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Limit Theorems

Consider making repeated measurements of some quantity where each measure-
ment is beset by an unknown error. To estimate the quantity, we can form the
average of the measurements. Under a wide variety of conditions concerning
the propagation of the errors, we are liable to find that the average converges
upon the true value of the quantity.

To illustrate this convergence, let us imagine that each error is propagated
independently with a zero expected value and a finite variance. Then there is
an upper bound on the probability that the error will exceed a certain size.
In the process of averaging the measurements, these bounds are transmuted
into upper bounds on the probability of finite deviations of the average from
the true value of the unknown quantity; and, as the number of measurements
comprised in the average increases indefinitely, this bound tends to zero.

We shall demonstrate this result mathematically. Let {xt; t = 1, . . . , T, . . .}
be a sequence of measurements, and let µ be the unknown quantity. Then the
errors are xt−µ and, by our assumptions, E(xt−µ) = 0 and E{(xt−µ)2} = σ2

t .
Equivalently, E(xt) = µ and V (xt) = σ2

t .
We begin by establishing an upper bound for the probability P (|xt−µ| >

ε). Let g(x) be a non-negative function of x ∼ f(x), and let S = {x; g(x) > k}
be the set of all values of x for which g(x) exceeds a certain constant. Then

(1)
E{g(x)} =

∫
x

g(x)f(x)dx

≥
∫
S
kf(x)dx = kP{g(x) > k};

and it follows that

(2) If g(x) is a non-negative function of a random variable x, then, for
every k > 0, we have P{g(x) > k} ≤ E{g(x)}/k.

This result is know as Chebyshev’s inequality. Now let g(xt) = |xt−µ|2. Then
E{g(xt)} = V (xt) = σ2

t and, setting k = ε2, we have P (|xt−µ|2 > ε2) ≤ σ2
t /ε

2.
Thus

(3) if xt ∼ f(xt) has E(xt) = µ and V (xt) = σ2
t , then P (|xt−µ| > ε) ≤

σ2
t /ε

2;

and this gives an upper bound on the probability that an error will exceed a
certain magnitude.
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Now consider the average x̄ =
∑
xt/T . Since the errors are independently

distributed, we have V (x̄) =
∑
V (xt)/T 2 =

∑
σ2
t /T

2. Also E(x̄) = µ. On
replacing xt, E(xt) and V (xt) in the inequality in (3) by x̄T , E(x̄T ) and V (xT ),
we get

(4) P (|x̄T − µ| > ε) ≤
∑

σ2
t /(εT )2;

and, on taking limits as T →∞, we find that

(5) P (|x̄T − µ| > ε) = 0.

Thus, in the limit, the probability that x̄ diverges from µ by any finite quantity
is zero. We have proved a version of a fundamental limit theorem known as the
law of large numbers.

Although the limiting distribution of x̄ is degenerate, we still wish to know
how x̄ is distributed in large samples. If we are prepared to make specific
assumptions about the distributions of the elements xt, then we may be able
to derive the distribution of x̄. Unfortunately, the problem is liable to prove
intractable unless we can assume that the elements are normally distributed.
However, what is remarkable is that, given that the elements are independent,
and provided that their sizes are constrained by the condition that

(6) lim(T →∞)P
(∣∣∣(xt − µ)

/ T∑
t=1

σ2
t

∣∣∣ > ε
)

= 0,

the distribution of x̄ tends to the normal distribution N(µ,
∑
σ2
t /T

2). This
result, which we shall prove in a restricted form, is known as the central limit
theorem.

The law of large numbers and the central limit theorem provide the ba-
sis for determining the asymptotic properties of econometric estimators. In
demonstrating these asymptotic properties, we are usually faced with a num-
ber of subsidiary complications. To prove the central limit theorem and to
dispose properly of the subsidiary complications, we require a number of addi-
tional results. Ideally these results should be stated in terms of vectors, since
it is mainly to vectors that they will be applied. However, to do so would be
tiresome, and so our treatment is largely confined to scalar random variables.
A more extensive treatment of the issues raised in the following section can be
found in Rao [*]; and an exhaustive treatment is provided by Loeve [*].

Stochastic Convergence

It is a simple matter to define what is meant by the convergence of a sequence
{an} of nonstochastic elements. We say that the sequence is convergent or,
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equivalently, that it tends to a limiting constant a if, for any small positive
number ε, there exists a number N = N(ε) such that |an−a| < ε for all n > N .
This is indicated by writing lim(n → ∞)an = a or, alternatively, by stating
that an → a as n→∞.

