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THE FOURIER DECOMPOSITION OF A TIME SERIES

In spite of the notion that a regular trigonometrical function is an inappropriate
means for modelling an economic cycle other than a seasonal fluctuation, there
are good reasons for explaining a data sequence in terms of such functions.

The Fourier decomposition of a series is a matter of explaining the series
entirely as a composition of sinusoidal functions. Thus it is possible to represent
the generic element of the sample as

(1) yt =
n∑

j=0

{
αj cos(ωjt) + βj sin(ωjt)

}
.

Assuming that T = 2n is even, this sum comprises T functions whose frequen-
cies

(2) ωj =
2πj

T
, j = 0, . . . , n =

T

2

are at equally spaced points in the interval [0, π].
As we might infer from our analysis of a seasonal fluctuation, there are

as many nonzeros elements in the sum under (1) as there are data points,
for the reason that two of the functions within the sum—namely sin(ω0t) =
sin(0) and sin(ωnt) = sin(πt)—are identically zero. It follows that the mapping
from the sample values to the coefficients constitutes a one-to-one invertible
transformation. The same conclusion arises in the slightly more complicated
case where T is odd.

The angular velocity ωj = 2πj/T relates to a pair of trigonometrical com-
ponents which accomplish j cycles in the T periods spanned by the data. The
highest velocity ωn = π corresponds to the so-called Nyquist frequency. If a
component with a frequency in excess of π were included in the sum in (1), then
its effect would be indistinguishable from that of a component with a frequency
in the range [0, π]

To demonstrate this, consider the case of a pure cosine wave of unit am-
plitude and zero phase whose frequency ω lies in the interval π < ω < 2π. Let
ω∗ = 2π − ω. Then

(3)

cos(ωt) = cos
{
(2π − ω∗)t

}
= cos(2π) cos(ω∗t) + sin(2π) sin(ω∗t)
= cos(ω∗t);

which indicates that ω and ω∗ are observationally indistinguishable. Here,
ω∗ ∈ [0, π] is described as the alias of ω > π.
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For an illustration of the problem of aliasing, let us imagine that a person
observes the sea level at 6am. and 6pm. each day. He should notice a very
gradual recession and advance of the water level; the frequency of the cycle
being f = 1/28 which amounts to one tide in 14 days. In fact, the true frequency
is f = 1 − 1/28 which gives 27 tides in 14 days. Observing the sea level every
six hours should enable him to infer the correct frequency.

Calculation of the Fourier Coefficients

For heuristic purposes, we can imagine calculating the Fourier coefficients
using an ordinary regression procedure to fit equation (1) to the data. In
this case, there would be no regression residuals, for the reason that we are
‘estimating’ a total of T coefficients from T data points; so we are actually
solving a set of T linear equations in T unknowns.

A reason for not using a multiple regression procedure is that, in this case,
the vectors of ‘explanatory’ variables are mutually orthogonal. Therefore, T
applications of a univariate regression procedure would be appropriate to our
purpose.

Let cj = [c0j , . . . , cT−1,j ]′ and sj = [s0,j , . . . , sT−1,j ]′ represent vectors of
T values of the generic functions cos(ωjt) and sin(ωjt) respectively. Then there
are the following orthogonality conditions:

(4)
c′icj = 0 if i �= j,

s′isj = 0 if i �= j,

c′isj = 0 for all i, j.

In addition, there are the following sums of squares:

(5)

c′0c0 = c′ncn = T,

s′0s0 = s′nsn = 0,

c′jcj = s′jsj =
T

2
.

The ‘regression’ formulae for the Fourier coefficients are therefore

(6) α0 = (i′i)−1i′y =
1
T

∑
t

yt = ȳ,

(7) αj = (c′jcj)−1c′jy =
2
T

∑
t

yt cos ωit,

(8) βj = (s′jsj)−1s′jy =
2
T

∑
t

yt sinωjt.
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By pursuing the analogy of multiple regression, we can understand that
there is a complete decomposition of the sum of squares of the elements of y
which is given by

(9) y′y = α2
0i

′i +
∑

j

α2
jc

′
jcj +

∑
j

β2
j s′jsj .

Now consider writing α2
0i

′i = ȳ2i′i = ȳ′ȳ where ȳ′ = [ȳ, . . . , ȳ] is the vector
whose repeated element is the sample mean ȳ. It follows that y′y − α2

0i
′i =

y′y − ȳ′ȳ = (y − ȳ)′(y − ȳ). Therefore, we can rewrite the equation as

(10) (y − ȳ)′(y − ȳ) =
T

2

∑
j

{
α2

j + β2
j

}
=

T

2

∑
j

ρ2
j ,

and it follows that we can express the variance of the sample as

(11)

1
T

T−1∑
t=0

(yt − ȳ)2 =
1
2

n∑
j=1

(α2
j + β2

j )

=
2

T 2

∑
j

{(∑
t

yt cos ωjt

)2

+
(∑

t

yt sinωjt

)2
}

.

The proportion of the variance which is attributable to the component at fre-
quency ωj is (α2

j + β2
j )/2 = ρ2

j/2, where ρj is the amplitude of the component.
The number of the Fourier frequencies increases at the same rate as the

sample size T . Therefore, if the variance of the sample remains finite, and
if there are no regular harmonic components in the process generating the
data, then we can expect the proportion of the variance attributed to the
individual frequencies to decline as the sample size increases. If there is such
a regular component within the process, then we can expect the proportion of
the variance attributable to it to converge to a finite value as the sample size
increases.

In order provide a graphical representation of the decomposition of the
sample variance, we must scale the elements of equation (11) by a factor of T .
The graph of the function I(ωj) = (T/2)(α2

j +β2
j ) is know as the periodogram.

