
CHAPTER 7

Recursive Estimation
and the Kalman Filter

The concept of least-squares regression originates with two people. It is
nowadays accepted that Legendre (1752–1833) was responsible for the first pub-
lished account of the theory in 1805; and it was he who coined the term Moindes
Carrés or least squares [6]. However, it was Gauss (1777–1855) who developed
the method as a statistical tool by embedding it in a context which involved a
probabilistic treatment of errors of observation. Confusion over the rival claims
of priority arises from the fact that, although his first published exposition of
the method appeared in 1809 in Theoria Motus Corporum Celestium [2], when
he was 31 years of age, Gauss claimed that he had formulated his ideas many
years earlier when he was in his early twenties. These matters are dealt with in
Stigler’s book on the History of Statistics [8].

The first exposition of the method of least squares by Gauss, which is to be
found in Theoria Motus, is in connection with the estimation of the six coefficients
which determine the elliptical orbit of a planetary body when the available obser-
vations exceed the number of parameters. His second exposition was presented in
a series of papers from 1821, 1823 and 1826 which were collected together under
the title Theoria Combinationis Observationum Erroribus Minimis Obnoxiae [3].
It was in these papers that Gauss presented the famous theorem that amongst all
linear unbiased estimators, the least-squares estimator has minimum mean-square
error. This is know nowadays as the Gauss–Markov theorem.

The relevance of Gauss’s second exposition to the theory of recursive least-
squares estimation and to the concept of the Kalman filter lies in a brief passage
where Gauss shows that it is possible to find the changes which the most likely
values of the unknowns undergo when a new equation is adjoined, and to deter-
mine the weights of these new determinations. This passage refers to the business
of augmenting the normal equations when a new observation becomes available.
In effect, Gauss developed the algorithm of recursive least-squares estimation.

Gauss’s algorithm for recursive least-squares estimation was ignored for al-
most a century and a half before it was rediscovered on two separate occasions.
The first rediscovery was by Plackett [7] in 1950, which was before the advent of
efficient on-line electronic computing; and this also passed almost unnoticed. It
was the second rediscovery of the recursive algorithms in 1960 in the context of
control theory which was the cue to a rapid growth of interest. Stemming from
the papers of Kalman [4] and Kalman and Bucy [5] a vast literature on Kalman
filtering has since accumulated.

Plackett’s exposition of the recursive least-squares algorithm is within an
algebraic framework which invokes only the statistical concepts of the classical
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linear regression model. Kalman’s derivation was within the wider context of
a state-space model with time-varying parameters. Although the core of the
Kalman filter is still the Gauss–Plackett algorithm of recursive least-squares es-
timation, the widening of the context adds significantly to the extent and to the
complexity of the algebra.

It seems certain that Kalman was unaware of the contributions of Gauss and
Plackett; and his techniques of deriving the algorithm were quite different from
theirs. He based his derivation upon the use of orthogonal projectors in deriving
the minimum-mean-square-error predictors. His derivation invokes the concept
of an infinite-dimensional Hilbert space.

Since Kalman’s seminal paper, several other derivations have been offered,
and a welter of alternative notation has arisen. Most of the alternative derivations
attempt to avoid the concepts of Hilbert space and to reduce the terminology of
the derivation to something closer to that of the ordinary theory of least-squares
regression. Other derivations have been from a maximum-likelihood or a Bayesian
standpoint. The derivation which has attracted the attention of econometricians
is that of Duncan and Horn [1]. This exploits the concept of mixed estimation
which originates with Theil and Goldberger [9] and which was extended by Theil
[10]. An account of the method is to be found in the textbook of Theil [11,
347–352].

The method of mixed estimation is often derided by Bayesian theorists who
describe it as back-door Bayesianism. In their view, it represents an attempt to
use Bayesian methods without espousing the relevant Bayesian concepts, To be
fair, it must be said that Theil has provided, in his textbook, an account of the
Bayesian interpretation of the mixed estimation technique [11, 670–672]; and this
provides an excellent way of understanding the paradigm shift which is involved
in passing from classical concepts to Bayesian concepts.

