LECTURE 6

Dynamic Regressions

Distributed Lags

In an experimental situation, where we might be investigating the effects
of an input variable z on a mechanism or on an organism, we can set the
value of x and then wait until the system has achieved an equilibrium before
recording the corresponding value of the output variable y. In economics, we
are often interested in the dynamic response of y to changes in x; and, given
that x is continuously changing, the system might never reach an equilibrium.
Moreover, it is in the nature of economic relationships that the adjustment of
y to changes in x is distributed widely through time.

In the early days of econometrics, attempts were made to model the dy-
namic responses primarily by including lagged values of z on the RHS of the
regression equation; and the so-called distributed-lag model was commonly
adopted which takes the form of

(250) y(t) = Boa(t) + Bra(t — 1)+ -+ Ba(t — k) + £(0).

Here the sequence of coefficients {(y,[1,..., 0k} constitutes the impulse-
response function of the mapping from x(t) to y(t). That is to say, if we
imagine that, on the input side, the signal z(¢) is a unit impulse of the form

(251) z(t)={...,0,1,0,...,0,0...}

which has zero values at all but one instant, then the output of the transfer
function would be

(252) T(t):{...,O,ﬁo,ﬁl,...,ﬁk,o,...}.

It is difficult to specify a priori what the form of a lag response will be in
any particular econometric context. Nevertheless, there is a common presump-
tion that the coefficients will all be of the same sign, and that, if this sign is

29



D.S.G. POLLOCK: INTRODUCTORY ECONOMETRICS

positive, their values will rise rapidly to a peak before declining gently to zero.
In that case, the sequence of coefficients bears a useful analogy to the ordinates
of a discrete probability distribution; and one may speak of such measures as
the mean lag and the median lag.

Whilst this may seem to be a reasonable presumption, it ignores the pos-
sibility of overshooting. Imagine, for example, that the impulse represents a
windfall increase in income which is never repeated. A consumer may respond
rapidly by increasing his expenditure; and, if he does so in the expectation of a
permanently increased income, he will soon find himself in debt. His response,
when he recognises that his good fortune has been temporary, should be to
save; and, if he has overspent, then his retrenchment will lead him temporarily
to a lower level of consumption than he was accustomed to before the increase.

Another concept which helps us to understand the nature of a dynamic
response is the step-response of the transfer function. We may imagine that the
input sequence is zero-valued up to a point in time when it assumes a constant
unit value:

(253) z(t)=1{...,0,1,1,...,1,1...}.

The output of the transfer function would be the sequence

(254) s(t):{...,0,30,51,...,sk,sk,...},
where

so = Do,
(255) s1=Po + b,

Sk;ﬁ()‘f’ﬁl"‘""f’ﬁkr

Here the value s, which is attained by the sequence when the full adjustment
has been accomplished after k periods, is called the (steady-state) gain of the
transfer function; and it is denoted by v = s;. The gain represents the amount
by which y would increase, in the long run, if z, which has been constant
hitherto, were to increase in value by one unit and to remain constant thereafter.
A problem with the distributed-lag formulation of equation (250) is that it
is profligate in its use of parameters; and given that, in a dynamic econometric
context, the sequence x(t) is likely to show strong serial correlation, we may
expect to encounter problems of multicollinearity—which is to say that the
estimates of the parameters will be ill-determined with large standard errors.
There are several ways of constructing a lag scheme which has a parsi-
monious parametrisation. One of them is to make the parameters 3y, ..., Ok
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functionally dependent upon a smaller number of latent parameters 6y, ..., 0,
where g < k. For example, in the Almon lag scheme, the parameters [y, . . ., Ok
are the ordinates of a polynomial of degree g.

The Geometric Lag Structure

Another early approach to the problem of defining a lag structure which
depends on a limited number of parameters was that of Koyk who proposed
the following geometric lag scheme:

(256) y(t) = B{z(t) + gx(t — 1) + ¢*z(t — 2) + -+ } +&(2).

Here, although we have an infinite set of lagged values of x(t), we have only
two parameters which are 8 and ¢.

It can be seen that the impulse-response function of the Koyk model takes
a very restricted form. It begins with an immediate response to the impulse.
Thereafter, the response dies away in the manner of a convergent geometric
series, or of a decaying exponential function of the sort which also characterises
processes of radioactive decay.

