 1) = ξ(t − r + 1).

Rewriting equation (11) in terms of the variables defined on the LHS gives

(14) ξ1(t) = ε(t) − {A1ξ1(t − 1) + · · · + Arξr(t − 1)}.

Therefore, by defining a state vector ξ(t) = [ξ1(t), ξ2(t), . . . , ξr(t)]′ and by com-
bining (13) and (14), we can construct a system in the form of

(15)


ξ1(t)
ξ2(t)

...
ξr(t)

 =


−A1 . . . −Ar−1 −Ar

I . . . 0 0
...

. . .
...

...
0 . . . I 0




ξ1(t − 1)
ξ2(t − 1)

...
ξr(t − 1)

 +


1
0
...
0

 ε(t).

The sparse matrix on the RHS of this equation is an example of a so-called com-
panion matrix. The accompanying measurement equation, which corresponds
to equation (12), is given by

(16) y(t) = M0ξ1(t) + · · · + Mr−1ξr(t).

Even for a VARMA system of a few variables and of low AR and MA
orders, a state-space system of this sort is liable to involve matrices of very
large dimensions. In developing practical computer algorithms for dealing with
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such systems, one is bound to pay attention to the sparseness of the companion
matrix.

Numerous mathematical advantages arise from treating a pth-order auto-
gressive system of dimension n as a first-order system of dimension p×n. Thus,
for example, the condition for the stability of the system can be expressed in
terms of the companion matrix of equation (15), which may be denoted by Φ.
The condition for stability is that the eigenvalues of Φ must lie inside the unit
circle, which is the condition that det(I − Φz) �= 0 for all |z| ≤ 1. It is easy to
see that

(17) det(I − Φz) = det(I + A1z + · · · I + Apz
p),

which indicates that the condition is precisely the one that has been stated
already.

The Autocovariances of an ARMA process

The equation of an ARMA(p, q) process is

(18)
p∑
i

Aiyt−i =
q∑
i

Miεt−i.

To find the autocovariances of the process, consider post-multiplying the equa-
tion by y′

t−τ and taking expectations. This gives

(19)
∑

i

AiE(yt−iy
′
t−τ ) =

∑
i

MiE(εt−iy
′
t−τ ).

To find E(εt−iy
′
t−τ ), it is appropriate to employ the infinite-order moving-

average representation of the ARMA process, which gives

(20) yt−τ =
∞∑

j=0

Ψjεt−τ−j ,

where the coefficients Ψj are from the series expansion of the rational function
Ψ(z) = A−1(z)M(z). Putting this in equation (19) gives

(21)
∑

i

AiE(yt−iy
′
t−τ ) =

∑
i

∑
j

MiE(εt−iε
′
t−τ−j)Ψ

′
j .

Here, there are

(22) E(yt−iy
′
t−τ ) = Γτ−i and E(εt−iε

′
t−τ−j) =

{ Σ, if j = i − τ ,

0, if j �= i − τ ;

and it should be observed that

(23) Γ−i = E(yt+iy
′
t) = E(yty

′
t−i) = Γ′

i.
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Therefore, equation (21) can be written as

(24)
p∑

i=0

AiΓτ−i =
q∑

i=τ

MiΣΨ′
i−τ .

Given the normalisation A0 = I, equation (24) provides a means of generating
Γτ from the known values of the parameter sequences and from the previous
values Γτ−1, . . . ,Γτ−p:

(25) Γτ =


−

p∑
i=1

AiΓτ−i +
q∑

i=τ

MiΣΨ′
i−τ , if τ ≤ q;

−
p∑

i=1

AiΓτ−i if τ > q.

In the case of a pure autoregressive process of order p, there are

Γ0 = −
p∑

i=1

AiΓi + Σ and(26)

Γτ = −
p∑

i=1

AiΓτ−i if τ > 0.(27)

In the case of a pure moving-average process of order q, there is Ai = 0
for all i > 0. Also, there is Ψj = Mj for j = 0, . . . , q together with Ψj = 0 for
j > q. It follows that the moving-average autocovariances are

(28) Γτ =
q∑

i=τ

MiΣM ′
i−τ with τ = 0, . . . , q.

These values are straightforward to calculate.
In the case of the autoregressive model and of the mixed autoregressive–

moving average model with autoregressive orders of p, there is a need to gen-
erate the autocovariances Γ0, Γ1, . . . ,Γp in order to initiate a recursive process
for generating subsequent autocovariances. The means of finding these initial
values can be illustrated by an example.

Example. To show how the initial values are generated, we may consider
equation (24), where attention can be focussed to the LHS. Consider the case
of a second-order vector autoregressive model. Then, (26) and (27) yield the
so-called Yule–Walker equations.

