
6 : CHAPTER

The Classical Linear
Regression Model

In this lecture, we shall present the basic theory of the classical statistical
method of regression analysis.

The Linear Regression Model

A regression equation of the form

(1)
yt = xt1β1 + xt2β2 + · · ·+ xtkβk + εt

= xt.β + εt

explains the value of a dependent variable yt in terms of a set of k observable
variables in xt. = [xt1, xt2, . . . , xtk] and an unobservable random variable εt.
The vector β = [β1, β2, . . . , βk]′ contains the parameters of a linear combina-
tion of the variables in xt. A set of T successive realisations of the regression
relationship, indexed by t = 1, 2, . . . , T , can be compiled into a system

(2) y = Xβ + ε,

wherein y = [y1, y2, . . . , yT ]′ and ε = [ε1, ε2, . . . , εT ]′ are vectors of order T and
X = [xtk] is a matrix of order T×k. We shall assume that X is a non-stochastic
matrix with Rank(X) = k which requires that T ≥ k.

According to the classical assumptions, the elements of the disturbance
vector ε are distributed independently and identically with expected values of
zero and a common variance of σ2. Thus,

(3) E(ε) = 0 and D(ε) = E(εε′) = σ2IT .

The matrix D(ε), which is described as the variance–covariance matrix or the
dispersion matrix of ε, contains the common variance σ2 = E[{εt−E(εt)}2] in
each of its diagonal locations. Its other locations contain zero-valued elements,
each of which corresponds to the covariance E[{εt − E(εt)}{εs − E(εs)}′] of
two distinct elements of ε.
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The value of β may estimated according to the principle of ordinary least-
squares regression by minimising the quadratic function

(4) S = ε′ε = (y −Xβ)′(y −Xβ).

The problem can be envisaged as one of finding a value for µ = Xβ residing,
at a minimum distance from the vector y, in the subspace or the manifold
spanned by the columns of X. This interpretation comes from recognising that
the function S = (y − Xβ)′(y − Xβ) represents the square of the Euclidean
distance between the two vectors.

The minimising value of β is found by differentiating the function S(β)
with respect to β and setting the result to zero. This gives the condition

(5)
∂S

∂β
= 2β′X ′X − 2y′X = 0.

By rearranging the condition, the so-called normal equations are obtained

(6) X ′Xβ = X ′y,

whose solution is the ordinary least-squares estimate of the regression param-
eters:

(7) β̂ = (X ′X)−1X ′y.

The estimate of the systematic component of the regression equations is

(8)
Xβ̂ = X(X ′X)−1X ′y

= Py.

Here P = X(X ′X)−1X ′, which is called the orthogonal or perpendicular projec-
tor on the manifold of X, is a symmetric idempotent matrix with the properties
that P = P ′ = P 2.

The Decomposition of the Sum of Squares

Ordinary least-squares regression entails the decomposition the vector y
into two mutually orthogonal components. These are the vector Py = Xβ̂,
which estimates the systematic component of the regression equation, and the
residual vector e =y−Xβ̂, which estimates the disturbance vector ε. The con-
dition that e should be orthogonal to the manifold of X in which the systematic
component resides, such that X ′e = X ′(y−Xβ̂) = 0, is precisely the condition
which is expressed by the normal equations (6).
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Figure 1. The vector Py = Xβ̂ is formed by the orthogonal projection of

the vector y onto the subspace spanned by the columns of the matrix X .

Corresponding to the decomposition of y, there is a decomposition of the
sum of squares y′y. To express the latter, let us write Xβ̂ = Py and e =
y −Xβ̂ = (I − P )y. Then, in consequence of the condition P = P ′ = P 2 and
the equivalent condition P ′(I − P ) = 0, it follows that

(9)

y′y =
{
Py + (I − P )y

}′{
Py + (I − P )y

}
= y′Py + y′(I − P )y

= β̂′X ′Xβ̂ + e′e.

This is simply an instance of Pythagoras theorem; and the identity is expressed
by saying that the total sum of squares y′y is equal to the regression sum of
squares β̂′X ′Xβ̂ plus the residual or error sum of squares e′e. A geomet-
ric interpretation of the orthogonal decomposition of y and of the resulting
Pythagorean relationship is given in Figure 1.

It is clear from intuition that, by projecting y perpendicularly onto the
manifold of X, the distance between y and Py = Xβ̂ is minimised. In order to
establish this point formally, imagine that γ = Pg is an arbitrary vector in the
manifold of X. Then the Euclidean distance from y to γ cannot be less than
the distance from y to Xβ̂. The square of the former distance is

(10)
(y − γ)′(y − γ) =

{
(y −Xβ̂) + (Xβ̂ − γ)

}′{(y −Xβ̂) + (Xβ̂ − γ)
}

=
{

(I − P )y + P (y − g)
}′{(I − P )y + P (y − g)

}
.
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The properties of the projector P which have been used in simplifying equation
(9), indicate that

(11)
(y − γ)′(y − γ) = y′(I − P )y + (y − g)′P (y − g)

= e′e+ (Xβ̂ − γ)′(Xβ̂ − γ).

Since the squared distance (Xβ̂ − γ)′(Xβ̂ − γ) is nonnegative, it follows that
(y − γ)′(y − γ) ≥ e′e, where e = y −Xβ̂; and this proves the assertion.

A summary measure of the extent to which the ordinary least-squares
regression accounts for the observed vector y is provided by the coefficient of
determination. This is defined by

(12)
R2 =

β̂′X ′Xβ̂

y′y

=
y′Py

y′y
.

The measure is just the square of the cosine of the angle between the vectors
y and Py = Xβ̂; and the inequality 0 ≤ R2 ≤ 1 follows from the fact that the
cosine of any angle must lie between −1 and +1.

Some Statistical Properties of the Estimator

The expectation or mean vector of β̂, and its dispersion matrix as well,
may be found from the expression

(13)
β̂ = (X ′X)−1X ′(Xβ + ε)

= β + (X ′X)−1X ′ε.

