
SAMPLE STATISTICS

A random sample of size n from a distribution f(x) is a set of n random variables
x1, x2, . . . , xn which are independently and identically distributed with xi ∼ f(x)
for all i. Thus, the joint p.d.f of the random sample is

f(x1, x2, . . . , xn) = f(x1)f(x2) · · · f(x2) =
n∏

i=1

f(xi).

A statistic is a function of the random variables of the sample, also know as the
sample points. Examples are the sample mean x̄ =

∑
xi/n and the sample variance

s2 =
∑

(xi − x̄)2/n
A random sample may be regarded as a microcosm of the population from

which it is drawn. Therefore, we might attempt to estimate the moments of the
population’s p.d.f f(x) by the corresponding moments of the sample statistics.

To determine the worth of such estimates, we may determine their expected
values and their variances. Beyond finding these simple measures, we might en-
deavour to find distributions of the statistics, which are described as their sampling
distributions.

We can show, for example, that the mean x̄ of a random sample is an unbiased
estimate of the population moment µ = E(x), since

E(x̄) = E
(∑ xi

n

)
=

1
n

∑
E(xi) =

n

n
µ = µ.

Its variance is

V (x̄) = V
(∑ xi

n

)
=

1
n2

∑
V (xi) =

n

n2
σ2 =

σ2

n
.

Here, we have used the fact that the variance of a sum of independent random
variables is the sum of their variances, since the covariances are all zero.

Observe that V (x̄) → 0 as n → ∞. Since E(x̄) = µ, this implies that, as the
sample size increases, the estimates become increasingly concentrated around the
true population parameters. Such an estimate is said to be consistent

The sample variance, however, does not provide an unbiased estimate of σ2 =
V (x), since

E(s2) = E

{
1
n

∑
(xi − x̄)2

}
= E

[
1
n

∑ {
(xi − µ) + (µ − x̄)

}2
]

= E

[
1
n

∑ {
(xi − µ)2 + 2(xi − µ)(µ − x̄) + (µ − x̄)2

}]
= V (x) − 2E{(x̄ − µ)2} + E{(x̄ − µ)2} = V (x) − V (x̄).

Here, we have used the result that

E

{
1
n

∑
(xi − µ)(µ − x̄)

}
= −E{(µ − x̄)2} = −V (x̄).
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It follows that

E(s2) = V (x) − V (x̄) = σ2 − σ2

n
= σ2 (n − 1)

n
.

Therefore, s2 is a biased estimator of the population variance and, for an unbiased
estimate, we should use

σ̂2 = s2 n

n − 1
=

∑
(xi − x̄)2

n − 1
.

However, s2 is still a consistent estimator, since E(s2) → σ2 as n → ∞ and also
V (s2) → 0.

The value of V (s2) depends on the form of the underlying population distribu-
tion. It would help us to know exactly how the estimates are distributed. For this,
we need some assumption about the functional form of the probability distribution
of the population. The assumption that the population has a normal distribution
is a conventional one, in which case, the following theorem is of assistance:

Theorem. Let x1, x2, . . . , xn be a random sample from the normal population
N(µ, σ2). Then, y =

∑
aixi is normally distributed with E(y) =

∑
aiE(xi) =

µ
∑

ai and V (y) =
∑

a2
i V (xi) = σ2

∑
a2

i .

In general, any linear function of a set of normally distributed variables is itself
normally distributed. Thus, for example, if x1, x2, . . . , xn is a random sample from
the normal population N(µ, σ2), then x̄ ∼ N(µ, σ2/n).

The general result is best expressed in terms of matrices. Let
µ = [µ1, µ2, . . . , µn]′ = E(x) denote the vector of the expected values of the el-
ements of x = [x1, x2, . . . , xn]′ and let Σ = [σij ; i, j = 1, 2, . . . , n] denote the matrix
of their variances and covariances. If a = [a1, a2, . . . , an]′ is a constant vector of
order n, then a′x ∼ N(a′µ, a′Σa) is a normally distributed random variable with a
mean of

E(a′x) = a′µ =
∑

aixi

and a variance of

V (a′x) = a′Σa =
∑

i

∑
j

aiajσij =
∑

i

a2
i σii +

∑
i

∑
j �=i

aiajσij .

