
MATHEMATICAL THEORY FOR SOCIAL SCIENTISTS

THE BINOMIAL THEOREM

Pascal’s Triangle and the Binomial Expansion

Consider the following binomial expansions:

(p+ q)0 = 1,

(p+ q)1 = p+ q,

(p+ q)2 = p2 + 2pq + q2,

(p+ q)3 = p3 + 3p2q + 3pq2 + q3,

(p+ q)4 = p4 + 4p3q + 6p2q2 + 4pq3 + q4,

(p+ q)5 = p5 + 5p4q + 10p3q2 + 10p2q3 + 5pq4 + q5.

The generic expansion is in the form of

(p+ q)n =pn + npn−1q +
n(n− 1)

2
pn−2q2 +

n(n− 1)(n− 2)
3!

pn−3q3+

· · ·+ n(n− 1) · · · (n− r + 1)
r!

pn−rqr + · · ·

+
n(n− 1)(n− 2)

3!
p3qn−3 +

n(n− 1)
2

p2qn−2 + npqn−1 + pn.

In a tidier notation, this becomes

(p+ q)n =
n∑
x=0

n!
(n− x)!x!

pxqn−x.

We can find the coefficient of the binomial expansions of successive degrees by
the simple device known as Pascal’s triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

The numbers in each row but the first are obtained by adding two adjacent numbers
in the row above. The rule is true even for the units which border the triangle if we
suppose that there are some invisible zeros extending indefinitely on either side of
each row.

Instead of relying merely upon observation to establish the formula for the bino-
mial expansion, we should prefer to derive the formula by algebraic methods. Before
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we do so, we must reaffirm some notions concerning permutations and combinations
which are essential to a proper derivation.

Permutations

Let us consider a set of three letters {a, b, c} and let us find the number of ways in
which they can be can arranged in a distinct order. We may pick any one of the three
to put in the first position. Either of the two remaining letters may be placed in the
second position. The third position must be filled by the unused letter. With three
ways of filling the first place, two of filling the second and only one way of filling the
third, there are altogether 3× 2× 1 = 6 different arrangements. These arrangements
or permutations are

abc, acb, bac, cab, cba.

Now let us consider an unordered set of n objects denoted by

{xi; i = 1, . . . , n},

and let us ascertain how many different permutations arise in this case. The answer
can be found through a litany of questions and answers which we may denote by
[(Qi, Ai); i = 1, . . . , n]:

Q1: In how may ways can the first place be filled? A1: n
Q2: In how may ways can the second place be filled? A2: n− 1 ways,
Q3: In how may ways can the third place be filled? A3: n− 2 ways,
...
Qr: In how may ways can the rth place be filled? Ar: n− r ways,
...
Qn: In how may ways can the nth place be filled? An: 1 way.

If the concern is to distinguish all possible orderings, then we can recognise

n(n− 1)(n− 2) · · · 3.2.1 = n!

different permutations of the objects. We call this number n-factorial, which is written
as n!, and it represents the number of permutations of n objects taken n at a time.
We also denote this by

nPn = n!.

We shall use the same question-and-answer approach in deriving several other impor-
tant results concerning permutations. First we shall ask

Q: How many ordered sets can we recognise if r of the n objects are so alike as to
be indistinguishable?

A reasoned answer is as follows:

A: Within any permutation there are r objects which are indistinguishable. We
can permute the r objects amongst themselves without noticing any differences.
Thus the suggestion that there might be n! permutations would overestimate the
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number of distinguishable permutations by a factor of r!; and, therefore, there
are only

n!
r!

recognizably distinct permutations.

Q: How many distinct permutations can we recognise if the n objects are divided
into two sets of r and n − r objects—eg. red billiard balls and white billiard
balls—where two objects in the same set are indistinguishable?

A: By extending the previous argument, we should find that the answer is

n!
(n− r)!r! .

Q: How many ways can we construct a permutation of r objects selected from a set
of n objects?

A: There are two ways of reaching the answer to this question. The first is to use the
litany of questions and answers which enabled us to discover the total number
of permutations of n objects. This time, however, we proceed no further than
the question Qr, for the reason that there are no more than r places to fill. The
answer we seek is the number of way of filling the first r places. The second way
is to consider the number of distinct permutation of n objects when n−r of them
are indistinguishable. We fail to distinguish amongst these objects because they
all share the same characteristic which is that they have been omitted from the
selection. Either way, we conclude that the number is

nPr = n(n− 1)(n− 2) · · · (n− r + 1)

=
n!