On the assumption that the elements of X are nonstochastic, the expectation
is given by

(14)
E(β̂) = β + (X ′X)−1X ′E(ε)

= β.

Thus, β̂ is an unbiased estimator. The deviation of β̂ from its expected value
is β̂ − E(β̂) = (X ′X)−1X ′ε. Therefore the dispersion matrix, which contains
the variances and covariances of the elements of β̂, is

(15)

D(β̂) = E
[{
β̂ − E(β̂)

}{
β̂ − E(β̂)

}′]
= (X ′X)−1X ′E(εε′)X(X ′X)−1

= σ2(X ′X)−1.
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The Gauss–Markov theorem asserts that β̂ is the unbiased linear estimator
of least dispersion. This dispersion is usually characterised in terms of the
variance of an arbitrary linear combination of the elements of β̂, although it
may also be characterised in terms of the determinant of the dispersion matrix
D(β̂). Thus,

(16) If β̂ is the ordinary least-squares estimator of β in the classical
linear regression model, and if β∗ is any other linear unbiased
estimator of β, then V (q′β∗) ≥ V (q′β̂) where q is any constant
vector of the appropriate order.

Proof. Since β∗ = Ay is an unbiased estimator, it follows that E(β∗) =
AE(y) = AXβ = β, which implies that AX = I. Now set A = (X ′X)−1X ′+G.
Then AX = I implies that GX = 0. Given that D(y) = D(ε) = σ2I, it follows
that

(17)

D(β∗) = AD(y)A′

= σ2
{

(X ′X)−1X ′ +G
}{
X(X ′X)−1 +G′

}
= σ2(X ′X)−1 + σ2GG′

= D(β̂) + σ2GG′.

Therefore, for any constant vector q of order k, there is the identity

(18)
V (q′β∗) = q′D(β̂)q + σ2q′GG′q

≥ q′D(β̂)q = V (q′β̂);

and thus the inequality V (q′β∗) ≥ V (q′β̂) is established.

Estimating the Variance of the Disturbance

The principle of least squares does not, of its own, suggest a means of
estimating the disturbance variance σ2 = V (εt). However, it is natural to esti-
mate the moments of a probability distribution by their empirical counterparts.
Given that et = y− xt.β̂ is an estimate of εt, it follows that T−1

∑
t e

2
t may be

used to estimate σ2. However, it transpires that this is biased. An unbiased
estimate is provided by

(19)
σ̂2 =

1
T − k

T∑
t=1

e2
t

=
1

T − k (y −Xβ̂)′(y −Xβ̂).
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The unbiasedness of this estimate may be demonstrated by finding the
expected value of (y − Xβ̂)′(y − Xβ̂) = y′(I − P )y. Given that (I − P )y =
(I − P )(Xβ + ε) = (I − P )ε in consequence of the condition (I − P )X = 0, it
follows that

(20) E
{

(y −Xβ̂)′(y −Xβ̂)
}

= E(ε′ε)− E(ε′Pε).

The value of the first term on the RHS is given by

(21) E(ε′ε) =
T∑
t=1

E(e2
t ) = Tσ2.

The value of the second term on the RHS is given by

(22)

E(ε′Pε) = Trace
{
E(ε′Pε)

}
= E

{
Trace(ε′Pε)

}
= E

{
Trace(εε′P )

}
= Trace

{
E(εε′)P

}
= Trace

{
σ2P

}
= σ2Trace(P )

= σ2k.

The final equality follows from the fact that Trace(P ) = Trace(Ik) = k. Putting
the results of (21) and (22) into (20), gives

(23) E
{

(y −Xβ̂)′(y −Xβ̂)
}

= σ2(T − k);

and, from this, the unbiasedness of the estimator in (19) follows directly.

The Partitioned Regression Model

In testing hypotheses, it is helpful to have explicit expressions for the
subvectors within β̂′ = [β̂′1, β̂

′
2]. To this end, the equations of (2) may be

written as y = X1β1 +X2β2 +ε, where X1 and X2 contain T observations on k1

and k2 variables respectively. The normal equations of (6) may be partitioned
conformably to give

(24)
X ′1X1β1 +X ′1X2β2 = X ′1y and

X ′2X1β1 +X ′2X2β2 = X ′2y.

Premultiplying the first of these by X ′2X1(X ′1X1)−1 and subtracting it from
the second gives

(25)
{
X ′2X2 −X ′2X1(X ′1X1)−1X ′1X2

}
β2 = X ′2y −X ′2X1(X ′1X1)−1X ′1y.

When the projector P1 = X1(X ′1X1)−1X ′1 is defined, the equation may be
written more intelligibly, as X ′2(I − P1)X2β2 = X ′2(I − P1)y. The estimate of
β2 is given by

(26) β̂2 =
{
X ′2(I − P1)X2

}−1
X ′2(I − P1)y.
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An analogous expression is available for β̂1. However, knowing the value of β̂2

enables us to obtain β̂1 alternatively from the expression

(27) β̂1 = (X ′1X1)−1X ′1(y −X2β̂2)

which comes directly from the first equation of (24).

Some Matrix Identities

The estimators of β1 and β2 may also be derived by using the partitioned
form of the matrix (X ′X)−1. This is given by

(28)

[
X ′1X1 X ′1X2

X ′2X1 X ′2X2

]−1

=

[{
X ′1(I − P2)X1

}−1 −
{
X ′1(I − P2)X1

}−1
X ′1X2(X ′2X2)−1

−
{
X ′2(I − P1)X2

}−1
X ′2X1(X ′1X1)−1

{
X ′2(I − P1)X2

}−1

]

The result is easily verified by postmultiplying the matrix on the RHS by the
partitioned form of X ′X to give a partitioned form of the identity matrix.