An important case is when the vector a = [a1, a2, . . . , an]′ becomes a vector of
n units, denoted by ι = [1, 1, . . . , 1]′ and described as the summation vector. Then,
if x = [x1, x2, . . . , xn]′ is the vector of a random sample with xi ∼ N(µ, σ2) for all
i, there is x ∼ N(µι, σ2In), where µι = [µ, µ, . . . , µ]′ is a vector with µ repeated n
times and In is an identity matrix of order n. Writing this explicitly, we have

x =


x1

x2
...

xn

 ∼ N




µ
µ
...
µ

 ,


σ2 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σ2


 .
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Then, there is

x̄ = (ι′ι)−1ι′x =
1
n

ι′x ∼ N(µ, σ2/n)

and
1
n

σ2 =
ι′{σ2I}ι

n2
=

σ2ι′ι

n2
=

σ2

n
,

where we have used repeatedly the result that ι′ι = n .
Even if we do not know the form of the distribution from which the sample has

been taken, we can still say that, under very general conditions, the distribution of
x̄ tends to normality as n → ∞. Thus we have

Theorem. The Central Limit Theorem states that, if x1, x2, . . . , xn is a random
sample from a distribution with mean µ and variance σ2, then the distribution
of x̄ tends to the normal distribution N(µ, σ2/n) as n → ∞. Equivalently, (x̄ −
µ)/(σ/

√
n) tends in distribution to the standard normal N(0, 1) distribution.

To describe the distribution of the sample variance, we need to define the chi-
square distribution. If x ∼ N(0, 1) is distributed as a standard normal variable,
then x2 ∼ χ2(1) is distributed as a chi-square variate with one degree of freedom.
Moreover

Theorem. The sum of two independent chi-square variates is a chi-square variate
with degrees of freedom equal to the sum of the degrees of freedom of its additive
components. In particular, if x ∼ χ2(n) and y ∼ χ2(m), then (x+ y) ∼ χ2(n+M).

It follows that, if x1, x2, . . . , xn is a random sample from a standard normal
N(0, 1) distribution, then

∑
x2

i ∼ χ2(n). Moreover, if x1, x2, . . . , xn is a random
sample from an N(µ, σ2) distribution, then

∑
(xi − µ)2/σ2 ∼ χ2(n).

Consider the identity∑
(xi − µ)2 =

∑
({xi − x̄} + {x̄ − µ})2

=
∑

{xi − x̄}2 + n{x̄ − µ}2,

which follows from the fact that the cross product term is {x̄ − µ}
∑

{xi − x̄} = 0.
This decomposition of a sum of squares features in the following result:

The Decomposition of a Chi-square statistic. If x1, x2, . . . , xn is a random
sample from a standard normal N(µ, σ2) distribution, then

n∑
i=1

(xi − µ)2

σ2
=

n∑
i=1

(xi − x̄)2

σ2
+ n

(x̄ − µ)2

σ2
,

with

(1)
n∑

i=1

(xi − µ)2

σ2
∼ χ2(n),

(2)
n∑

i=1

(xi − x̄)2

σ2
∼ χ2(n − 1),

(3) n
(x̄ − µ)2

σ2
∼ χ2(1),
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where the statistics under (2) and (3) are independently distributed.

Definitions.

(1) If u ∼ χ2(m) and v ∼ χ2(n) are independent chi-square variates with m
and n degrees of freedom respectively, then

F =
{

u

m

/
v

n

}
∼ F (m, n),

which is the ratio of of the chi-squares divided by their respective degrees
of freedom, has an F distribution of m and n degrees of freedom, denoted
by F (m, n).

(2) If x ∼ N(0, 1) is a standard normal variate and if v ∼ χ2(n) is a chi-square
variate of n degrees of freedom, and if the two variates are distributed
independently, then the ratio

t = x

/√
v

n
∼ t(n)

has a t distributed of n degrees of freedom, denoted t(n).

Notice that

t2 =
x2

v/n
∼

{
χ2(1)

1

/
χ2(n)

n

}
= F (1, n).

CONFIDENCE INTERVALS

Consider a standard normal variate z ∼ N(0, 1). From the tables in the back
of the book, we can find numbers a, b such that, for any Q ∈ (0, 1), there is
P (a ≤ z ≤ b) = Q. The interval [a, b] is called a Q × 100% confidence interval
for z. We can minimise the length of the interval by disposing it symmetrically
about the expected value E(z) = 0, since z ∼ N(0, 1) is symmetrically distributed
about its mean of zero.