If the autocovariances Γ0, Γ1, Γ2 are known, then, given that A0 = I,
these equations can be solved for the autoregressive parameters A1, A2 and for
the dispersion parameters D(ε) = Σ of the disturbances. Setting p = 2 and
τ = 0, 1, 2 in equations (26) and (27) gives

(29)

Γ0 Γ′
1 Γ′

2

Γ1 Γ0 Γ′
1

Γ2 Γ1 Γ0

 A′
0

A′
1

A′
2

 =

Σ
0
0

 .
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Then, assuming that A0 = I, the equations

(30)
[

A′
1

A′
2

]
= −

[
Γ0 Γ′

1

Γ1 Γ0

]−1 [
Γ1

Γ2

]
and Σ = Γ0 + A1Γ1 + A2Γ2

provide the parameters if the autocovariances are known. The matrix Σ of the
contemporaneous autocovariances of the disturbance vector are provided by the
equation on the RHS.

Conversely, if the parameters are know, then the equations can be solved
for the autocovariances. However, to begin the recursion of (26), which gener-
ates the subsequent autocovariances, it is necessary to find the values of Γ0 and
Γ1. The solution can be found by exploiting the representation of a VARMA
system that is provided by equation (15). In the case of a VAR system of order
2, this becomes

(31)
[

y(t)
y(t − 1)

]
=

[
−A1 −A2

I 0

] [
y(t − 1)
y(t − 2)

]
+

[
ε(t)
0

]
,

from which the following equation in the autocovariances can be derived:

(32)
[

Γ0 Γ1

Γ′
1 Γ0

]
=

[
−A1 −A2

I 0

] [
Γ0 Γ1

Γ′
1 Γ0

] [
−A′

1 0
−A′

2 I

]
+

[
Σ 0
0 0

]
.

A summary notation for this is

(33) Γ = ΦΓΦ′ + Ω.

Using the rule of vectorisation, whereby (AXB′)c = (B ⊗ A)Xc, this becomes
Γc = (Φ ⊗ Φ)Γc + Ωc, whence the vectorised matrix of the autocovariances is

(34) Γc = [I − (Φ ⊗ Φ)]−1Ωc.

The subsequent autocovariance matrices are generated via the recursion of (27).
When the model contains a moving-average component, the column con-

taining the matrix Σ is replaced by something more complicated that is pro-
vided by the RHS of equation (24).

The Final Form and Transfer Function Form

A VARMA model is mutable in the sense that it can be represented in
many different ways. It is particularly interesting to recognise that it can be
reduced in a straightforward way to a set of n interrelated ARMA models. It
may be acceptable to ignore the interrelations and to concentrate on building
models for the individual series. However, ignoring the wider context in which
these series arise may result in a loss of statistical efficiency in the course of
generating estimates of their parameters.

The assumption that A(z) is of full rank allows us to write equation (2) as

(35)
y(t) = A−1(L)M(L)ε(t)

=
1

|A(L)|A
∗(L)M(L)ε(t),
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where |A(L)| is the scalar-valued determinant of A(L) and A∗(L) is the adjoint
matrix. The process can be written equally as

(36) |A(L)|y(t) = A∗(L)M(L)ε(t).

Here is a system of n ARMA processes that share a common autoregressive
operator α(L) = |A(L)|. The moving-average component of the ith equation is
the ith row of A∗(L)M(L)ε(t). This corresponds to a sum of n moving-average
processes—one for each element of the vector ε(t)—A sum of moving-average
processes is itself a moving-average process with an order that is no greater
than the maximal order of its constituent processes. It follows that the ith
equation of the system can be written as

(37) α(L)yi(t) = µi(L)ηi(t).

The interdependence of the n univariate ARMA equations is manifested
in the facts that (a) they share the same autoregressive operator α(L) and that
(b) their disturbance processes ηi(t); i = 1, . . . , n are mutually correlated.

It is possible that α(L) and µi(L) will have certain factors in common.
Such common factors must be cancelled from these operators. The effect will
be that the operator α(L) will no longer be found in its entirely in each of the
n equations. Indeed, it is possible that, via such cancellations, the resulting au-
toregressive operators αi(L) of the n equations will become completely distinct
with no factors in common.

When specialised in a certain way, the VARMA model can give rise to a
dynamic version of the classical simultaneous-equation model of econometrics.
This specialisation requires a set of restrictions that serve to classify some of
the variables in y(t) as exogenous with respect to the others which, in turn, are
classified as endogenous variables. In that case, the exogenous variables may be
regarded as the products of processes that are independent of the endogenous
processes.

To represent this situation, let us take the equations of (2), where it may
be assumed that A0 �= I, albeit that the diagonal elements of A0 are units. Let
the equations be partitioned as

(38)
[

A11(L) A12(L)
A21(L) A22(L)

] [
y(t)
x(t)

]
=

[
M11(L) M12(L)
M21(L) M22(L)

] [
ε(t)
η(t)

]
.