By forming the projector P = X(X ′X)−1X ′ from X = [X1, X2] and from
the partitioned form of (X ′X)−1, it may be shown that

(29)

P = P1/2 + P2/1, where

P1/2 = X1

{
X ′1(I − P2)X1

}−1
X ′1(I − P2) and

P2/1 = X2

{
X ′2(I − P1)X2

}−1
X ′2(I − P1).

In the notation of the regression model, the identity Py = P1/2y + P2/1y is
expressed as Xβ̂ = X1β̂1 +X2β̂2.

The restriction of the transformation P1/2 to the manifold of X may be
described as the oblique projection onto the manifold of X1 along the manifold
of X2. This means that the manifold of X2 falls within the null space of the
projector. The corresponding conditions P1/2X1 = X1 and P1/2X2 = 0 are
readily confirmed. Thus,

(30)
P1/2P1 = P1,

P1/2P2 = 0.

Likewise, P2/1X2 = X2 and P2/1X1 = 0. These conditions indicate that

(31)

PP1 = (P1/2 + P2/1)P1

= P1

= P1P.
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The final equality follows from the symmetry of P1 and P .
Now consider premultiplying and postmultiplying the partitioned form of

(X ′X)−1 by (I − P1)X = [0, (I − P1)X2] and its transpose respectively. This
gives

(32)
(I − P1)X(X ′X)−1X ′(I − P1) = (I − P1)P (I − P1)

= (I − P1)X2

{
X ′2(I − P1)X2

}−1
X ′2(I − P1).

But the conditions PP1 = P1P = P1 can be used to show that (I − P1)P (I −
P1) = P − P1. Thus, an important identity is derived in the form of

(33) (I − P1)X2

{
X ′2(I − P1)X2

}−1
X ′2(I − P1) = P − P1.

This will be used in the sequel.

The Normal Distribution and the Sampling Distributions

It is often appropriate to assume that the elements of the disturbance vec-
tor ε within the regression equations y = Xβ+ ε are distributed independently
and identically according to a normal law. Under this assumption, the sampling
distributions of the estimates may be derived and various hypotheses relating
to the underlying parameters may be tested.

To denote that x is a normally distributed random variable with a mean
of E(x) = µ and a dispersion matrix of D(x) = Σ, we shall write x ∼ N(µ,Σ).
A vector z ∼ N(0, I) with a mean of zero and a dispersion matrix of D(z) = I
is described as a standard normal vector. Any normal vector x ∼ N(µ,Σ) can
be standardised:

(34) If T is a transformation such that TΣT ′ = I and T ′T = Σ−1, then
T (x− µ) ∼ N(0, I).

Associated with the normal distribution are a variety of so-called sam-
pling distributions which occur frequently in problems of statistical inference.
Amongst these are the chi-square distribution, the F distribution and the t
distribution.

If z ∼ N(0, I) is a standard normal vector of n elements, then the sum
of squares of its elements has a chi-square distribution of n degrees of free-
dom; and this is denoted by z′z ∼ χ2(n). With the help of the standardising
transformation, it can be shown that,

(35) If x ∼ N(µ,Σ) is a vector of order n, then (x− µ)′Σ−1(x− µ) ∼
χ2(n).

The sum of any two independent chi-square variates is itself a chi-square
variate whose degrees of freedom equal the sum of the degrees of freedom of its
constituents. Thus,
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(36) If u ∼ χ2(m) and v ∼ χ2(n) are independent chi-square variates of
m and n degrees of freedom respectively, then (u+v) ∼ χ2(m+n)
is a chi-square variate of m+ n degrees of freedom.

The ratio of two independent chi-square variates divided by their respective
degrees of freedom has a F distribution which is completely characterised by
these degrees of freedom. Thus,

(37) If u ∼ χ2(m) and v ∼ χ2(n) are independent chi-square variates,
then the variate F = (u/m)/(v/n) has an F distribution of m and
n degrees of freedom; and this is denoted by writing F ∼ F (m,n).

The sampling distribution which is most frequently used is the t distribu-
tion. A t variate is a ratio of a standard normal variate and the root of an
independent chi-square variate divided by its degrees of freedom. Thus,

(38) If z ∼ N(0, 1) and v ∼ χ2(n) are independent variates, then t =
z/
√

(v/n) has a t distribution of n degrees of freedom; and this is
denoted by writing t ∼ t(n).

It is clear that t2 ∼ F (1, n).

Hypothesis Concerning the Coefficients

A linear function of a normally distributed vector is itself normally dis-
tributed. Thus, it follows that, if y ∼ N(Xβ, σ2I), then

(39) β̂ ∼ Nk{β, σ2(X ′X)−1}.

Likewise, the marginal distributions of β̂1, β̂2 within β̂′ = [β̂1, β̂2] are given by

β̂1 ∼ Nk1

(
β1, σ

2{X ′1(I − P2)X1}−1
)
,(40)

β̂2 ∼ Nk2

(
β2, σ

2{X ′2(I − P1)X2}−1
)
.(41)

On applying the result under (35) to (39), we find that

(42) σ−2(β̂ − β)′X ′X(β̂ − β) ∼ χ2(k).

Similarly, it follows from (40) and (41) that

σ−2(β̂1 − β1)′X ′1(I − P2)X1(β̂1 − β1) ∼ χ2(k1),(43)

σ−2(β̂2 − β2)′X ′2(I − P1)X2(β̂2 − β2) ∼ χ2(k2).(44)

The distribution of the residual vector e = y − Xβ̂ is degenerate in the
sense that the mapping e = (I − P )ε from the disturbance vector ε to the
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Figure 2. The critical region, at the 10% significance level, of an F (5, 60) statistic.

residual vector e entails a singular transformation. Nevertheless, it is possible
to obtain a factorisation of the transformation in the form of I − P = CC ′,
where C is matrix of order T × (T − k) comprising T − k orthonormal columns
which are orthogonal to the columns of X such that C ′X = 0. Now C ′C =
IT−k; so it follows that, on premultiplying y ∼ NT (Xβ, σ2I) by C ′, we get
C ′y ∼ NT−k(0, σ2I). Hence

(45) σ−2y′CC ′y = σ−2(y −Xβ̂)′(y −Xβ̂) ∼ χ2(T − k).