The question of the convergence of a sequence of random variables is less
straightforward, and there are a variety of modes of convergence.

(7) Let {xt} be a sequence of random variables and let c be a constant.
Then

(a) xt converges to c weakly in probability, written xt
P−→ c or

plim(xt) = c, if, for every ε > 0,

lim(t→∞)P (|xt − c| > ε) = 0,

(b) xt converges to c strongly in probability or almost certainly,
written xt

a.s.−→ c, if, for every ε > 0,

lim(τ →∞)
( ⋃
t>τ

P (|xt − c| > ε
)

= 0,

(c) xt converges to c in mean square, written xt
m.s.−→ c, if

lim(t→∞)E(|xt − c|2) = 0.

In the same way, we define the convergence of a sequence of random variables
to a random variable.

(8) A sequence of {xt} random variables is said to converge to a random
variable in the sense of (a), (b) or (c) of (7) if the sequence {xt−x}
converges to zero in that sense.

Of these three criteria of convergence, weak convergence in probability is
the most commonly used in econometrics. The other criteria are too stringent.
Consider the criterion of almost sure convergence which can also be written
as lim(τ → ∞)P (

⋂
t>τ |xt − c| ≤ ε) = 1. This requires that, in the limit,

all the elements of {xt} with t > τ should lie simultaneously in the interval
[c − ε, c + ε] with a probability of one. The condition of weak convergence
in probability requires much less: it requires only that single elements, taken
separately, should have a probability of one of lying in this interval. Clearly
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(9) If xt converges almost certainly to c, then it converges to c weakly
in probability. Thus xt

a.s.−→ c implies xt
P−→ c.

The disadvantage of the criterion of mean-square convergence is that it
requires the existence of second-order moments; and, in many econometric ap-
plications, it cannot be guaranteed that an estimator will possess such moments.
In fact,

(10) If xt converges in mean square, then it also converges weakly in
probability, so that xt

m.s.−→ c implies xt
P−→ c.

This follows directly from Chebychev’s inequality whereby

(11) P (|xt − c| > ε) ≤ E{(xt − c)2}
ε2

.

A result which is often used in establishing the properties of econometric
estimators is the following:

(12) If g is a continuous function and if xt converges in probability to x,
then g(xt) converges in probability to g(x). Thus xt

P−→ x implies
g(xt)

P−→ g(x).

Proof. If x is a constant, then the proof is straightforward. Let δ > 0 be an
arbitrary value. Then, since g is a continuous function, there exists a value ε
such that |xt−x| ≤ ε implies |g(xt)− g(x)| ≤ δ. Hence P (|g(xt)− g(x)| ≤ δ) ≥
P (|xt − x| ≤ ε); and so xt

P−→ x, which may be expressed as limP (|xt − x| ≤
ε) = 1, implies limP (|g(xt)− g(x)| ≤ δ) = 1 or, equivalently, g(xt)

P−→ g(x).
When x is random, we let δ be an arbitrary value in the interval (0, 1), and

we choose an interval A such that P (x ∈ A) = 1− δ/2. Then, for x ∈ A, there
exists some value ε such that |xt − x| ≤ ε implies |g(xt)− g(x)| ≤ δ. Hence

(13)
P (|g(xt)− g(x)| ≤ δ) ≥ P ({|xt − x| ≤ ε} ∩ {x ∈ A})

≥ P (|xt − x| ≤ ε) + P (x ∈ A)− 1.

But there is some value τ such that, for t > τ , we have P (|xt−x| ≤ ε) > 1−δ/2.
Therefore, for t > τ , we have P (|g(xt)− g(x)| ≤ δ) > 1− δ, and letting δ → 0
shows that g(xt)

P−→ g(x).

The proof of such propositions are often considerably more complicated
than the intuitive notions to which they are intended to lend rigour. The
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special case of the proposition above where xt converges in probability to a
constant c is frequently invoked. We may state this case as follows:

(14) If g(xt) is a continuous function and if plim(xt) = c is a constant,
then plim{g(xt)} = g{plim(xt)}.

This is known as Slutsky’s theorem.
The concept of convergence in distribution has equal importance in econo-

metrics with the concept of convergence in probability. It is fundamental to
the proof of the central limit theorem.