There are many impressive examples where the estimation of the peri-
odogram has revealed the presence of regular harmonic components in a data
series which might otherwise have passed undetected. One of the best-know
examples concerns the analysis of the brightness or magnitude of the star T.
Ursa Major. It was shown by Whittaker and Robinson in 1924 that this series
could be described almost completely in terms of two trigonometrical functions
with periods of 24 and 29 days.
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Figure 3. The periodogram of Wolfer’s Sunspot Numbers 1749–1924.

The attempts to discover underlying components in economic time-series
have been less successful. One application of periodogram analysis which was a
notorious failure was its use by William Beveridge in 1921 and 1923 to analyse
a long series of European wheat prices. The periodogram had so many peaks
that at least twenty possible hidden periodicities could be picked out, and this
seemed to be many more than could be accounted for by plausible explanations
within the realms of economic history.

Such findings seem to diminish the importance of periodogram analysis
in econometrics. However, the fundamental importance of the periodogram is
established once it is recognised that it represents nothing less than the Fourier
transform of the sequence of empirical autocovariances.

The Empirical Autocovariances

A natural way of representing the serial dependence of the elements of a
data sequence is to estimate their autocovariances. The empirical autocovari-
ance of lag τ is defined by the formula

(12) cτ =
1
T

T−1∑
t=τ

(yt − ȳ)(yt−τ − ȳ).

The empirical autocorrelation of lag τ is defined by rτ = cτ/c0 where c0, which
is formally the autocovariance of lag 0, is the variance of the sequence. The
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autocorrelation provides a measure of the relatedness of data points separated
by τ periods which is independent of the units of measurement.

It is straightforward to establish the relationship between the periodogram
and the sequence of autocovariances.

The periodogram may be written as

(13) I(ωj) =
2
T

[{ T−1∑
t=0

cos(ωjt)(yt − ȳ)
}2

+
{ T−1∑

t=0

sin(ωjt)(yt − ȳ)
}2

]
.

The identity
∑

t cos(ωjt)(yt − ȳ) =
∑

t cos(ωjt)yt follows from the fact that, by
construction,

∑
t cos(ωjt) = 0 for all j. Expanding the expression in (38) gives

(14)

I(ωj) =
2
T

{ ∑
t

∑
s

cos(ωjt) cos(ωjs)(yt − ȳ)(ys − ȳ)
}

+
2
T

{ ∑
t

∑
s

sin(ωjt) sin(ωjs)(yt − ȳ)(ys − ȳ)
}

,

and, by using the identity cos(A) cos(B) + sin(A) sin(B) = cos(A−B), we can
rewrite this as

(15) I(ωj) =
2
T

{ ∑
t

∑
s

cos(ωj [t − s])(yt − ȳ)(ys − ȳ)
}

.

Next, on defining τ = t − s and writing cτ =
∑

t(yt − ȳ)(yt−τ − ȳ)/T , we can
reduce the latter expression to

(16) I(ωj) = 2
T−1∑

τ=1−T

cos(ωjτ)cτ ,

which is a Fourier transform of the sequence of empirical autocovariances.

An Appendix on Harmonic Cycles

Lemma 1. Let ωj = 2πj/T where j ∈ {0, 1, . . . , T/2} if T is even and j ∈
{0, 1, . . . , (T − 1)/2} if T is odd. Then

T−1∑
t=0

cos(ωjt) =
T−1∑
t=0

sin(ωjt) = 0.

Proof. By Euler’s equations, we have

T−1∑
t=0

cos(ωjt) =
1
2

T−1∑
t=0

exp(i2πjt/T ) +
1
2

T−1∑
t=0

exp(−i2πjt/T ).
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By using the formula 1 + λ + · · · + λT−1 = (1 − λT )/(1 − λ), we find that

T−1∑
t=0

exp(i2πjt/T ) =
1 − exp(i2πj)

1 − exp(i2πj/T )
.

But exp(i2πj) = cos(2πj) + i sin(2πj) = 1, so the numerator in the expression
above is zero, and hence

∑
t exp(i2πj/T ) = 0. By similar means, we can show

that
∑

t exp(−i2πj/T ) = 0; and, therefore, it follows that
∑

t cos(ωjt) = 0. An
analogous proof shows that

∑
t sin(ωjt) = 0.

Lemma 2. Let ωj = 2πj/T where j ∈ 0, 1, . . . , T/2 if T is even and j ∈
0, 1, . . . , (T − 1)/2 if T is odd. Then

(a)
T−1∑
t=0

cos(ωjt) cos(ωkt) =

{
0, if j �= k;
T
2 , if j = k.

(b)
T−1∑
t=0

sin(ωjt) sin(ωkt) =

{
0, if j �= k;
T
2 , if j = k.

(c)
T−1∑
t=0

cos(ωjt) sin(ψkt) = 0 ifj �= k.

Proof. From the formula cosA cos B = 1
2{cos(A + B) + cos(A−B)} we have

T−1∑
t=0

cos(ωjt) cos(ωkt) =
1
2

∑
{cos([ωj + ωk]t) + cos([ωj − ψk]t)}

=
1
2

T−1∑
t=0

{cos(2π[j + k]t/T ) + cos(2π[j − k]t/T )} .

We find, in consequence of Lemma 1, that if j �= k, then both terms on the RHS
vanish, and thus we have the first part of (a). If j = k, then cos(2π[j−k]t/T ) =
cos 0 = 1 and so, whilst the first term vanishes, the second terms yields the
value of T under summation. This gives the second part of (a).

The proofs of (b) and (c) follow along similar lines.
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