The vectors Xβ̂ = Py and y−Xβ̂ = (I−P )y have a zero-valued covariance
matrix. If two normally distributed random vectors have a zero covariance
matrix, then they are statistically independent. Therefore it follows that

(46)
σ−2(β̂ − β)′X ′X(β̂ − β) ∼ χ2(k) and

σ−2(y −Xβ̂)′(y −Xβ̂) ∼ χ2(T − k)

are mutually independent chi-square variates. From this, it can be deduced
that

(47)
F =

{
(β̂ − β)′X ′X(β̂ − β)

k

/
(y −Xβ̂)′(y −Xβ̂)

T − k

}

=
1
σ̂2k

(β̂ − β)′X ′X(β̂ − β) ∼ F (k, T − k).

To test an hypothesis specifying that β = β¦, we simply insert this value in the
above statistic and compare the resulting value with the critical values of an F
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distribution of k and T − k degrees of freedom. If a critical value is exceeded,
then the hypothesis is liable to be rejected.

The test is readily intelligible since it is based on a measure of the distance
between the hypothesised value Xβ¦ of the systematic component of the re-
gression and the value Xβ̂ which is suggested by the data. If the two values are
remote from each other, then we may suspect that the hypothesis is at fault.

It is usual to suppose that a subset of the elements of the parameter vector
β are zeros. This represents an instance of a class of hypotheses which specify
values for a subvector β2 within the partitioned model y = X1β1 + Xβ2 + ε
without asserting anything about the values of the remaining elements in the
subvector β1. The appropriate test statistic for testing the hypothesis that
β2 = β2¦ is

(48) F =
1

σ̂2k2
(β̂2 − β2¦)′X ′2(I − P1)X2(β̂2 − β2¦).

This will have an F (k2, T − k) distribution if the hypothesis is true.
A limiting case of the F statistic concerns the test of an hypothesis affecting

a single element βi within the vector β. By specialising the expression under
(48), a statistic may be derived in the form of

(49) F =
(β̂i − βi¦)2

σ̂2wii
,

wherein wii stands for the ith diagonal element of (X ′X)−1. If the hypothesis
is true, then this will be distributed according to the F (1, T −k) law. However,
the usual way of assessing such an hypothesis is to relate the value of the
statistic

(50) t =
β̂i − βi¦√

(σ̂2wii)

to the tables of the t(T − k) distribution. The advantage of the t statistic
is that it shows the direction in which the estimate of βi deviates from the
hypothesised value as well as the size of the deviation.

Cochrane’s Theorem and the Decomposition of a Chi-Square Variate

The standard test of an hypothesis regarding the vector β in the model
N(y;Xβ, σ2I) entails a multi-dimensional version of Pythagoras’ Theorem.
Consider the decomposition of the vector y into the systematic component
and the residual vector. This gives

(51)
y = Xβ̂ + (y −Xβ̂) and

y −Xβ = (Xβ̂ −Xβ) + (y −Xβ̂),

11
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where the second equation comes from subtracting the unknown mean vector
Xβ from both sides of the first. These equations can also be expressed in terms
of the projector P = X(X ′X)−1X ′ which gives Py = Xβ̂ and (I − P )y =
y −Xβ̂ = e. Also, the definition ε = y −Xβ can be used within the second of
the equations. Thus,

(52)
y = Py + (I − P )y and

ε = Pε+ (I − P )ε.

The reason for adopting this notation is that it enables us to envisage more
clearly the Pythagorean relationship between the vectors. Thus, from the fact
that P = P ′ = P 2 and that P ′(I − P ) = 0, it can be established that

(53)
ε′ε = ε′Pε+ ε′(I − P )ε or, equivalently,

ε′ε = (Xβ̂ −Xβ)′(Xβ̂ −Xβ) + (y −Xβ̂)′(y −Xβ̂).

The terms in these expressions represent squared lengths; and the vectors them-
selves form the sides of a right-angled triangle with Pε at the base, (I−P )ε as
the vertical side and ε as the hypotenuse. These relationship are represented
by Figure 1 where γ = Xβ and where ε = y − γ.

The usual test of an hypothesis regarding the elements of the vector β is
based on the foregoing relationships. Imagine that the hypothesis postulates
that the true value of the parameter vector is β¦. To test this proposition, we
compare the value of Xβ¦ with the estimated mean vector Xβ̂. The test is a
matter of assessing the proximity of the two vectors which is measured by the
square of the distance which separates them. This would be given by

(54) ε′Pε = (Xβ̂ −Xβ¦)′(Xβ̂ −Xβ¦)

If the hypothesis is untrue and if Xβ¦ is remote from the true value of Xβ,
then the distance is liable to be excessive.

The distance can only be assessed in comparison with the variance σ2 of
the disturbance term or with an estimate thereof. Usually, one has to make do
with the estimate of σ2 which is provided by

(55)
σ̂2 =

(y −Xβ̂)′(y −Xβ̂)
T − k

=
ε′(I − P )ε
T − k .

The numerator of this estimate is simply the squared length of the vector
e = (I − P )y = (I − P )ε which constitutes the vertical side of the right-angled
triangle.
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Simple arguments, which have been given in the previous section, serve to
demonstrate that

(56)

(a) ε′ε = (y −Xβ)′(y −Xβ) ∼ σ2χ2(T ),

(b) ε′Pε = (β̂ − β)′X ′X(β̂ − β) ∼ σ2χ2(k),

(c) ε′(I − P )ε = (y −Xβ̂)′(y −Xβ̂) ∼ σ2χ2(T − k),

where (b) and (c) represent statistically independent random variables whose
sum is the random variable of (a). These quadratic forms, divided by their
respective degrees of freedom, find their way into the F statistic of (47) which
is

(57) F =

{
ε′Pε

k

/
ε′(I − P )ε
T − k

}
∼ F (k, T − k).