(n− r)!

Combinations

Combinations are selections of objects in which no attention is payed to the
ordering. The essential result is found in answer to just one question:

Q: How many ways can we construct an unordered set of r objects selected from
amongst n objects?

A: Consider the total number of permutations of r objects selected from amongst n.
This is nPr. But each of the permutations distinguishes the order of the r objects
it comprises. There are r! different orderings or permutations of r objects; and,
to find the number of different selections or combinations when no attention is
paid to the ordering, we must deflate the number nPr by a factor of r!. Thus the
total number of combinations is

nCr =
1
r!
nPr =

n!
(n− r)!r!

= nCn−r.
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Notice that we have already derived precisely this number in answer to a seemingly
different question concerning the number of recognizably distinct permutations of a
set of n objects of which r were in one category and n− r in another. In the present
case, there are also two such categories: the category of those objects which are
included in the selection and the category of those which are excluded from it.

Example. Given a set of n objects, we may define a so-called power set which is
the set of all sets derived by making selections or combinations of these objects. It
is straightforward to deduce there are exactly 2n objects in the power set. This is
demonstrated by setting p = q = 1 in the binomial expansion above to reach the
conclusion that

2n =
∑
x

(
n

x

)
=
∑
x

n!
x!(n− x)!

.

Each element of this sum is the number of ways of selcting x objects from amongst
n, and the sum is for all values of x = 0, 1, . . . , n.

The Binomial Theorem

Now we are in a position to derive our conclusion regarding the binomial theorem
without, this time, having recourse to empirical induction. Our object is to determine
the coefficient associated with the generic term pxqn−x in the expansion of

(p+ q)n = (p+ q)(p+ q) · · · (p+ q),

where the RHS displays the n factors which are to be multiplied together. The
coefficients of the various elements of the expansion are as follows:

pn The coefficient is unity, since there is only one way of choosing n of the p’s
from amongst the n factors.

pn−1q This term is the product of q selected from one of the factors and n− 1 p’s
provided by the remaining factors. There are n = nC1 ways of selecting the
single q.

pn−2q2 The coefficent associated with this term is the number of ways of selecting
two q’s from n factors which is nC2 = n(n− 1)/2.

...
pn−rqr The coefficent associated with this terms is the number of ways of selecting

r q’s from n factors which is nCr = n!/{(n− r)!r!}.
From such reasoning, it follows that

(p+ q)n =pn + nC1p
n−1q + nC2p

n−2q2+
· · ·+ nCrp

n−rqr + · · ·
+ nCn−2p

2qn−2 + nCn−1pq
n−1 + qn

=
n∑
x=0

n!
(n− x)!x!

pxqn−x.
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The Binomial Probability Distribution

We wish to find, for example, the number of ways of getting a total of x heads
in n tosses of a coin. First we consider a single toss of the coin. Let us take the ith
toss, and let us denote the outcome by xi = 1 if it is heads and by xi = 0 if it is
tails. Heads might be described as a sucess, whence the probability of a sucess will be
P (xi = 1) = p. Tails might be described as a failure and the corresponding probability
of this event is P (xi = 0) = 1− p. For a fair coin, we should have p = 1− p = 1

2 , of
course.

We are now able to define a probabilty function for the outcome of the ith trial.
This is

f(xi) = pxi(1− p)1−xi with xi ∈ {0, 1}.

The experiment of tossing a coin once is called a Bernoulli trial, in common with any
other experiment with a random dichotomous outcome. The corresponding probabil-
ity function is called a point binomial.

If the coin is tossed n times, then the probability of any particular sequence of
heads and tails, denoted by (x1, x2, . . . , xn) is given by

P (x1, x2, . . . , xn) = f(x1)f(x2) · · · f(xn)

= p
∑

xi(1− p)n−
∑

xi

= px(1− p)n−x,

where we have defined x =
∑
xi. This result follows from the independence of thed

Bernouilli trials whereby P (xi, xj) = P (xi)P (xj) is the probability of the occurrence
of xi nad xj together in the sequence.

Altogether there are (
n

x

)
=

n!
(n− x)!x!

= nCx

different sequences (x1, x2, . . . , xn) which contain x heads; so the probability of the
event of x heads in n tosses is given by

b(x;n, p) =
n!

(n− x)!x!
pxqn−x.

This is called the binomial probability function.
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