Here, y(t) and ε(t) are denoting particular subsets of the systems variables,
whereas previously they have denoted the complete sets. If ε(t) and η(t) are
mutually uncorrelated vectors of white-noise disturbances and if the restrictions
are imposed that

(39) A21(L) = 0, M21(L) = 0 and M12(L) = 0,

then the system will be decomposed into a set of structural equations

(40) A11(L)y(t) + A12(L)x(t) = M11ε(t),
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and a set of equations that describe the processes generating the exogenous
variables,

(41) A22(L)x(t) = M22η(t).

The leading matrix of A11(z), which is associated with z0, may be denoted
by A110. If this is nonsingular, then the equations of (41) may be premultiplied
by A−1

110 to give the so-called reduced-form equations, which express the cur-
rent values of the endogenous variables as functions of the lagged endogenous
variables and of the exogenous variables:

(42)

y(t) = − A−1
110

r∑
j=1

A11jL
jy(t) − A−1

110

r∑
j=1

A12jL
jx(t)

+ A−1
110

r∑
j=1

M11jL
jε(t).

Each of the equations is in the form of a so-called ARMAX model.
The final form of the equation of (40) is given by

(43) y(t) = −A−1
11 (L)A12(L)x(t) + A−1

11 (L)M11(L)ε(t).

Here, the current values of the endogenous variables are expressed as functions
of only the exogenous variables and the disturbances. Each of the individual
equations of the final form constitutes a so-called rational transfer-function
model or RTM.

Granger Causality

Consider the system

(44)
[

A11(L) A12(L)
0 A22(L)

] [
y(t)
x(t)

]
=

[
M11(L) 0

0 M22(L)

] [
ε(t)
η(t)

]
,

wherein ε(t) and η(t) are mutually uncorrelated vectors of white-noise pro-
cesses. Here, it can be said that, whereas x(t) is affecting y(t), there is no
effect running from y(t) to x(t). On referring to equation (38), it can be seen
that the assertion depends, not only on the condition that A21(L) = 0, but also
on the condition that M21(L) = 0 and M12(L) = 0. In the absence of these
two conditions, y(t) and x(t) would be sharing some of the same disturbances.
Therefore, knowing the past and present values of the sequence y(t) would help
in predicting the values of x(t).

This observation has led Granger to enunciate a condition of non-causality.
In the sense of Granger, y(t) does not cause x(t) if E{x(t)|y(t−j); j ≥ 0}, which
is that the conditional expectation of x(t) given present and past values of y(t),
is no different from the unconditional expectation E{x(t)}. If there are no
influences affecting y(t) and x(t) other than those depicted in the model, then
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this definition of causality accords with the commonly accepted notion of cause
and effect.

A practical way of demonstrating the absence of an effect running from
y(t) to x(t) would be to fit the model of equation (38) to the data and to
demonstrate that none of the estimates of the coefficients that are deemed to
be zero-valued are significantly different from zero. A simple alternative would
be to regress the values of y(t) on past current and future values of x(t). If none
of the resulting coefficients associated with the future are significantly different
from zero, then it can be said that y(t) does not cause x(t).

The condition of non-causality can be stated in terms both of the autore-
gressive and of the moving average forms of the process in question. Since

(45)
[

A11(L) A12(L)
0 A22(L)

]−1

=
[

A−1
11 (L) −A−1

11 (L)A12A
−1
22 (L)

0 A−1
22 (L)

]
,

it follows that the moving-average form of the joint process is

(46)
[

y(t)
x(t)

]
=

[
Ψ11(L) Ψ12(L)

0 Ψ22(L)

] [
ε(t)
η(t)

]
.

It can be deduced, in a similar way, that the autoregressive form of the process
is

(47)
[

Π11(L) Π12(L)
0 Π22(L)

] [
y(t)
x(t)

]
=

[
ε(t)
η(t)

]
.

The Impulse Response Function

Within the context of the moving-average representation of the system,
which is equation (6), questions can be asked concerning the effects that im-
pulses on the input side have upon the output variables.

Given that εj(t) is regarded as a disturbance that is specific to the jth equa-
tion, an innovation in εj(t) is tantamount to an innovation in yj(t). Therefore,
by considering an isolated impulse in εj(t) and by holding all other disturbances
at zero for all times, one can discern the peculiar effect upon the system of a
change in yj(t).

If ej denotes the vector with a unit in the jth position and with zeros
elsewhere, and if

(48) δ(t) =
{ 1, when t = 0,

0, when t �= 0,

denotes the impulse sequence, then the response of the system to an impulse
in the jth equation may be represented by

(49) y(t) = Ψ(L){δ(t)ej}

9
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The system will be inactive until time t = 0. Thereafter, it will generate the
following sequence of vectors: {Ψ0ej , Ψ1ej , Ψ2ej , . . .}.