A more elaborate decomposition of the χ2(T ) variate that the one above
is often called for. In such cases, we can invoke Cochrane’s theorem of which
the following is a general statement.

(58) Let η ∼ N(0, In), and let P =
∑
Pi be a sum of k symmetric

matrices with rank(P ) = r and rank(Pi) = ri such that Pi = P 2
i

and PiPj = 0 when i 6= j. Then η′Piη ∼ χ2(ri); i = 1, . . . , k
are independent chi-square variates such that

∑
η′Piη = η′Pη ∼

χ2(r) with r =
∑
ri.

Proof. If the conditions of the theorem are satisfied, then there exists a parti-
tioned n×r matrix of orthonormal vectors C = [C1, . . . , Ck] such that C ′C = I,
C ′iCj = 0 and CiC

′
i = Pi. If η ∼ Nn(0, I), then C ′η ∼ Nr(0, I); and this can

be written as

C ′η =


C ′1η
C ′2η

...
C ′kη

 ∼ Nr



0
0
...
0

 ,

Ir1 0 . . . 0
0 Ir2 . . . 0
...

...
...

0 0 . . . Irk


 ,

wherein C ′iη ∼ Nri(0, I) for i = 1, . . . , k are mutually independent standard
normal variates. Thus, η′CC ′η ∼ χ2(r) is a chi-square variate and also
η′CiC ′iη ∼ χ2(ri) for i = 1, . . . , k constitute a set of mutually independent
chi-square variates. Now observe that η′CC ′η = η′[C1C

′
1 + · · · + CkC

′
k]η =∑

η′CiC ′iη. Thus, using Pi = CiC
′
i and the notation P = CC ′, we have∑

η′Piη = η′Pη ∼ χ2(r). Finally, it is clear from the construction that
r =

∑
ri.

13
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For an immediate application of the theorem, let P = X(X ′X)−1X ′ where
X = [X1, X2] and let P1 = X1(X ′1X1)−1X ′1. Then consider the following
decomposition:

(59) ε = (I − P )ε+ (P − P1)ε+ P1ε.

Here the symmetric idempotent matrices I − P , P − P1 and P1 are mutually
orthogonal. It follow that

(60) ε′ε = ε′(I − P )ε+ ε′(P − P1)ε+ ε′P1ε.

Moreover, if y −Xβ = ε ∼ N(0, σ2I), then, according to Cochrane’s theorem,
we should have

(61)

(a) ε′ε = (y −Xβ)′(y −Xβ) ∼ σ2χ2(T ),

(b) ε′(I − P )ε = (y −Xβ̂)′(y −Xβ̂) ∼ σ2χ2(T − k),

(c) ε′(P − P1)ε = (β̂2 − β2)′X ′2(I − P1)X2(β̂2 − β2) ∼ σ2χ2(k2),

(d) ε′P1ε = (y −Xβ)′P1(y −Xβ) ∼ σ2χ2(k1),

where (b), (c) and (d) represent statistically independent random variables
whose sum is the random variable of (a).

To obtain the result under (c), we may observe that P − P1 = (I − P1)P
and that Pε = Xβ̂ −Xβ. Then it can be seen that

(62)
(P − P1)ε = (I − P1)(Xβ̂ −Xβ)

= (I − P1)(X2β̂2 −X2β2),

where the final equality follows from the fact that (I − P1)X1 = 0. The result
follows in view of the symmetry and idempotency of I − P1.

These quadratic forms under (b) and (c), divided by their respective de-
grees of freedom, find their way into the F statistic of (48) which is

(63) F =

{
ε′(P − P1)ε

k2

/
ε′(I − P )ε
T − k

}
∼ F (k2, T − k).

An Alternative Formulation of the F statistic

An alternative way of forming the F statistic uses the products of two
separate regressions. Consider the identity

(64) ε′(P − P1)ε = ε′(I − P1)ε− ε′(I − P )ε.

14
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The term of the LHS is the quadratic product which appears in the numerator
of the F statistic of (48) and (63). The first term on the RHS can be written
as

(65)
ε′(I − P1)ε = (y −Xβ)′(I − P1)(y −Xβ)

= (y −X2β2)′(I − P1)(y −X2β2).

Under the hypothesis that β2 = β2¦, the term amounts to the residual sum of
squares from the regression of y −X2β2¦ on X1. This is the regression which
comes from substituting the hypothesised value of X2β2 into the first of the
normal equations of the partitioned regression model which are given under
(24). The resulting regression equation is in the form of (27) with β2¦ in place
of β̂2.

The residual sum of squares of (65) may be described as the restricted sum
of squares and denoted by RSS. The second term on the RHS of (64) is just
the ordinary residual sum of squares

(66)
ε′(I − P )ε = (y −Xβ)′(I − P )(y −Xβ)

= y′(I − P )y.

This may be obtained, equally, from the regression of y on X or from the
regression of y − X2β2¦ on X; and it may be described as the unrestricted
residual sum of squares and denoted by USS. From these considerations, it
follows that the statistic for testing the hypothesis that β2 = β2¦ can also be
expressed as

(67) F =

{
RSS − USS

k2

/
USS

T − k

}
.

As a matter of interpretation, it is interesting to note that the numerator
of the F statistic is also the square of the distance between Xβ∗, which is the
estimate of the systematic component from the restricted regression, and Xβ̂,
which is its estimate from the unrestricted regression. The restricted estimate
is

(68)
Xβ∗ = P1(y −X2β2¦) +X2β2¦

= P1y + (I − P1)X2β2¦,

and the unrestricted estimate is

(69)
Xβ̂ = X1β̂1 +X2β̂2

= Py.