The values of the coefficients in the Koyk distributed-lag scheme tend
asymptotically to zero; and so it can said that the full response is never accom-
plished in a finite time. To characterise the speed of response, we may calculate
the median lag which is analogous to the half-life of a process of radioactive
decay. The gain of the transfer function, which is obtained by summing the
geometric series {3, #3, *f, ...}, has the value of

(257) ol L

=15

To make the Koyk model amenable to estimation, we might first transform
the equation. By lagging the equation by one period and multiplying the result
by ¢, we get

(258) ¢yt —1) = B{oa(t — 1) + ¢*x(t — 2) + ¢°x(t — 3) + - } + ¢e(t — 1).
Taking the latter from (256) gives

(259) y(t) — py(t — 1) = Ba(t) + {e(t) — ¢e(t — 1)}

With the use of the lag operator, we can write this as

(260) (1= ¢L)y(t) = Bz(t) + (1 — ¢L)e(t),

of which the rational form is

ﬁ xXr
1— 6L

(261) y(t) = (t) +e(t).
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In fact, by using the expansion

B
(262) 1—oL

z(t) = {14+ oL + ¢*L* + - }z(2)
= ﬁ{x(t) + ¢t — 1) + ¢*x(t —2) + - }

within equation (261), we can recover the original form under (256).

Equation (259) is not amenable to consistent estimation by ordinary least
squares regression. The reason is that the composite disturbance term {e(t) —
¢e(t — 1)} is correlated with the lagged dependent variable y(t — 1)—since the
elements of e(t — 1) form part of the contemporaneous elements of y(t — 1).
This conflicts with one of the basic conditions for the consistency of ordinary
least-squares estimation which is that the disturbances must be uncorrelated
with the regressors. Nevertheless, there is available a wide variety of simple
procedures for estimating the parameters of the Koyk model consistently.

One of the simplest procedures for estimating the geometric-lag scheme
is based on the original form of the equation under (256). In view of that
equation, we may express the elements of y(¢) which fall within the sample as

[e.e]
Yt = ﬁz ¢i5€t—i + ¢

1=0

263 =
(263) =0¢" + 3 Z O'Ti_i + €y

1=0
= 9¢t + ﬁzt + &¢.

Here
(264) 0= B{wo+dr1+ ot )

is a nuisance parameter which embodies the presample elements of the sequence
x(t), whilst

(265) Zt :$t+¢xt—1 -+ ""|‘(bt_1£€1

is an explanatory variable compounded from the observations x;, x¢_1,...,T1
and from the value attributed to ¢.

The procedure for estimating ¢ and [ which is based on equation (263)
involves running a number of trial regressions with differing values of ¢ and
therefore of the regressors ¢! and z; ¢t = 1,...,T. The definitive estimates are
those which correspond to the least value of the residual sum of squares.

62



6: DYNAMIC REGRESSIONS

It is possible to elaborate this procedure so as to obtain the estimates of
the parameters of the equation

3 1

(266) vt = T2 + 1o

e(t),

which has a first-order autoregressive disturbance scheme in place of the white-
noise disturbance to be found in equation (261). An estimation procedure may
be devised which entails searching for the optimal values of ¢ and p within the
square defined by —1 < p,¢ < 1. There may even be good reason to suspect
that these values will be found within the quadrant defined by 0 < p, ¢ < 1.

The task of finding estimates of ¢ and p is assisted by the fact that we can
afford, at first, to ignore autoregressive nature of the disturbance process while
searching for the optimum value of the systematic parameter ¢.

When a value has been found for ¢, we shall have residuals which are con-
sistent estimates of the corresponding disturbances. Therefore, we can proceed
to fit the AR(1) model to the residuals in the knowledge that we will then
be generating a consistent estimate of the parameter p; and, indeed, we can
might use ordinary least-squares regression for this purpose. Having found the
estimate for p, we should wish to revise our estimate of ¢.

Lagged Dependent Variables

In spite of the relative ease with which one may estimate the Koyk model,
it has been common throughout the history of econometrics to adopt an even
simpler approach in the attempt to model the systematic dynamics.

Perhaps the easiest way of setting a regression equation in motion is to
include a lagged value of the dependent variable on the RHS in the company
of the explanatory variable x. The resulting equation has the form of

(267) y(t) = oy(t — 1) + Ba(t) +£(t).

In terms of the lag operator, this is

(268) (1 —¢L)y(t) = Bu(t) + (1),
of which the rational form is

1
(269) y(t) = : _6¢Lx(t) + . (bLg(t)'

The advantage of equation (267) is that it is amenable to estimation by
ordinary least-squares regression. Although the estimates will be biased in
finite samples, they are, nevertheless, consistent in the sense that they will
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tend to converge upon the true values as the sample size increases—provided,
of course, that the model corresponds to the processes underlying the data.