We can easily construct confidence intervals for the parameters underlying our
sample statistics. Since they are concerned with fixed parameters, such confidence
statements differ in a subtle way from those regarding random variables.

A confidence interval for the mean of the N(µ, σ2) distribution. Let
x1, x2, . . . , xn be a random sample from a normal N(µ, σ2) distribution. Then

x̄ ∼ N

(
µ,

σ2

n

)
and

x̄ − µ

σ/
√

n
∼ N(0, 1).

Therefore, we can find numbers ±β such that

P

(
−β ≤ x̄ − µ

σ/
√

n
≤ β

)
= Q.
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But, the following events are equivalent:(
−β ≤ x̄ − µ

σ/
√

n
≤ β

)
⇐⇒

(
−β

σ√
n
≤ x̄ − µ ≤ β

σ√
n

)
⇐⇒

(
−β

σ√
n
≤ µ − x̄ ≤ β

σ√
n

)
⇐⇒

(
x̄ − β

σ√
n
≤ µ ≤ x̄ + β

σ√
n

)
.

Hence

P

(
x̄ − β

σ√
n
≤ µ ≤ x̄ + β

σ√
n

)
= Q.

This says that the probability that the random interval [x̄ − βσ/
√

n, x̄ + βσ/
√

n]
falls over the true value µ is Q. Equivalently, given a particular sample that has a
mean value of x̄, we are Q × 100% confident that µ lies in the resulting interval.

Example. Let (1.2, 3.4, 0.6, 5.6) be a random sample from a normal N(µ, σ2 = 9)
distribution. Then x̄ = 2.7 and

x̄ − µ

σ/
√

n
=

2.7 − µ

3/2
∼ N(0, 1).

Hence

P

(
−1.96 ≤ 2.7 − µ

3/2
≤ 1.96

)
= Q,

and it follows that (0.24 ≤ µ ≤ 5.64) is our 95% confidence interval.

A confidence interval for µ when σ2 is unknown. Usually, we have to es-
timate σ2. The unbiased estimate of σ2 is σ̂2 =

∑
(xi − x̄)2/(n − 1). With this

estimate replacing σ2, we have to replace the standard normal distribution, which
is appropriate to

√
n(x̄ − µ)/σ, by the t(n − 1) distribution, which is appropriate

to
√

n(x̄ − µ)/σ̂.
To demonstrate this result, consider writing

x̄ − µ

σ̂/
√

n
=

{
x̄ − µ

σ/
√

n

/√∑
(xi − x̄)2

σ2(n − 1)

}
,

and observe that we can cancel the unknown value of σ from the numerator and
the denominator.

Now,
∑

(xi − x̄)2/σ2 ∼ χ2(n − 1), so the denominator contains the root of a
chi-square variate divided by its n− 1 degrees of freedom. The numerator contains
a standard normal variate. That is to say, the statistic has the form of{

N(0, 1)

/√
χ2(n − 1)

n − 1

}
∼ t(n − 1).
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To construct a confidence interval, we proceed as before, except that we replace
the numbers ±β, obtained from the table of the N(0, 1) distribution, by the corre-
sponding numbers ±b, obtained from the t(n − 1) table. Our statement becomes

P

(
x̄ − b

σ̂√
n
≤ µ ≤ x̄ + b

σ̂√
n

)
= Q.

A confidence interval for the difference between two means. Imagine
a treatment that affects the mean of a normal population without affecting its
variance. An instance of this might be the application of a fertiliser that increases
the yield of a crop without adversely affecting its hardiness. We might wish to
estimate the effect of the fertiliser; and, in that case, we would probably want to
construct a confidence interval for the estimate.

To establish a confidence interval for the change in the mean, we would take
samples from the population before and after treatment. Before treatment, there
is

xi ∼ N(µx, σ2); i = 1, . . . , n and x̄ ∼ N

(
µx,

σ2

n

)
,

and, after treatment, there is

yj ∼ N(µy, σ2); j = 1, . . . , m and ȳ ∼ N

(
µy,

σ2

m

)
.