15



D.S.G. POLLOCK: ECONOMETRICS

The difference between the two estimates is

(70)

Xβ̂ −Xβ∗ = (P − P1)y − (I − P1)X2β2¦

= (I − P1)(Py −X2β2¦)

= (I − P1)(X2β̂2 −X2β2¦).

Here the final identity comes from the fact that (I − P1)X1β̂1 = 0. It then
follows from the idempotency of (I−P1) that the square of the distance between
Xβ∗ and Xβ̂ is

(71) (Xβ̂ −Xβ∗)′(Xβ̂ −Xβ∗) = (β̂2 − β2¦)′X ′2(I − P1)X2(β̂2 − β2¦).

The expression on the RHS repeats the expression found in (48).

Computation of the Least-squares Regression Coefficients

The methods of computing the regression coefficients which are nowadays
favoured depend upon the so-called Q–R decomposition of the data matrix X.
For such a matrix of full column rank, it is possible to write

(72) X = Q

[
R
0

]
,

where Q is an orthogonal matrix such that Q′Q = QQ′ = I and R is an
upper (or right) triangular matrix. Amongst the methods for obtaining the de-
composition are the Gram–Schmidt orthogonalisation procedure, Householder’s
method and Given’s method. Let Q = [Q1, Q2]. Then

(73) X = [Q1 Q2 ]
[
R
0

]
= Q1R.

On substituting Q1R = X into the normal equations X ′Xβ = X ′y which
determine the regression estimates, we get

(74) R′Q′1Q1Rβ = R′R = R′Q1y,

where the second equality follows in consequence of the condition that Q′1Q1 =
I. Premultiplying the equations by R′−1 gives

(75) Rβ = Q1y.

Since R is an upper-triangular matrix, the equations can be solved to obtain
the regression estimate β̂ via a simple process of back-substitution with begins
by finding the final, kth, element.

16



6: CLASSICAL REGRESSION

The estimate σ̂2 = y′(I−P )y/(T −k) of the disturbance variance can also
be obtained easily from the products of the Q–R decomposition. Substituting
Q1R = X in the formula P = X(X ′X)−1X ′ gives

(76)

P = Q1R(R′Q′1Q1R)−1R′Q′1

= Q1R(R′R)−1R′Q′1
= Q1Q

′
1.

From the fact that QQ′ = Q1Q
′
1+Q2Q

′
2 = I, it follows that I−P = I−Q1Q

′
1 =

Q2Q
′
2. Hence

(77)
σ̂2 =

y′(I − P )y
T − k

=
y′Q2Q

′
2y

T − k .

In performing the computations, one should operate on the vector y at the
same time as the matrix X is reduced to R. This will generate

(78) Q′ [X y ] =
[
Q′1
Q′2

]
[X y ] =

[
R Q′1y
0 Q′2y

]
.

Thus, the components of the equations Rβ = Q′1y and σ̂2 = y′Q2Q
′
2y/(T − k)

come to hand immediately.
In practice, the transformation of X can accomplished most easily in a pro-

cess of k iterations, each of which consists of premultiplying the matrix by an el-
ementary Householder transformation which reduces all of the subdiagonal ele-
ments of a given column vector to zeros. Since each Householder transformation
can be expressed as an orthonormal matrix, the product Q′ = PkPk−1 · · ·P1 of
the k transformations is itself an orthonormal matrix.

Restricted Least-Squares Regression

Sometimes, we find that there is a set of a priori restrictions on the el-
ements of the vector β of the regression coefficients which can be taken into
account in the process of estimation. A set of j linear restrictions on the vector
β can be written as Rβ = r, where r is a j × k matrix of linearly independent
rows, such that Rank(R) = j, and r is a vector of j elements.

To combine this a priori information with the sample information, we
adopt the criterion of minimising the sum of squares (y−Xβ)′(y−Xβ) subject
to the condition that Rβ = r. This leads to the Lagrangean function

(79)
L = (y −Xβ)′(y −Xβ) + 2λ′(Rβ − r)

= y′y − 2y′Xβ + β′X ′Xβ + 2λ′Rβ − 2λ′r.
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On differentiating L with respect to β and setting the result to zero, we get the
following first-order condition ∂L/∂β = 0:

(80) 2β′X ′X − 2y′X + 2λ′R = 0,

whence, after transposing the expression, eliminating the factor 2 and rearrang-
ing, we have

(81) X ′Xβ +R′λ = X ′y.

When these equations are compounded with the equations of the restrictions,
which are supplied by the condition ∂L/∂λ = 0, we get the following system:

(82)
[
X ′X R′

R 0

] [
β
λ

]
=
[
X ′y
r

]
.

For the system to have a unique solution, that is to say, for the existence of an
estimate of β, it is not necessary that the matrix X ′X should be invertible—it
is enough that the condition

(83) Rank
[
X
R

]
= k

should hold, which means that the matrix should have full column rank. The
nature of this condition can be understood by considering the possibility of
estimating β by applying ordinary least-squares regression to the equation

(84)
[
y
r

]
=
[
X
R

]
β +

[
ε
0

]
,

which puts the equations of the observations and the equations of the restric-
tions on an equal footing. It is clear that an estimator exits on the condition
that (X ′X +R′R)−1 exists, for which the satisfaction of the rank condition is
necessary and sufficient.

Let us simplify matters by assuming that (X ′X)−1 does exist. Then equa-
tion (81) gives an expression for β in the form of

(85)
β∗ = (X ′X)−1X ′y − (X ′X)−1R′λ

= β̂ − (X ′X)−1R′λ,

where β̂ is the unrestricted ordinary least-squares estimator. Since Rβ∗ = r,
premultiplying the equation by R gives

(86) r = Rβ̂ −R(X ′X)−1R′λ,

18
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from which

(87) λ = {R(X ′X)−1R′}−1(Rβ̂ − r).

On substituting this expression back into equation (85), we get

(88) β∗ = β̂ − (X ′X)−1R′{R(X ′X)−1R′}−1(Rβ̂ − r).