The derivation of the Kalman filter by Duncan and Horn [1], although based
in familiar territory, is, to my mind, utterly confusing. Its only virtue is that
the notation seems familiar. The state vector, whose estimation is the object of
the exercise, is compared with the vector of regression parameters in a classical
linear model. However, it is nowhere clear whether this vector is to be regarded as
constant or as random. This makes the crucial concept of the dispersion matrix
associated with the vector particularly confusing.

It seems that, in order to clarify the statistical issues which are entailed
by the Kalman filter, one must adhere rigorously either to classical concepts or
to Bayesian concepts. To mix the two is a recipe for confusion unless one has a
facility for passing from one to the other with ease. The derivation of the Kalman
filter is not a good context in which to acquire such a facility.

The essential truth about the Kalman filter is that it is enormously complex.
Its derivation, by whatever method, is bound to be lengthy and its equations are
difficult to memorise. It is precisely this complexity which gives the Kalman
filter its enormous power. It represents an omnium gatherum for a wide range of
problems in statistical inference.

A comparison with the difficulties of the theory of quantum mechanics might
be in order. Quantum theory has been effective is solving a wide range of prob-
lems in physics, chemistry and electronics. Nevertheless, the philosophical foun-
dations of the theory have been a matter of debate ever since its emergence in
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the 1930’s. Most practitioners of the quantum mechanics would agreed that, if
one keeps ones eyes to the ground and watches each step, then one can proceed
without undue difficulty. It is when one begins to contemplate the larger issues
of meaning and of methodology that one runs the danger of falling into a vicious
confusion.

Conditional Expectations and Classical Regression Theory

In deriving the algorithm of recursive least-squares estimation and in gener-
alising it to obtain the Kalman filter, we shall rely upon the calculus of conditional
expectations. Our approach is one which might be described as covert Bayesian-
ism as distinct from back-door Bayesianism. That is to say, the derivation will
be compatible with the principles of Bayesian inference, albeit that few of the
Bayesian concepts will be invoked.

The calculus of conditional expectations can be derived within the context
of a simple regression model which is classical in the sense that a regression
relationship is postulated in which the unknown parameters are regarded as fixed
quantities. We shall uncover some essential relationships within the underlying
theoretical regression relationship; and, in order to obtain empirical estimators,
we shall invoke the method of moments.

The method of moments is the principle of estimation which declares that,
in order to derive consistent estimators of population parameters, we need only
replace the theoretical moments within the set of relationships which determine
these parameters by the corresponding sample moments.

Let x and y be random vectors whose joint distribution is characterised
by well-defined first and second-order moments. In particular, let us define the
following second-order moments of x and y

(1)

D(x) = E(xx′)− E(x)E(x′),

D(y) = E(yy′)− E(y)E(y′),

C(y, x) = E(yx′)− E(y)E(x′).

Also, let us postulate that the conditional expectation of y given x is a simple
linear function of x:

(2) E(y|x) = α+B′x.

Then the object is to find expressions for the vector α and the matrix B which
are in terms of the moments listed under (1).

We begin by multiplying E(y|x) by the marginal density function of x and
by integrating with respect to x. This converts the conditional expectation into
an unconditional expectation. The general result may be expressed by writing

(3) E
{
E(y|x)

}
= E(y).

On applying the latter to equation (2), we find that

(4) E(y) = α+B′E(x), or α = E(y)−B′E(x).
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Next, by multiplying E(y|x) by x′ and by the marginal marginal density
function of x, and by integrating with respect to x, we obtain the joint moment
E(xy′). Thus, from equation (2), we get

(5) E(yx′) = αE(x) +B′E(xx′).