Then, on the assumption that the two samples are mutually independent, the dif-
ference between the sample means is

(x̄ − ȳ) ∼ N

(
µx − µy,

σ2

n
+

σ2

m

)
.

Hence
(x̄ − ȳ) − (µx − µy)√

σ2

n
+

σ2

m

∼ N(0, 1).

If σ2 were known, then, for any given value of Q ∈ (0, 1), we could find a
number β from the N(0, 1) table such that

P

{
(x̄ − ȳ) − β

√
σ2

n
+

σ2

m
≤ µx − µy ≤ (x̄ − ȳ) + β

√
σ2

n
+ +

σ2

m

}
= Q.

This would give a confidence interval for µx − µy. Usually, we have to estimate σ2

from the sample information. We have

∑ (xi − x̄)2

σ2
∼ χ2(n − 1) and

∑ (yj − ȳ)2

σ2
∼ χ2(m − 1),

6



which are independent variates with expectations equal to the numbers of their
degrees of freedom. The sum of independent chi-squares is itself a chi-square with
degrees of freedom equal to the sum of those of its constituent parts. Therefore,∑

(xi − x̄)2 +
∑

(yj − ȳ)2

σ2
∼ χ2(n + m − 2)

has an expected value of n + m − 2, whence

σ̂2 =
∑

(xi − x̄)2 +
∑

(yj − ȳ)2

n + m − 2

is an unbiased estimate of the variance.
If we use the estimate in place of the unknown value of σ2, we get

(x̄ − ȳ) − (µx − µy)√
σ̂2

n
+

σ̂2

m

=

 (x̄ − ȳ) − (µx − µy)√
σ2

n + σ2

m

/√∑
(xi − x̄)2 +

∑
(yj − ȳ)2

σ2(n + m − 2)


∼ N(0, 1)√

χ2(n+m−2)
n+m−2

= t(n + m − 2).

This is the basis for determining a confidence interval that uses an estimated vari-
ance in place of the unknown value.

A confidence interval for the variance. If xi ∼ N(µ, σ2); i = 1, . . . , n is a
random sample, then

∑
(xi − x̄)2/(n − 1) is an unbiased estimate of the variance

and
∑

(xi − x̄)2/σ2 ∼ χ2(n − 1). Therefore, by looking in the back of the book at
the appropriate chi-square table, we can find numbers α and β such that

P

(
α ≤

∑
(xi − x̄)2

σ2
≤ β

)
= Q

for some chosen Q ∈ (0, 1). From this, it follows that

P

(
1
α

≥ σ2∑
(xi − x̄)2

≥ 1
β

)
= Q ⇐⇒ P

(∑
(xi − x̄)2

β
≤ σ2 ≤

∑
(xi − x̄)2

α

)
= Q

and the latter provides a confidence interval for σ2.
We ought to choose α and β so as to minimise the length of the interval

[α−1, β−1]. The chi-square is an asymmetric distribution, so it is tedious to do so.
The distribution becomes increasingly symmetric as the sample size n increases,
and so, for large values of n, we may choose α and β to demarcate equal areas
within the two tails of the distribution.

The confidence interval for the ratio of two variances. Imagine a treatment
that affects the variance of a normal population. We might also wish to allow for
the possibility that the mean is also affected. Let xi ∼ N(µx, σ2

x); i = 1, . . . , n
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be a random sample taken from the population before treatment and let yj ∼
N(µy, σ2

y); j = 1, . . . , m be a random sample taken after treatment. Then

∑ (xi − x̄)2

σ2
∼ χ2(n − 1) and

∑ (yj − ȳ)2

σ2
∼ χ2(m − 1),

are independent chi-squared variates, and hence

F =

{∑
(xi − x̄)2

σ2
x(n − 1)

/∑
(yj − ȳ)2

σ2
y(m − 1)

}
∼ F (n − 1, m − 1).

It is possible to find numbers α and β such that P (α ≤ F ≤ β) = Q, where
Q ∈ (0, 1) is some chose probability value. Given such values, we may make the
following probability statement:

P

(
α

∑
(yj − ȳ)2(n − 1)∑
(xi − x̄)2(m − 1)

≤
σ2

y

σ2
x

≤ β

∑
(yj − ȳ)2(n − 1)∑
(xi − x̄)2(m − 1)

)
= Q.
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