The effect of the impulse will reverberate throughout the system, and it
will return to yj(t) via various circuitous routes. To trace these routes, one
would have to take account of the structure of the autoregressive polynomial
A(z) of equation (1). The net effect of the impulse to the jth equation upon the
output of the ith equation is given by the sequence {e′iΨ0ej , e

′
iΨ1ej , e

′
iΨ2ej , . . .}

The Cholesky Factorisation

It must be conceded that, in practice, an isolated impulse to a single equa-
tion is an unlikely event. In fact, it has been assumed that the innovations
or disturbances of the n equations of the system have a joint dispersion ma-
trix D{ε(t)} = Σ, which is, in general, a non-diagonal symmetric positive-
definite matrix. This matrix is amenable to a Cholesky factorisation of the
form Σ = T∆T ′, where T is a lower triangular matrix with units on the diag-
onal and where ∆ is a diagonal matrix of positive elements. Then, ηt = T−1εt

has a diagonal dispersion matrix D{η(t)} = T−1ΣT ′−1 = ∆.
The effect of this transformation is to create a vector η(t) of mutually inde-

pendent disturbances, which is also described as a matter of orthogonalising the
disturbances. Applying the transformation the equation A(L)y(t) = M(L)ε(t)
of (2) gives

(50) A(L)y(t) = {M(L)T}η(t) with η(t) = T−1ε(t).

The infinite-order moving-average form of this equation is

(51)
y(t) = A−1(L){M(L)T}η(t)

= {Ψ(L)T}η(t),

whereas the infinite-order autoregressive form is

(52)
η(t) = {T−1M−1(L)}A(L)y(t)

= T−1Π(L)y(t).

The effect of the transformation T upon the structure of the system is
best understood in the context of an purely autoregressive model of order p.
On taking account of the normalisation A0 = I and on setting −Aj = Φj ; j =
1, . . . , p, the transformed autoregressive equation can be represented by

(53) T−1y(t) = T−1Φ1y(t) + · · · + T−1Φpy(t − p) + η(t).

Here, T−1 is a lower-triangular matrix with units on the diagonal, which are fea-
tures it shares with T . Therefore, the elements of y(t) = [y1(t), y2(t), . . . , yn(t)]′

appear to be determined in a recursive manner.
At any given time, the leading element y1 is determined without reference

to the remaining elements. Then, y2 is determined with reference to y1. Next,
y3 is determined with reference to y1 and y2, and so on. Therefore, there is what
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may be described, in the terminology of Wold, as a causal ordering amongst
the variables. See, for example, Strotz and Wold (1960) or Simon (1953).

The infinite-order vector moving average corresponding to a finite-order
autoregression is

(54)

y(t) = {Ψ(L)T}{T−1ε(t)}
= {Ψ0T}{T−1ε(t)} + {Ψ1T}{T−1ε(t − 1)} + · · ·
= Θ0η(t) + Θ1η(t − 1) + Θ2η(t − 2) + · · · ,

where T−1ε(t) = η(t) has D{η(t)} = I and where Θj = ΨjT . Also, if A0 =
M0 = I, there will be Ψ0 = I and Θ0η(t) = ε(t).

If the indexing of the variables has been arbitrary, then the causal order-
ing will have no substrative interpretation. However, the variables might be
indexed with the intention of revealing what is thought to be a genuine causal
ordering.

Variance Decompositions

One of the virtues of the Cholesky decomposition is that it assists in the
decomposition of the variances of the elements of y(t). In terms of the MA(∞)
representation of equation (6), the dispersion matrix of y(t) can be decomposed
as follows:

(55) D{y(t)} = Ψ0ΣΨ′
0 + Ψ1ΣΨ′

1 + Ψ2ΣΨ′
2 + · · · .

This result is in consequence of the serial independence in time of the successive
vectors of disturbances. The effect of applying the Cholesky transformation T
is to give

(56) D{y(t)} = Θ0∆Θ′
0 + Θ1∆Θ′

1 + Θ2∆Θ′
2 + · · · ,

where Θj = ΨjT and where ∆ = D{η(t)} = T−1ΣT ′−1 is a diagonal matrix.
Then, in the jth equation, there is an innovation ηj that is peculiar that equa-
tion and there are the remaining innovations ηk; k �= j which are orthogonal
to or uncorrelated with ηj and which can be attributed to the other equations.
However, except in the case of the first equation, which has η1(t) = ε1(t), these
innovations will represent combinations of the elements of the disturbance vec-
tor ε(t). For that reason, the innovations might not be amenable to an easy
interpretation.

In consequence of this difficulty, one is bound to think of applying the
Cholesky orthgonalisation procedure successively, with each variable in turn
appointed to be the leading variable. Then, in every case, there will be a
disturbance innovation that is peculiar to the appointed variable, which we may
describe as an auto-innovation, and there will be a set of innovations, originating
in the other equations, which are uncorrelated with the auto-innovation, which
we might describe as the allo-innovations. The matter of auto-innovations and
allo-innovations will be pursued in a subsequent section.
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Structural Models

A Cholesky factorisation is by no means the only way in which the dis-
persion matrix D{ε(t)} = Σ can be diagonalised. The choice of a particular
form of the diagonalising matrix is often associated with the specification of a
structural model, which contains equations that purport to have a behavioural
interpretation.