But, postmultiplying the first equation under (4) by E(x′) gives

(6) E(y)E(x′) = αE(x′) +B′E(x)E(x′),

and, when this is subtracted from (5), the result, in view of the definitions under
(1), is

(7)

C(y, x) = E(yx′)− E(y)E(x′)

= B′
{
E(xx′)− E(x)E(x′)

}
= B′D(x).

The result from (7) is that

(8) B′ = C(y, x)D−1(x).

This expression for B and the expression for α under (4) can be substituted into
equation (2) to give

(9)

E(y|x) = α+Bx

= E(y)−B′E(x) +B′x

= E(y) + C(y, x)D−1(x)
{
x− E(x)

}
.

In the usual presentation of the theory of the classical regression model, the
observations on x and y for t = 1, . . . , T are accumulated in the matrices X and Y
as successions of row vectors, each arrayed below its predecessor. If the matrices
X and Y contain the mean-adjusted observations, then the products T−1X ′X
and T−1X ′Y become the empirical counterparts of the moment matrices D(x)
and C(x, y) respectively. The estimator of B derived from the principle of the
method of moments is B̂ = (X ′X)−1X ′Y .

Several additional results in the algebra of conditional expectations which we
shall invoke in the next section can also be derived with ease. To avoid burdening
this account with unnecessary developments, let us simply declare in summary
that, if x, y are jointly distributed variables which bear the linear relationship
E(y|x) = α+B′x, then

E(y|x) = E(y) + C(y, x)D−1(x)
{
x− E(x)

}
,(10)

D(y|x) = D(y)− C(y, x)D−1(x)C(x, y),(11)

E
{
E(y|x)

}
= E(y),(12)

D
{
E(y|x)

}
= C(y, x)D−1(x)C(x, y),(13)

D(y) = D(y|x) +D
{
E(y|x)

}
,(14)

C
{
y − E(y|x), x

}
= 0.(15)
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Recursive Least-Squares Estimation

We may use the results in the algebra of conditional expectations presented
above to derive the algorithm for the recursive least-squares estimation of the pa-
rameters of a classical linear regression model. The tth instance of the regression
relationship is represented by

(16) yt = x′tβ + εt.

Here yt is a scalar element instead of the vector which appears in equation (2).
Notice also that the expression for the mean value has undergone a transposition
so that we have x′tβ instead of β′xt. Since the mean value is also a scalar, nothing
is affected. It is assumed that the disturbances εt are serially independent with

(17) E(εt) = 0 and V (εt) = σ2 for all t.

In order to initiate the recursion, there must be an initial estimate b0 of β
together with a corresponding dispersion matrix. In the usual context of classi-
cal regression theory, we should regard this dispersion matrix as the variance–
covariance matrix of the estimator. Instead, we are inclined to attribute a dis-
tribution to β and to regard b0 = E(β) and P0 = D(β) as its mean and its
dispersion matrix. This distribution is, in effect, a Bayesian prior.

The empirical information available at time t is the set of observations
It = {y1, . . . , yt}. In an alternative notation, we would use I0 = {β0, P0} to
denote the prior information which would be included together with the empiri-
cal information in all information sets It with t > 0.

Our object is to derive the estimates bt = E(β|It) and Pt = D(β|It) from
the information available at time t in a manner which makes best use of the
previous estimates bt−1 = E(β|It−1) and Pt−1 = D(β|It−1). The first task is to
evaluate the expression

(18) E(β|It) = E(β|It−1) + C(β, yt|It−1)D−1(yt|It−1)
{
yt − E(yt|It−1)

}
,

which is derived directly from (10). There are three elements on the RHS which
require further development. The first is the term

(19)
yt − E(yt|It−1) = yt − x′tbt−1

= ht.

This is the error from predicting yt from the information available at time t− 1.
Next is the dispersion matrix of associated with this prediction. This is

(20)
D(yt|It−1) = D

{
x′t(β − bt|t−1)

}
+D(εt)

= x′tPt−1xt + σ2 = D(ht).