(15) Let {xt} be a sequence of random variables and let {Ft} be the
corresponding sequence of distribution functions. Then xt is said to
converge in distribution to a random variable x with a distribution
function F , written xt

D−→ x, if Ft converges to F at all points of
continuity of the latter.

This means simply that, if x∗ is any point in the domain of F such that F (x∗)
is continuous, then Ft(x∗) converges to F (x∗) in the ordinary mathematical
sense. We call F the limiting distribution or asymptotic distribution of xt.

Weak convergence in probability is sufficient to ensure a convergence in
distribution. Thus

(16) If xt converges to a random variable x weakly in probability, it also
converges to x in distribution. That is, xt

P−→ x implies xt
D−→ x.

Proof. Let F and Ft denote the distribution functions of x and xt respectively,
and define z = x− xt. Then xt

P−→ x implies limP (|zt| > ε) = 0 for any ε > 0.
Let y be any continuity point of F . Then

(17)
P (xt < y) = P (x < y + zt)

= P ({x < y + zt} ∩ {zt ≤ ε}) + P ({x < y + zt} ∩ {zt > ε})
≤ P (x < y + ε) + P (zt > ε),

where the inequality follows from the fact that the events in the final expression
subsume the events of the preceding expressions. Taking limits at t → ∞
gives limP (xt < y) ≤ P (x, y + ε). By a similar argument, we may show that
limP (xt < y) ≥ P (x < y − ε). By letting ε→ 0, we see that limP ((xt < y) =
P (x < y) or simply that limFt(y) = F (y), which proves the theorem.

A theorem of considerable importance, which lies on our way towards the
central limit theorem, is the Helly–Bray theorem as follows:
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(18) Let {Ft} be a sequence of distribution functions converging to the
distribution function F , and let g be any bounded continuous func-
tion in the same argument. Then

∫
gdFt →

∫
gdF as t→∞.

A proof of this may be found in Rao [*p. 97]. The theorem indicates, in
particular, that, if g(xt) = µrt is the rth moment of xt and if g(x) = µr is the
rth moment of x, then xt

D−→ x implies µrt → µr. However, this result must be
strongly qualified, for it presumes that the rth moment exists for all elements
of the sequence {xt}; and this cannot always be guaranteed.

It is one of the bugbears of econometric estimation that whereas, for any
reasonable estimator, there is usually a limiting distribution possessing finite
moments up to the order r, the small-sample distributions often have no such
moments. We must therefore preserve a clear distinction between the moments
of the limiting distribution and the limits of the moments of the sampling
distributions. Since the small-sample moments often do not exist, the latter
concept has little operational validity,

We can establish that a sequence of distributions converges to a limiting
distribution by demonstrating the convergence of their characteristic functions.

(19) The characteristic function of a random variable x is defined by
φ(h) = E(exp{ihx}) where i =

√
−1.

The essential property of a characteristic function is that it uniquely deter-
mined by the distribution function. In particular, if x has a probability density
function f(x) so that

φ(h) =
∫ +∞

−∞
eihxf(x)dx,

then an inversion relationship holds whereby

f(x) =
1

2π

∫ +∞

−∞
e−ihxφ(h)dh,

Thus the characteristic function and the probability density function are just
Fourier transforms of each other.
Example. The standard normal variate x ∼ N(0, 1) has the probability den-
sity function

f(x) =
1√
2π
e−x

2/2.
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The corresponding characteristic function is

φ(h) =
1√
2π

∫ +∞

∞
eihx−x

2/2dx

= e−h
2/2 1√

2π

∫ +∞

∞
e−(x−ih)2/2dx

= e−h
2/2 1√

2π

∫ +∞

∞
e−z

2/2dz

where z = x − ih is a complex variable. The integral of the complex function
exp{−z2/2} can be shown to be equal to the integral of the corresponding
function defined on the real line. The latter has a value of

√
2π, so

φ(h) = e−h
2/2.

Thus the probability density function and the characteristic function of the
standard normal variate have the same form. Also, it is trivial to confirm, in
this instance, that f(x) and φ(h) satisfy the inversion relation.

The theorem which is used to establish the convergence of a sequence of
distributions states that

(20) If φt(h) is the characteristic function of xt and φ(h) is that of x,
then xt converges in distribution to x if and only if φT (h) converges
to φ(h). That is xt

D−→ x if and only if φt(h)→ φ(h).