To reveal the range of possibilities for diagonalising a positive definite
matrix, we may consider a Cholesky factorisation that reduces the matrix Σ to
the identity matrix. If L is a lower-triangular Cholesky factor such that

(57) L−1ΣL′−1 = I and Σ = LL′,

and if Q is an orthonormal matrix such that Q′Q = QQ′ = I, then there is also

(58) QL−1ΣL′−1Q′ = T−1ΣT ′−1 = I, and TT ′ = Σ,

where T = LQ′ is a diagonalising matrix that is not triangular.

Example. A particular form of the diagonalising matrix T has been used by
Blanchard and Quah (1989) to give expression to their theory concerning the
impact of demand disturbances and supply disturbances upon the level Gross
Domestic Product (GDP). Blanchard and Quah have described the economy in
terms of a bivariate autoregressive model comprising thevector [y1(t), y2(t)] =
[∇Y (t), U(t)], wherein Y and U are the logarithms of GDP, i.e. aggregate
output, and unemployment respectively, so that ∇Y is rate of growth of GDP.

Two mutually uncorrelated structural disturbances are identified that have
different effects on the economy. These are the elements of the disturbance vec-
tor η(t) = [ηs(t), ηd(t)]′. It is proposed that neither of these disturbances has
any long-run effect on employment. However, it is assumed that the supply
shock ηs(t) does have a long-run effect on output, whereas the demand shock
ηd(t), which impacts directly on unemployment, has no long-run effect on out-
put.

The unrestricted moving-average representation of the system is the equa-
tion

(59) y(t) = ε(t) + Ψ1ε(t − 1) + Ψ2ε(t − 2) + · · · ,

where Ψ0 = I and D{ε(t)} = Σ. This can be obtained by estimating the vector
autoregressive representation of y(t) and by inverting it. From the autoregres-
sive representation, an estimate of Σ = LL′ can be obtained

The conditions affecting the disturbances provide restrictions that serve
to identify the structure of the model. The structural form gives rise to the
following infinite-order vector moving average:

(60) y(t) = Θ0η(t) + Θ1η(t − 1) + Θ2η(t − 2) + · · · ,

where the condition D{η(t)} = I reflects the mutually uncorrelated nature of
the structural disturbances.

12
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The transformation of equation (59) into equation (60) is by virtue of
the diagonalising matrix T . By comparing equations (59) and (60), it can be
seen that ε(t) = Θ0η(t). But η(t) = T−1ε(t), so Θ0 = T . More generally
{Θj = ΨjT ; j = 0, 1, 2, . . .}; and these are the matrices that are entailed in the
calculation of the impulse responses of the structural disturbances.

The summation of the impulse response of the structural system, i.e. its
steady-state gain, is given by

(61) Θ(1) = Ψ(1)T = A−1(1)T,

where

(62)
A−1(1) = (I − Φ1 − · · · − Φp)−1

= {1 + Ψ1 + Ψ2 + · · ·} = Ψ(1).

The condition that the steady-state gain of the mapping from the demand
shock ηd to the change in output ∇Y is zero is the condition that e′sΘ(1)ed = 0,
where e′s = [1, 0] and ed = [0, 1]′. Using Θ(1) = A−1(1)T and T = LQ′, the
condition becomes

(63) e′sA
−1(1)Ted = e′sA

−1(1)LQ′ed = 0.

Given that A−1(1) and L can be determined from the estimates estimates of
the unrestricted model, it sufficient to find an orthonormal matrix Q that will
satisfy the condition by transforming A−1(1)L or its inverse L−1(A(1) to a
matrix with a zero in the top right corner. If

(64) L−1A(1) =
[

γ11 γ12

γ21 γ22

]
,

then

(65) Q =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
=

1
ρ

[
γ22 −γ12

γ12 γ22

]
,

where ρ2 = γ2
22+γ2

12. In effect, Q is the matrix that rotates the vector [γ12, γ22]′

through an angle of θ = tan−1(γ12/γ22) degrees so as to align it with the vertical
axis, i.e. to set its leading element to zero.

With Q and T = LQ′ = Θ0 available, and given that the sequence
{Ψj ; j = 0, 1, 2, . . .} has been derived via the inversion of the estimated autore-
gressive model, it is straightforward to calculate the sequence {Θj = ΨjT ; j =
0, 1, 2, . . .} from which the impulse response functions of the structural model
are derived.

In deriving the impulse respone, it is appropriate to replace the diagonal
elements of Θ0 by units, which entails premultiplying the matrices of the se-
quence {Θj ; j = 0, 1, 2, . . .} by the diagonal matrix diag{θ−1

11 , θ−1
22 }. The effect

is to transfer the normalisation from the variances of the innovations to the
leading coefficient matrix Θ0.