Finally there is the covariance

(21)

C(β, yt|It−1) = E
{

(β − bt−1)y′t
}

= E
{

(β − bt−1)(x′tβ + εt)′
}

= Pt−1xt.
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On putting these elements together, we get

(22) bt = bt−1 + Pt−1xt(x′tPt−1xt + σ2)−1(yt − x′tbt−1).

There must also be a means of deriving the dispersion matrix D(β|It) = Pt
from its predecessor D(β|It−1) = Pt−1. Equation (11) indicates that

(23) D(β|It) = D(β|It−1)− C(β, yt|It−1)D−1(yt|It−1)C(yt, β|It−1).

It follows from (20) and (21) that this is

(24) Pt = Pt−1 − Pt−1xt(x′tPt−1xt + σ2)−1x′tPt−1.

It is useful, for future reference, to anatomise the components of the recursive
least-squares algorithm. A summary of the equations, which entails some further
definitions, is as follows:

ht = yt − x′tbt−1, Prediction Error(25)

ft = x′tPt−1xt + σ2, Error Dispersion(26)

κt = Pt−1xtf
−1
t , Filter Gain(27)

bt = bt−1 + κtht, Parameter Estimate(28)

Pt = (I − κtxt)Pt−1. Estimate Dispersion(29)

Alternative expressions are available for Pt and κt:

Pt = (P−1
t−1 + σ−2xtx

′
t)
−1,(30)

κt = σ−2Ptxt.(31)

The expression on the RHS of (30) is confirmed by using the well-known matrix
inversion formula

(32) (B + CDC ′)−1 = B−1 −B−1C(C ′B−1C +D−1)−1C ′B−1

to recover the original expression for Pt given under (29). To verify the identity
Pt−1xtf

−1
t = Ptxtσ

−2 which equates (27) and (31), we write it as P−1
t Pt−1xt =

xtσ
−2ft. The latter is readily confirmed using the expression for Pt from (30)

and the expression for ft from (26).
Equation (30) indicates that

(33) σ2P−1
t = σ2P−1

0 +
t∑
i=1

xix
′
i.

Apart from the matrix σ2P−1
0 , which becomes relatively insignificant for large

values of t, this is just the familiar moment matrix of ordinary least-squares
regression.
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When equations (30) and (31) are used in (28), we get the following expres-
sion for recursive least-squares estimate:

(34) bt = bt−1 + σ−2(P−1
t−1 + σ−2xtx

′
t)
−1xt(yt − x′tbt−1).

The equation serves to show that σ2, which is a factor of Pt, can be cancelled
from the formula for bt.

The formula of (34) certainly appears to be simpler than that of (22). How-
ever, in comparison to the latter, it is computationally inefficient. The formula
of (22) entails finding the inverse of the scalar element ft = xtPt−1x

′
t + σ2 which

represents the dispersion of the prediction error. The formula under (33) involves
the inversion of the entire matrix Pt. To use this formula in place of that of (22)
would be to loose all the computational advantages of the recursive least-squares
algorithm.

Extensions of the Recursive Least-Squares Algorithm

The algorithm which we have presented in the previous section represents
little more than an alternative means of computing the ordinary least-squares
regression estimates. If the parameters of the underlying process which generates
the data are stable, then we can expect the estimate bt to converge also to a stable
value as the number of observations t increases At the same time, the elements
of the dispersion matrix Pt will decrease in value.

A further consequence of the growth of the number of observations is that
the filter gain κt will diminish at t increases. This implies that the impact of
successive prediction errors upon the estimate of β will diminish as the amount
of information already incorporated in the estimate increases.

If there is doubt about the constancy of the regression parameter, then it
may be desirable to give greater weight to the more recent data; and it might
even be appropriate to discard data which has reached a certain age and has
passed its date of expiry.

One way of accommodating parametric variability is to base the estimate on
only the most recent portion of the data. As each new observation is acquired
another observation may be removed so that, at any instant, the estimator com-
prises only n points. Such an estimator has been described as a rolling regression.
Implementations are available in the recent versions of the more popular econo-
metric computer packages such as Microfit 3.0 and PCGive.