Proof. The Helley–Bray theorem establishes that φt → φ if xt
D−→ x. To

establish the converse, let F be the distribution function corresponding to φ
and let {Ft} be a sequence of distribution functions corresponding to the se-
quence {φt}. Choose a subsequence {Fm} tending to a non-decreasing bounded
function G. Now G must be a distribution function; for, by taking limits in
the expression φm(h) =

∫
eihxdFm, we get φ(h) =

∫
eihxdG, and setting h = 0

gives φ(0) =
∫
dG = 1 since, dy definition, φ(0) = e0

∫
dF = 1. But the distri-

bution function corresponding to φ(h) is unique, so G = F . All subsequences
must necessarily converge to the same distribution function, so φt → φ implies
Ft → F or, equivalently xt

D−→ x.
We shall invoke this theorem in proving the central limit theorem.

The law of large numbers and the central limit thereon

The theorems of the previous section contribute to the proofs of the two
limit theorems which are fundamental to the theory of estimation. The first is
the law of large numbers. We have already proved that
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(21) If {xt} is a sequence of independent random variables with E(xt) =
µ and V (xt)− σ2

t , and if x̄ =
∑T
t=1 xt/T , then

lim(T →∞)P (|x̄− µ| > ε) = 0.

This theorem states that x̄ converges to µ weakly in probability and it is called,
for that reason, the weak law of large numbers. In fact, if we assume that the
elements of {xt} are independent and identically distributed, we no longer
need the assumption that their second moments exist in order to prove the
convergence of x̄. Thus Khinchine’s theorem states that

(22) If {xt} is a sequence of independent and identically distributed ran-
dom variables with E(xt) = µ, then x̄ tends weakly in probability
to µ.

Proof. Let φ(h) = E(exp(ihxt)}) be the characteristic function of xt. Ex-
panding in a neighbourhood of h = 0, we get

φ(h) = E
{

1 + ihxt +
(ihxt)2

2!
+ · · ·

}
and, since the mean E(xt) = µ exists, we can write this as

φ(h) = 1 + iµh+ o(h),

where o(h) is a remainder term of a smaller order than h, so that lim(h →
0){o(h)/h} = 0. Since x̄ =

∑
xt/T is a sum of independent and identically

distributed random variables xt/T , its characteristic function can be written
as

φ∗T = E
[

exp
{
ih
(x1

T
+ · · ·+ xT

T

)}]
=

T∏
t=1

E
(

exp
{ ihxt

T

})
=
[
φ
( h
T

)]T
.

On taking limits, we get

lim(t→∞)φ∗T = lim
{

1 + i
h

T
µ+ o

( h
T

)}T
= exp{ihµ}.

which is the characteristic function of a random variable with the probability
mass concentrated on µ. This proves the convergence of x̄.
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It is possible to prove Khinchine’s theorem without using a characteristic
function as is show for example, by Rao. However, the proof that we have just
given has an interesting affinity with the proof of the central limit thereon. The
Lindeberg–Levy version of the theorem is as follows:

(23) Let {xt} be a sequence of independent and identically distributed
random variables with E(xt) = µ and V (xt) = σ2. Then zT =
(1/√T )

∑T
t=1(xt − µ)/σ converges in distribution to z ∼ N(0, 1).

Equivalently, the limiting distribution of
√
T (x̄ − µ) is the normal

distribution N(0, σ2).

Proof. First we recall that the characteristic function of the standard normal
variate z ∼ N(0, 1) is φ(h) = exp{−h2/2}. We must show that the characteris-
tic function φT of zT converges to φ as T →∞. Let us write zT = T−1/2

∑
zt

where zt = (xt−µ)/σ has E(zt) = 0 and E(z2
t ) = 1. The characteristic fuction

of zt can now be written as

φ0(h) = 1 + ihE(zt)−
h2E(z2

t )
2

+ o(h2)

= 1− h2

2
+ o(h2).

Since zT = T−1/2
∑
zt is a sum of independent and identically distributed

random variables, it follows that its characterstic function can be written, in
turn, as

φT

( h
√
T

)
=
[
φ0
( h
√
T

)]T
=
[
1− h2

2T
+ 0
(h2

T

)]T
.

Letting T → ∞, we find that limφT = exp{−h2/2} = φ, which proves the
theorem.
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