13
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Auto-innovations and Allo-innovations

Consider a vector autoregressive equation of the form A(L)y(t)ε(t), which
is inverted to give a moving-average equation y(t) = ψ(L)ε(t). This can be
partitioned as

(66)
[

y1(t)
y2(t)

]
=

[
Ψ11(L) Ψ12(L)
Ψ21(L) Ψ22(L)

] [
ε1(t)
ε2(t)

]
,

to allow attention to be focussed in turn on the subvectors y1(t) and y2(t).
It may be assumed that there are no instantaneous cross-connections be-

tween the current elements of y1(t) and y2(t), which implies that A0 = Ψ0 = I.
However, there may be contemporaneous correlation between the elements of
ε1(t) and those of ε2(t), such that their joint dispersion matrix is

(67) D

([
ε1(t)
ε2(t)

])
=

[
Σ11 Σ12

Σ21 Σ22

]
= Σ.

The first purpose is to determine the effects that the innovations in the
sequence ε1(t) have upon the variables in y1(t) and to separate them from the
effects of the disturbances in ε2(t), which impinge directly on y2(t).

To achieve this separation, a transformation T−1 may be applied to the
vector ε(t) to remove the correlation between the two sets of innovations. The
compensating transformation T must be applied to the operator ψ(L). Thus,
in summary notation, the transformed system in denoted by

(68) y(t) = {Ψ(L)T}{T−1ε(t)} = Θ(L)η(t).

The partitioned form of the transformation that is applied to the disturbance
vector is

(69) T−1 =
[

I 0
−Σ21Σ−1

11 I

]
.

This block-Cholesky transformation creates a block-diagonal dispersion matrix,
of which the partitioned form is

(70)
T−1ΣT ′−1 =

[
I 0

−Σ21Σ−1
11 I

] [
Σ11 Σ12

Σ21 Σ22

] [
I −Σ−1

11 Σ12

0 I

]
=

[
Σ11 0
0 Σ22 − Σ21Σ−1

11 Σ12

]
.

In the context of a bivariate normal distribution of ε1t and ε2t, the transfor-
mation will be effective in factorising of the joint distribution N(ε1t, ε2t) =
N(ε1t)N(ε2t|ε1t) into a marginal distribution N(ε1t) and a conditional distri-
bution N(ε2t|ε1t) = N(η12t). By definition, the marginal and the conditional
distributions are statistically independent, in consequence of the orthogonality
of their elements.

14



MULTIVARIATE ARMA PROCESSES

The partitioned form of the equation T−1ε(t) = η(t) is

(71)
[

I 0
−Σ21Σ−1

11 I

] [
ε1(t)
ε2(t)

]
=

[
ε1(t)

ε2(t) − Σ21Σ−1
11 ε1(t)

]
=

[
ε1(t)
η21(t)

]
.

The disturbances within ε1(t) = η11(t) are the auto-innovations of the first
block and the innovations within η21(t) = ε2(t) − Σ21Σ−1

11 ε1(t) are the allo-
innovations. The factorisation has ensured the mutual orthogonality of these
two sets of innovations. A corresponding factorisation is available that will
generate the auto-innovations for the second block together with the orthogonal
allo-innovations,

The partitioned form of the equation Ψ(L)T = Θ(L) is

(72)

[
Ψ11(L) Ψ12(L)
Ψ21(L) Ψ22(L)

] [
I 0

Σ21Σ−1
11 I

]
=

[
Ψ11(L) + Ψ12(L)Σ21Σ−1

11 Ψ12(L)
Ψ21(L) + Ψ22(L)Σ21Σ−1

11 Ψ22(L)

]
=

[
Θ11(L) Θ12(L)
Θ21(L) Θ22(L)

]
.

By gathering these results, it is found that

(73)
y1(t) = Θ11(L)ε1(t) + Θ12(L)η21(t)

= {Ψ11(L) + Ψ12(L)Σ21Σ−1
11 }ε1(t) + Ψ12(L)η21(t),

and, on substituting for η21(t) = ε2(t) − Σ21Σ−1
11 ε1(t), it can be seen that

this is just a reparametrisation of the equation y1(t) = Ψ11ε1(t) + Ψ12ε2(t).
On applying the corresponding analysis to the second block of the partitioned
system of (66), it will be found that

(74) y2(t) = {Ψ22(L) + Ψ21(L)Σ12Σ−1
22 }ε2(t) + Ψ21(L)η12(t),

where η12(t) = ε1(t) − Σ12Σ−1
22 ε2(t).

Since the additive components in the LHS of equations (73) and (74) are
mutually orthogonal, the equations are amenable to a simple analysis of vari-
ance. By these means, it is possible to measure the relative influences of the
auto-innovations and the allo-innovations in both equations.