This formula is more intelligible than it might appear to be at first, for it
is simply an instance of the prediction-error algorithm whereby the estimate
of β is updated in the light of the information provided by the restrictions.
The error, in this instance, is the divergence between Rβ̂ and E(Rβ̂) = r.
Also included in the formula are the terms D(Rβ̂) = σ2R(X ′X)−1R′ and
C(β̂, Rβ̂) = σ2(X ′X)−1R′.

The sampling properties of the restricted least-squares estimator are easily
established. Given that E(β̂ − β) = 0, which is to say that β̂ is an unbiased
estimator, it follows that E(β∗ − β) = 0, so that β∗ is also unbiased.

Next consider the expression

(89)
β∗ − β = [I − (X ′X)−1R′{R(X ′X)−1R′}−1R](β̂ − β)

= (I − PR)(β̂ − β),

where

(90) PR = (X ′X)−1R′{R(X ′X)−1R′}−1R.

The expression comes from taking β from both sides of (88) and from recognis-
ing that Rβ̂− r = R(β̂−β). We may observe that PR is an idempotent matrix
which is subject to the conditions that

(91) PR = P 2
R, PR(I − PR) = 0 and P ′RX

′X(I − PR) = 0.

From equation (89), we deduce that

(92)

D(β∗) = (I − PR)E{(β̂ − β)(β̂ − β)′}(I − PR)

= σ2(I − PR)(X ′X)−1(I − PR)

= σ2[(X ′X)−1 − (X ′X)−1R′{R(X ′X)−1R′}−1R(X ′X)−1].

Restricted Least Squares and the Decomposition of a Chi-Square

Consider the identity

(93)
y −Xβ = (y −Xβ̂) + (Xβ̂ −Xβ)

= (y −Xβ̂) + (Xβ̂ −Xβ∗) + (Xβ∗ −Xβ).
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Here, there are

(94)
Xβ∗ −Xβ = X(I − PR)(β̂ − β), and

Xβ̂ −Xβ∗ = XPR(β̂ − β).

The first of these comes directly from (89), whereafter the second is also implied.
On substituting for β̂ − β = (X ′X)−1Xε, we get

(95)
Xβ∗ −Xβ = X(I − PR)(X ′X)−1Xε = (P − PQ)ε, and

Xβ̂ −Xβ∗ = XPR(X ′X)−1Xε = PQε.

Here, we have defined

(96)
PQ = XPR(X ′X)−1X ′

= X(X ′X)−1R′{R(X ′X)−1R′}−1R(X ′X)−1X ′.

which is a symmetric idempotent matrix fulfilling the conditions that

(97) PQ = P 2
Q = P ′Q and PPQ = PQP = PQ.

The decompositions of (93) can be represented in terms of the various
symmetric idempotent projection operators defined above. Thus,

(98) ε = (I − P )ε+ (P − PQ)ε+ PQε;

and, since the symmetric idempotent matrices I − P , P − PQ and PQ are
mutually orthogonal, It follow that

(99) ε′ε = ε′(I − P )ε+ ε′(P − PQ)ε+ ε′PQε.

Moreover, if y − Xβ = ε ∼ N(0, σ2I), then, according to Cochrane’s
theorem, we should have

(100)

(a) ε′ε = (y −Xβ)′(y −Xβ) ∼ σ2χ2(T )

(b) ε′(I − P )ε = (y −Xβ̂)′(y −Xβ̂) ∼ σ2χ2(T − k)

(c) ε′(P − PQ)ε = (Xβ∗ −Xβ)′(Xβ∗ −Xβ) ∼ σ2χ2(k − j)

(d) ε′PQε = (Xβ̂ −Xβ∗)′(Xβ̂ −Xβ∗) ∼ σ2χ2(j)

Here (b), (c) and (d) represent statistically independent random variables whose
sum is the random variable of (a).
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From the results under (b) and (d), one can derive estimators of the dis-
turbance variance V (εt) = σ2. The estimator σ̂2 of (19) comes directly from
(b). For an alternative estimator, we may consider the identity

(101)
y −Xβ∗ = (y −Xβ̂) + (Xβ̂ −Xβ∗)

= (I − P )ε+ PQε.

On the LHS is the sum of two mutually orthogonal vector components whose
sums of squares give rise to statistically independent chi-square variates. The
sum of the chi-squares is itself a chi-square:
(102)

(y −Xβ∗)′(y −Xβ∗) = (y −Xβ̂)′(y −Xβ̂) + (Xβ̂ −Xβ∗)′(Xβ̂ −Xβ∗)
= ε′(I − P )ε+ εPQε ∼ σ2χ2(T −K + j).

The expected value of this quadratic is σ2(T −K + j), and it follows that

(103) σ∗2 =
1

T − k + j
(y −Xβ∗)′(y −Xβ∗),

is an unbiased estimator of the variance.
This inference follows from the fact that the expected value of a chi-square

variate of r degrees of freedom is r. A demonstration of the unbiasedness of
the estimator is available which makes no reference to the functional form of
its distribution and which is similar to the demonstration of the unbiasedness
of σ̂2. Under the assumption of a chi-square distribution, the variances of the
two estimators are V (σ̂2) = 2σ4/(T − k) and V (σ̂∗2) = 2σ4/(T − k + j); and
so, provided that the restrictions are valid, σ∗2 is the more efficient estimator.