It is a simple matter to extend the algorithm of the previous section to
produce a rolling regression. The additional task is to remove the data which
was acquired at time t−n. The first step is to adjust the moment matrix to give
σ2P ∗−1

t = σ2P−1
t−1 − xt−nx′t−n. The matrix inversion formula of (32) indicates

that

(35)
P ∗t = (P−1

t−1 − σ−2xt−nx
′
t−n)−1

= Pt−1 − Pt−1xt−n(x′t−nPt−1xt−n − σ2)−1x′t−nPt−1,

Next, an intermediate estimate b∗t , which is based upon the reduced information,
is obtained from bt−1 via the formula

(36)
b∗t = bt−1 − σ−2P ∗−1

t xt−n(yt−n − x′t−nbt−1)

= bt−1 − Pt−1xt−n(x′t−nPt−1xt−n − σ2)−1(yt−n − x′t−nbt−1).
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This formula can be understood by considering the inverse problem of obtaining
bt−1 from b∗t by the addition of the information from time t−n. A rearrangement
of the resulting expression for bt−1 gives the initial expression for b∗t under (36).
Finally, the estimate bt, which is based on the n data points xt, . . . , xt−n+1, is
obtained from the formula under (22) by replacing bt−1 with b∗t and Pt−1 with
P ∗t .

Discarding observations which have passed a date of expiry is an appropriate
procedure when the processes generating the data are liable, from time to time,
to undergo sudden structural changes. For it ensures that any misinformation
which is conveyed by the data which predate the structural change will not be
kept on record permanently. However, if the processes are expected to change
gradually in a more or less systematic fashion, then a gradual discounting of old
data may be more appropriate. An exponential weighting scheme applied to the
data might serve this purpose.

Let the rate at which the data is discounted be given by a parameter λ ∈
(0, 1]. Then, in place of the expression for Pt under (30), we should have

(37)
Pt = (λP−1

t−1 + σ−2xtx
′
t)
−1

=
1
λ

{
Pt−1 − Pt−1xt(x′tPt−1xt + λσ2)−1xtPt−1

}
.

The formula for the parameter estimate would be

(38) bt = bt−1 + Pt−1xt(x′tPt−1xt + λσ2)−1(y − x′tbt−1).

It is curious that econometric packages mentioned above have implemented rolling
regression but not exponentially-weighted regression.

A wide variety of techniques for shaping the memory of the recursive least-
square algorithm may be devised. However, it is clear that such formulations are
essentially pragmatic, and one might wish for a theoretical basis from which to
develop the algorithms. The basis is provided by the fully-fledged Kalman filter.

The elaboration of the recursive least-square model which is required in
order to achieve the generality of the Kalman filter is the addition of a process
which describes the variation of the parameter vector β. Such a process might
be described by the equation

(39) βt = Φβt−1 + νt,

which represents a Markov scheme. We shall consider such an elaboration in the
next section. However, we shall begin by adopting a new notation. The reason
is that the Kalman filter is a system which accommodates a very wide range of
models; and one should avoid making references automatically to the regression
model.

Equations of the Kalman Filter

We shall present the basic equations of the Kalman filter in the briefest
possible manner. The state-space model, which underlies the Kalman filter,
consists of two equations

yt = Htξt + ηt, Observation Equation(40)

ξt = Φtξt−1 + νt, Transition Equation(41)
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where yt is the observation on the system and ξt is the state vector. The obser-
vation error ηt and the state disturbance νt are mutually uncorrelated random
vectors of zero mean with dispersion matrices

(42) D(ηt) = Ωt and D(νt) = Ψt.

The observation equation is analogous to the regression equation of (16),
whereas the transition equation is simply (39) in new notation.