Example. The foregoing results can used in an attempt to determine whether
it is supply side or the demand side of the economy that drives the business
cycle. The relevant indices are the growth rates of gross domestic production
and aggregate consumption, which are defined as yp(t) = ln{P (t) − P (t − 4)}
and yc(t) = ln{C(t)−C(t−4)}, where P (t) and C(t) are sequences of quarterly
observations on production and consumption, respectively.

A bivariate autoregressive VAR(2) model comprising lagged values of the
growth rates can be represented by the following equations:

αcc(L)yc(t) + αcp(L)yp(t) = εc(t),(75)

αpc(L)yc(t) + αpp(L)yp(t) = εp(t).(76)
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Figure 1. The quarterly series of the logarithms of income (upper) and consumption

(lower) in the U.K., for the years 1955 to 1994, together with their interpolated trends.
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Figure 2. The spectrum of the consumption growth sequence yc(t) (the outer en-

velope) and that of its auto-innovation component {πcc(L)/δ(L)}εc(t) (the inner

envelope).
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Figure 3. The spectrum of the income growth sequence yp(t) (the outer envelope)

and that of its auto-innovation component {πpp(L)/δ(L)}εp(t) (the inner envelope).
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The notion that the sequence yc(t) is driving the sequence yp(t) would
be substantiated if the influence of the innovations sequence εc(t) upon yc(t)
were found to be stronger than the influence of εp(t) upon the corresponding
sequence yp(t).

The matter can be investigated via the moving-average forms of the equa-
tions, which express yp(t) and yc(t) as functions only of the innovations se-
quences εc(t) and εp(t). The moving-average equations, which are obtained by
inverting equations (75) and (76) jointly, are

yc(t) =
αpp(L)
δ(L)

εc(t) −
αcp(L)
δ(L)

εp(t),(77)

yp(t) = −αpc(L)
δ(L)

εc(t) +
αcc(L)
δ(L)

εp(t),(78)

where δ(L) = αcc(L)αpp(L) − αcp(L)αpc(L).
These two equations can be reparametrised so that each is expressed in

terms of a pair of uncorrelated innovations. The reparametrised version of the
consumption equation is

(79) yc(t) =
πcc(L)
δ(L)

εc(t) −
αcp(L)
δ(L)

ηp(t),

where

(80)
πcc(L) = αpp(L) +

σpc

σ2
c

αcp(L),

ηp(t) = εp(t) −
σpc

σ2
c

εc(t).

Here, σ2
c = V {εc(t)} is the variance of the consumption innovations and σ2

pc =
C{εp(t), εc(t)} is the covariance of the income and consumption innovations.
We may describe the sequence εc(t) as the auto-innovations of yc(t) and ηp(t)
as the allo-innovations.

By a similar reparametrisation, the equation (78) in yp(t) becomes

(81) yp(t) =
πpp(L)
δ(L)

εp(t) −
αpc(L)
δ(L)

ηc(t),

where

(82)
πpp(L) = αcc(L) +

σcp

σ2
p

αpc(L),

ηc(t) = εc(t) −
σcp

σ2
p

εp(t),

and where σ2
c = V {εc(t)}.

The relative influences of εc(t) on yc(t), the growth rate of consumption,
and of εp(t) on yp(t), the growth rate of income, can now be assessed by an
analysis of the corresponding spectral density functions.
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The quarterly data, from which the autoregressive parameters are esti-
mated after taking four-period differences, are from the United Kingdom over
the period 1955 to 1994; and Figure 1 shows the logarithms of these data.

Figure 2 shows the spectrum of yc(t) together with that of its auto
-innovation component {πcc(L)/δ(L)}εc(t), which is the lower envelope. Fig-
ure 3 shows the spectrum of yp(t) together with that of its auto-innovation
component {πpp(L)/δ(L)}εp(t).

From a comparison of the figures, it is clear that the innovation sequence
εc(t) accounts for a much larger proportion of yc(t) than εp(t) does of yp(t).
Thus, the consumption growth series appears to be driven largely by its auto
-innovations. These innovations also enter the income growth series to the
extent that the latter is not accounted for by its auto-innovations. Figure 3
shows that this is a considerable extent.

The Rational Model and the ARMAX Model

An ARMAX model is represented by the equation

(83) α(L)y(t) = β(L)x(t) + µ(L)ε(t),

where y(t) and x(t) are observable sequences and ε(t) is a white-noise distur-
bance sequence, which is statistically independent of x(t). For the model to
be viable, the roots of the polynomial equations α(z) = 0 and µ(z) = 0 must
lie outside the unit circle. This is to ensure that the coefficients of the series
expansions of α−1(z) and µ−1(z) form convergent sequences. The rational form
of equation (83) is

(84) y(t) =
β(L)
α(L)

x(t) +
µ(L)
α(L)

ε(t).

