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STATISTICAL FOURIER ANALYSIS

The Fourier Representation of a Sequence

According to the basic result of Fourier analysis, it is always possible to
approximate an arbitrary analytic function defined over a finite interval of
the real line, to any desired degree of accuracy, by a weighted sum of sine
and cosine functions of harmonically increasing frequencies. The accuracy of
approximation increases with the number of functions within the sum.

Similar results apply in the case of sequences, which may be regarded as
functions mapping from the set of integers onto the real line. For a sample of
T observations y0, . . . , yT−1, it is possible to devise an expression in the form

(1) yt =
nX

j=0

n
αj cos(ωjt) + βj sin(ωjt)

o
,

wherein ωj = 2πj/T is a multiple of the fundamental frequency ω1 = 2π/T .
Thus, the elements of a finite sequence can be expressed exactly in terms of
sines and cosines. This expression is called the Fourier decomposition of yt and
the set of coefficients {αj ,βj ; j = 0, 1, . . . , n} are called the Fourier coefficients.

When T is even, we have n = T/2; and it follows that

(2)

sin(ω0t) = sin(0) = 0,
cos(ω0t) = cos(0) = 1,
sin(ωnt) = sin(πt) = 0,
cos(ωnt) = cos(πt) = (−1)t.

Therefore, equation (1) becomes

(3) yt = α0 +
n−1X

j=1

n
αj cos(ωjt) + βj sin(ωjt)

o
+ αn(−1)t.

When T is odd, we have n = (T − 1)/2; and then equation (1) becomes

(4) yt = α0 +
nX

j=1

n
αj cos(ωjt) + βj sin(ωjt)

o
.

In both cases, there are T nonzero coefficients amongst the set
{αj ,βj ; j = 0, 1, . . . , n}; and the mapping from the sample values to the co-
efficients constitutes a one-to-one invertible transformation.

In equation (3), the frequencies of the trigonometric functions range from
ω1 = 2π/T to ωn = π; whereas, in equation (4), they range from ω1 = 2π/T to
ωn = π(T − 1)/T . The frequency π is the so-called Nyquist frequency.
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Although the process generating the data may contain components of fre-
quencies higher than the Nyquist frequency, these will not be detected when
it is sampled regularly at unit intervals of time. In fact, the effects on the
process of components with frequencies in excess of the Nyquist value will be
confounded with those whose frequencies fall below it.

To demonstrate this, consider the case where the process contains a com-
ponent which is a pure cosine wave of unit amplitude and zero phase whose
frequency ω lies in the interval π < ω < 2π. Let ω∗ = 2π − ω. Then

(5)
cos(ωt) = cos

©
(2π − ω∗)t

™

= cos(2π) cos(ω∗t) + sin(2π) sin(ω∗t)
= cos(ω∗t);

which indicates that ω and ω∗ are observationally indistinguishable. Here,
ω∗ < π is described as the alias of ω > π.

The Spectral Representation of a Stationary Process

By allowing the value of n in the expression (1) to tend to infinity, it is
possible to express a sequence of indefinite length in terms of a sum of sine and
cosine functions. However, in the limit as n → ∞, the coefficients αj ,βj tend
to vanish. Therefore, an alternative representation in terms of differentials is
called for.

By writing αj = dA(ωj), βj = dB(ωj), where A(ω), B(ω) are step func-
tions with discontinuities at the points {ωj ; j = 0, . . . , n}, the expression (1)
can be rendered as

(6) yt =
X

j

n
cos(ωjt)dA(ωj) + sin(ωjt)dB(ωj)

o
.

In the limit, as n→∞, the summation is replaced by an integral to give

(7) y(t) =
Z π

0

n
cos(ωt)dA(ω) + sin(ωt)dB(ω)

o
.

Here, cos(ωt) and sin(ωt), and therefore y(t), may be regarded as infinite se-
quences defined over the entire set of positive and negative integers.

Since A(ω) and B(ω) are discontinuous functions for which no derivatives
exist, one must avoid using α(ω)dω and β(ω)dω in place of dA(ω) and dB(ω).
Moreover, the integral in equation (7) is a Fourier–Stieltjes integral.

In order to derive a statistical theory for the process that generates y(t),
one must make some assumptions concerning the functions A(ω) and B(ω).
So far, the sequence y(t) has been interpreted as a realisation of a stochastic
process. If y(t) is regarded as the stochastic process itself, then the functions
A(ω), B(ω) must, likewise, be regarded as stochastic processes defined over
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the interval [0,π]. A single realisation of these processes now corresponds to a
single realisation of the process y(t).

The first assumption to be made is that the functions dA(ω) and dB(ω)
represent a pair of stochastic processes of zero mean which are indexed on the
continuous parameter ω. Thus

(8) E
©
dA(ω)

™
= E

©
dB(ω)

™
= 0.