Testing the Linear Restrictions

Given that

(104)
σ−2(β̂ − β∗)′X ′X(β̂ − β∗) ∼ χ2(j) and

σ−2(y −Xβ̂)′(y −Xβ̂) ∼ χ2(T − k)

are mutually independent chi-square variates, it follows that

(105)
F =

{
(β̂ − β∗)′X ′X(β̂ − β∗)

j

/
(y −Xβ̂)′(y −Xβ̂)

T − k

}

=
1
σ̂2j

(β̂ − β∗)′X ′X(β̂ − β∗) ∼ F (j, T − k)
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has a F distribution of j and T − k degrees of freedom. This statistic may
be used to test the validity of the restrictions which are incorporated in the
estimate β∗. However, the test does not depend upon finding the value of the
restricted estimate. From equation (88), it follows that

(106)
(Xβ̂ −Xβ∗)′(Xβ̂ −Xβ∗)

σ̂2j
=

(Rβ̂ − r)′{R(X ′X)−1R′}−1(Rβ̂ − r)
σ̂2j

,

The form on the RHS can also be derived in straightforward manner by con-
sidering the distribution of the unrestricted estimator. From the fact that
β̂ ∼ N{β, σ2(X ′X)−1}, it follows that

(107) Rβ̂ ∼ N{Rβ = r, σ2R(X ′X)−1R′}.

We infer immediately that

(108)
(Rβ̂ − r)′{R(X ′X)−1R′}−1(Rβ̂ − r)

σ2
∼ χ2(j).

Yet another way of expressing the numerator is to use the identity

(109) (Xβ̂−Xβ∗)′(Xβ̂−Xβ∗) = (y−Xβ∗)′(y−Xβ∗)− (y−Xβ̂)′(y−Xβ̂).

To establish this identity, it is sufficient to observe that y−Xβ∗ = (y−Xβ̂) +
(Xβ̂+Xβ∗) and to show that (y−Xβ̂) ⊥ (Xβ̂+Xβ∗). Then the result follows
from Pythagoras’ theorem. The condition of orthogonality follows from writing
y −Xβ̂ = (I − P )ε and Xβ̂ +Xβ∗ = PQε and from noting that, according to
(97), P ′Q(I − P ) = PQ − PQP = 0.

The quantity (y −Xβ∗)′(y −Xβ∗) on the RHS of (109) is the restricted
sum of squares denoted by RSS, whilst the quantity (y−Xβ̂)′(y−Xβ̂) is the
unrestricted sum of squares denoted by USS. Thus, the F statistic of (105)
can be expressed as

(110) F =

{
RSS − USS

j

/
USS

T − k

}
,

which is comparable to the expression under (67).

Example. A specialisation of the statistic on the RHS of (106) can also be
used in testing an hypothesis concerning a subset of the elements of the vector
β. Let β′ = [β′1, β

′
2]. Then the condition that the subvector β2 assumes the

value of β2¦ can be expressed via the equation

(111) [0, Ik2 ]
[
β1

β2

]
= β2¦.
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This can be construed as a case of the equation Rβ = r where R = [0, Ik2 ] and
r = β2¦.

In order to discover the specialised form of the requisite test statistic, let
us consider the following partitioned form of an inverse matrix:

(112)

(X ′X)−1 =
[
X ′1X1 X ′1X2

X ′2X1 X ′2X2

]−1

=

[
{X ′1(I − P2)X1}−1 − {X ′1(I − P2)X1}−1X ′1X2(X ′2X2)−1

−{X ′2(I − P1)X2}−1X ′2X1(X ′1X1)−1 {X ′2(I − P1)X2}−1

]
,

Then, with R = [0, I], we find that

(113) R(X ′X)−1R′ =
{
X ′2(I − P1)X2

}−1

It follows in a straightforward manner that the specialised form of the F statistic
of (106) is

(114)

F =

{
(β̂2 − β2¦)′X ′1(I − P2)X1(β̂2 − β2¦)

k2

/
(y −Xβ̂)′(y −Xβ̂)

T − k

}

=
(β̂2 − β2¦)′X ′2(I − P1)X ′2(β̂2 − β2¦)

σ̂2k2
∼ F (k2, T − k).

This is a test statistic that has been presented previously under (48).

Example. A example of the testing of linear restrictions is provided by the so-
called Chow test which is aimed at uncovering structural breaks which involve
abrupt changes in the vector of regression coefficients. The unrestricted model
which accommodates a structural break can be written as

(111)
[
y1

y2

]
=
[
X1 0
0 X2

] [
β1

β2

]
+
[
ε1

ε2

]
.

The restricted model, which excludes the possibility of a break, is written as

(112)
[
y1

y2

]
=
[
X1

X2

]
β +

[
ε1

ε2

]
.

Within the context of equation (111), the restriction which is to be tested takes
the form of

(113) [ I −I ]
[
β1

β2

]
= 0.
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Computation of the Restricted Least-squares Estimates

The formula of (88) for the restricted least-squares estimate has an ap-
pearance which suggests that process of computing the coefficients is liable to
be a laborious one. In practice, the task can be greatly simplified.

The procedure which we shall propose uses the equation of the restrictions
to reparametrise the regression equations in a way that reduces the dimension
of the coefficient vector which has to be estimated. From this vector of reduced
dimension, the restricted estimate of the ordinary coefficient vector can be
recovered.

The first step is to transform the restriction Rβ = r to a more convenient
form which depends upon the Q–R decomposition of R′. This is

(114) R′ = C

[
U
0

]
= [C1, C2 ]

[
U
0

]
= C1U,

where C = [C1, C2] is an orthonormal matrix such that C ′C = CC ′ = I, and
U is an upper triangular matrix. Then Rβ = U ′1C

′
1β = r, or , equivalently,

C ′1β = (U ′1)−1r = h. Thus, the restriction can be written alternatively as

(115) C ′1β = h.

Now, the condition that C ′C = I implies that C ′1C1 = I and that C ′1C2 = 0;
and thus it follows that a solution of the equations (115) must take the form of

(116) β = C2γ + C1h,

where γ is an undetermined vector of order k − j. It follows that

(117)
y = Xβ + ε

= XC2δ +XC1h+ ε.

This becomes

(118) q = Xγ + ε, where q = y −XC1h and Z = XC2.

The ordinary least-squares estimator of γ can be found by the methods, al-
ready described, which are appropriate to the unrestricted regression model.
The restricted estimate of β can be found by substituting the estimate γ̂ into
equation (116).
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