It is assumed that the matrices Ht, Φt, Ωt and Ψt are known for all t =
1, . . . , n and that an initial estimate x0 is available for the state vector ξ0 at time
t = 0 together with a dispersion matrix D(ξ0) = P0. The empirical information
available at time t is the set of observations It = {y1, . . . , yt}.

The Kalman-filter equations determine the state-vector estimates xt|t−1 =
E(ξt|It−1) and xt = E(ξt|It) and their associated dispersion matrices Pt|t−1 and
Pt. From xt|t−1, the prediction ŷt|t−1 = Htxt|t−1 is formed which has a dispersion
matrix Ft. A summary of these equations is as follows:

xt|t−1 = Φtxt−1, State Prediction(43)
Pt|t−1 = ΦtPt−1Φ′t + Ψt, Prediction Dispersion(44)

et = yt −Htxt|t−1, Prediction Error(45)

Ft = HtPt|t−1H
′
t + Ωt, Error Dispersion(46)

Kt = Pt|t−1H
′
tF
−1
t , Kalman Gain(47)

xt = xt|t−1 +Ktet, State Estimate(48)

Pt = (I −KtHt)Pt|t−1. Estimate Dispersion(49)

In comparison with the equations of the recursive regression algorithm listed
under (25)–(22), there are two additions: equation (43) for the state prediction
and equation (44) for its dispersion. These owe their existence to the presence of
the transition equation (41); and they vanish when Φ = I and νt = 0.

Alternative expressions are available for Pt and Kt on the assumption that
Ωt is nonsingular:

Pt = (P−1
t|t−1 +H ′tΩ

−1
t Ht)−1,(50)

Kt = PtH
′
tΩ
−1
t .(51)

By applying the matrix inversion lemma to the expression on the RHS of (50),
we obtain the original expression for Pt given under (49). To verify the identity
Pt|t−1H

′
tF
−1
t = PtH

′
tΩ
−1
t which equates (47) and (51), we write it as P−1

t Pt|t−1H
′
t =

H ′tΩ
−1
t Ft. The latter is readily confirmed using the expression for Pt from (50)

and the expression for Ft from (46).
The equations of the Kalman filter may be derived using the results from

the algebra of conditional expectations which are listed under (10)–(15).
Of the equations listed under (43)—(49), those under (45) and (47) are

merely definitions.
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To demonstrate equation (43), we use (12) to show that

(52)

E(ξt|It−1) = E
{
E(ξt|ξt−1)|It−1

}
= E

{
Φtξt−1|It−1

}
= Φtxt−1.

We use (14) to demonstrate equation (44):

(53)

D(ξt|It−1) = D(ξt|ξt−1) +D
{
E(ξt|ξt−1)|It−1

}
= Ψt +D

{
Φtξt−1|It−1

}
= Ψt + ΦtPt−1Φ′t.

To obtain equation (46), we substitute (40) into (45) to give et = Ht(ξt −
xt|t−1) + ηt. Then, in view of the statistical independence of the terms on the
RHS, we have

(54)
D(et) = D

{
Ht(ξt − xt|t−1)

}
+D(ηt)

= HtPt|t−1H
′
t + Ωt = D(yt|It−1).

To demonstrate the updating equation (48), we begin by noting that

(55)

C(ξt, yt|It−1) = E
{

(ξt − xt|t−1)y′t
}

= E
{

(ξt − xt|t−1)(Htξt + ηt)′
}

= Pt|t−1H
′
t.

It follows from (10) that

(56)
E(ξt|It) = E(ξt|It−1) + C(ξt, yt|It−1)D−1(yt|It−1)

{
yt − E(yt|It−1)

}
= xt|t−1 + Pt|t−1H

′
tF
−1
t et.

The dispersion matrix under (49) for the updated estimate is obtained via
equation (11):

(57)
D(ξt|It) = D(ξt|It−1)− C(ξt, yt|It−1)D−1(yt|It−1)C(yt, ξt|It−1)

= Pt|t−1 − Pt|t−1H
′
tF
−1
t HtPt|t−1.
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