The second and third assumptions are that the two processes are mutu-
ally uncorrelated and that non-overlapping increments within each process are
uncorrelated. Thus

(9)
E

©
dA(ω)dB(λ)

™
= 0 for all ω,λ,

E
©
dA(ω)dA(λ)

™
= 0 if ω 6= λ,

E
©
dB(ω)dB(λ)

™
= 0 if ω 6= λ.

The final assumption is that the variance of the increments is given by

(10)
V

©
dA(ω)

™
= V

©
dB(ω)

™
= 2dF (ω)
= 2f(ω)dω.

We can see that, unlike A(ω) and B(ω), F (ω) is a continuous differentiable
function. The function F (ω) and its derivative f(ω) are the spectral distribu-
tion function and the spectral density function, respectively.

In order to express equation (7) in terms of complex exponentials, we may
define a pair of conjugate complex stochastic processes:

(11)
dZ(ω) =

1
2
©
dA(ω)− idB(ω)

™
,

dZ∗(ω) =
1
2
©
dA(ω) + idB(ω)

™
.

Also, we may extend the domain of the functions A(ω), B(ω) from [0,π] to
[−π,π] by regarding A(ω) as an even function such that A(−ω) = A(ω) and by
regarding B(ω) as an odd function such that B(−ω) = −B(ω). Then, there is

(12) dZ∗(ω) = dZ(−ω).

From conditions under (9), it follows that

(13)
E

©
dZ(ω)dZ∗(λ)

™
= 0 if ω 6= λ,

E{dZ(ω)dZ∗(ω)} = f(ω)dω.
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These results may be used to reexpress equation (7) as

(14)

y(t) =
Z π

0

Ω
(eiωt + e−iωt)

2
dA(ω)− i

(eiωt − e−iωt)
2

dB(ω)
æ

=
Z π

0

Ω
eiωt {dA(ω)− idB(ω)}

2
+ e−iωt {dA(ω) + idB(ω)}

2

æ

=
Z π

0

Ω
eiωtdZ(ω) + e−iωtdZ∗(ω)

æ
.

When the integral is extended over the range [−π,π], this becomes

(15) y(t) =
Z π

−π
eiωtdZ(ω).

This is commonly described as the spectral representation of the process y(t).

The Autocovariances and the Spectral Density Function

The sequence of the autocovariances of the process y(t) may be expressed
in terms of the spectrum of the process. From equation (15), it follows that
the autocovariance yt at lag τ = t− k is given by

(16)

γτ = C(yt, yk) = E

ΩZ

ω
eiωtdZ(ω)

Z

λ
e−iλkdZ(−λ)

æ

=
Z

ω

Z

λ
eiωte−iλkE{dZ(ω)dZ∗(λ)}

=
Z

ω
eiωτE{dZ(ω)dZ∗(ω)}

=
Z

ω
eiωτf(ω)dω.

Here the final equalities are derived by using the results (12) and (13). This
equation indicates that the Fourier transform of the spectrum is the autoco-
variance function.

The inverse mapping from the autocovariances to the spectrum is given by

(17)

f(ω) =
1
2π

∞X

τ=−∞
γτe−iωτ

=
1
2π

n
γ0 + 2

∞X

τ=1

γτ cos(ωτ)
o
.

This function is directly comparable to the periodogram of a data sequence.
However, the periodogram has T empirical autocovariances c0, . . . , cT−1 in place
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of an indefinite number of theoretical autocovariances. Also, it differs from the
spectrum by a scalar factor of 4π. In many texts, equation (17) serves as the
primary definition of the spectrum.

To demonstrate the relationship which exists between equations (16) and
(17), we may substitute the latter into the former to give

(18)

γτ =
Z π

−π
eiωτ

n 1
2π

∞X

τ=−∞
γτe−iωτ

o
dω

=
1
2π

∞X

κ=−∞
γκ

Z π

−π
eiω(τ−κ)dω.

From the fact that

(19)
Z π

−π
eiω(τ−κ)dω =

Ω 2π, if κ = τ ;

0, if κ 6= τ ,
it can be seen that the RHS of the equation reduces to γτ . This serves to show
that equations (16) and (17) do indeed represent a Fourier transform and its
inverse.

The essential interpretation of the spectral density function is indicated by
the equation

(20) γ0 =
Z

ω
f(ω)dω,

which comes from setting τ = 0 in equation (16). This equation shows how the
variance or ‘power’ of y(t), which is γ0, is attributed to the cyclical components
of which the process is composed.

It is easy to see that a flat spectrum corresponds to the autocovariance
function which characterises a white-noise process ε(t). Let fε = fε(ω) be the
flat spectrum. Then, from equation (16), it follows that

(21)
γ0 =

Z π

−π
fε(ω)dω

= 2πfε,

and, from equation (16), it als0 follows that

(22)

γτ =
Z π

−π
fε(ω)eiωτdω

= fε

Z π

−π
eiωτdω

= 0.
These are the same as the conditions that serve to define a white-noise process.
When the variance is denoted by σ2

ε , the expression for the spectrum of the
white-noise process becomes

(23) fε(ω) =
σ2

ε

2π
.
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