The Rational Transfer-Function Model or RTM is represented by

(85) y(t) =
δ(L)
γ(L)

x(t) +
θ(L)
φ(L)

ε(t),

or, alternatively, by

(86) γ(L)φ(L)y(t) = φ(L)δ(L)x(t) + γ(L)θ(L)ε(t).

The leading coefficients of γ(L), φ(L) and θ(L) are set to unity. The roots of
the equations γ(z) = 0, φ(z) = 0 and θ(z) = 0 must lie outside the unit circle.

Notice that equation (86) can be construed as a case of (83) in which the
factors of α(L) = γ(L)φ(L) are shared between β(L) = φ(L)δ(L) and µ(L) =
γ(L)θ(L). Likewise, equation (84) can be construed as a case of equation (85) in
which the two transfer functions have the same denominator α(L). There may
be scope for cancellation between the numerators and denominators of these
transfer functions; after which they might have nothing in common. However,
if none of the factors of α(L) are to be found in either β(L) or µ(L), then
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α(L) is present in its entirety in the denominators of both the systematic and
disturbance parts of the rational form of the model. In that case, the two parts
of the model have dynamic properties which are essentially the same.

An advantage of the ARMAX model when µ(L) = 1 is that it may be
estimated simply by ordinary least-squares regression. The advantage disap-
pears when µ(L) �= 1. Its disadvantage lies in the fact that the two transfer
functions of the rational form of the model are constrained to have the same
denominators.

Unless the relationship which is being modelled does have similar dynamic
properties in its systematic and disturbance parts, then the restriction is liable
to induce severe biases in the estimates. See, for example, Pollock and Pitta,
(1996). This is a serious problem if the estimated relationship is to be used as
part of a control mechanism. If the only concern is to forecast the values of
y(t), then there is less harm in such biases.

The advantages of a rational transfer-function model with distinct param-
eters in both transfer functions is an added flexibility in modelling complex
dynamic relationships as well as a degree of robustness that allows the system-
atic part of the model to be estimated consistently even when the stochastic
part is misspecified. A disadvantage of the rational model may be the complex-
ity of the processes of identification and estimation. In certain circumstances,
the pre-whitening technique may help in overcoming such difficulties.

Fitting the Rational Model by Pre-whitening

Consider, once more, the rational transfer-function model of (85). This
can be written as

(87) y(t) = ω(L)x(t) + η(t)

where ω(z) = {ω0 +ω1z + · · ·} stands for the expansion of the rational function
δ(z)/γ(z) and where η(t) = {θ(L)/φ(L)}ε(t) is a disturbance generated by an
ARMA process.

If the input signal x(t) = ξ(t) happens to be white noise, which it might be
by some contrivance, then the estimation of the coefficients of ω(z) is straight-
forward. For, given that the signal ξ(t) and the noise η(t) are uncorrelated, it
follows that

(88) ωτ =
C(yt, ξt−τ )

V (ξτ )
.

The principal of estimation known as the method of moments suggest that, in
order to estimate ωτ consistently, we need only replace the theoretical moments
C(yt, ξt−τ ) and and V (ξt) within this expression by their empirical counter-
parts.

Imagine that, instead of being a white-noise sequence, x(t) is a stochastic
sequence that can be represented by an ARMA process, which is stationary
and invertible:

(89) ρ(L)x(t) = µ(L)ξ(t).
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Then, x(t) can be reduced to the white-noise sequence ξ(t) by the application of
the filter π(L) = ρ(L)/µ(L). The application of the same filter to y(t) and η(t)
will generate the sequences q(t) = π(L)y(t) and ζ(t) = π(L)y(t) respectively.
Hence, if the model of equation (86) can be transformed into

(90) q(t) = ω(L)ξ(t) + ζ(t),

then the parameters of ω(L) will, once more, become accessible in the form of

(91) ωτ =
C(qt, ξt−τ )

V (ξτ )
.

Given the coefficients of ω(z), it is straightforward to recover the parameters
of δ(z) and γ(z), when the degrees of these polynomials are known.

In practice, the filter π(L), which would serve to reduce x(t) to white
noise, requires to be identified and estimated via the processes of ARMA model
building, which we have described already. The estimated filter may then be
applied to the sequences of observations on x(t) and y(t) in order to construct
the empirical counterparts of the white-noise sequence ξ(t) and the filtered
sequence q(t). From the empirical moments of the latter, the estimates of the
coefficients of ω(z) may be obtained.

These estimates of ω(z), which are obtained via the technique of pre-
whitening, are liable to be statistically inefficient. The reasons for their in-
efficiency lie partly in the use of an estimated whitening filter—in place of a
known one—and partly in the fact that no attention is paid, in forming the es-
timates, of the nature of the disturbance processes η(t) and ζ(t). However, the
“pre-whitening” estimates of ω(z), together with the corresponding estimates
of δ(z) and γ(z), may serve as useful starting values for an iterative procedure
aimed at finding the efficient maximum-likelihood estimates.
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