The model with a lagged dependent variable generates precisely the same
geometric distributed-lag schemes as does the Koyk model. This can be con-
firmed by applying the expansion given under (262) to the rational form of
the present model given in equation (269) and by comparing the result with
(256). The comparison of equation (269) with the corresponding rational equa-
tion (261) for the Koyk model shows that we now have an AR(1) disturbance
process described by the equation

(270) n(t) = ¢n(t —1) +(t)

in place of a white-noise disturbance &(t).

This might be viewed as an enhancement of the model were it not for the
constraint that the parameter ¢ in the systematic transfer function is the same
as the parameter ¢ in the disturbance transfer function. For such a constraint
is appropriate only if it can be argued that the disturbance dynamics are the
same as the systematic dynamics—and they need not be.

To understand the detriment of imposing the constraint, let us imagine
that the true model is of the form given under (266) with p and ¢ taking very
different values. Imagine that, nevertheless, it is decided to fit the equation
under (269). Then the estimate of ¢ will be a biased and an inconsistent one
whose value falls somewhere between the true values of p and ¢ in equation
(266). If this estimate of ¢ is taken to represent the systematic dynamics of
the model, then our inferences about such matters as the speed of convergence
of the impulse response and the value of the steady-state gain are liable to be
misleading.

Partial Adjustment and Adaptive Expectations

There are some tenuous justifications both for the Koyk model and for the
model with a lagged dependent variable which arise from economic theory.
Consider a partial-adjustment model of the form

(271) y(t) = Ay} + (1= Nyt — 1) +e(t),

where, for the sake of a concrete example, y(t) is current consumption, x(t)
is disposable income and vz (t) = y*(t) is “desired”consumption. Here we
are supposing that habits of consumption persist, so that what is consumed
in the current period is a weighted combination of the previous consumption
and present desired consumption. The weights of the combination depend on
the partial-adjustment parameter A € (0,1]. If A = 1, then the consumers
adjust their consumption instantaneously to the desired value. As A — 0,
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their consumption habits become increasingly persistent. When the notation
M = (1—-¢)y = f and (1 — \) = ¢ is adopted, equation (271) becomes
identical to equation (267) which relates to a simple regression model with a
lagged dependent variable.

An alternative model of consumers’ behaviour derives from Friedman’s Per-
manent Income Hypothesis. In this case, the consumption function is specified
as

(272) y(t) = yz*(t) + (1),
where
()= (1—¢){z(t) + pz(t — 1) + $*x(t —2) +--- }
(273) 19
“1—¢Lx“)

is the value of permanent or expected income which is formed as a geometrically
weighted sum of all past values of income. Here it is asserted that a consumer
plans his expenditures in view of his customary income, which he assesses by
taking a long view over all of his past income receipts.

An alternative expression for the sequence of permanent income is obtained
by multiplying both sides of (273) by 1 — ¢L and rearranging the result. Thus

(274) r*(t) — 2 (t - 1) ¢){z(t) —z*(t—1)},

which depicts the change of permanent income as a fraction of the prediction
error z(t) — x*(t — 1). The equation depicts a so-called adaptive-expectations
mechanism.

On substituting the expression for permanent income under (273) into the
equation (272) of the consumption function, we get

(1-9)
T L

(275) y(t) = x(t) + ().

When the notation v(1 — ¢) = (8 is adopted, equation (275) becomes identical
to the equation (261) of the Koyk model.

Error-Correction Forms, and Nonstationary Signals

Many econometric data sequences are nonstationary, with trends that per-
sist for long periods. However, the usual linear regression procedures presup-
pose that the relevant moment matrices will converge asymptotically to fixed
limits as the sample size increases. This cannot happen if the data are trended,
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in which case, the standard techniques of statistical inference will not be ap-
plicable.

In order to apply the regression procedures successfully, it is necessary to
find some means of reducing the data to stationarity. A common approach is
to subject the data to as many differencing operations as may be required to
achieve stationarity. Often, only a single differencing is required.

A problem with differencing is that it tends to remove, or at least to
attenuate severely, some of the essential information regarding the behaviour
of economic agents. There may be processes of equilibration by which the
relative proportions of econometric variables are maintained over long periods
of time. The evidence of this will be lost in the process of differencing the data.

When the original undifferenced data sequences share a common trend,
the coefficient of determination in a fitted regression is liable to be high; but
it is often discovered that the regression model looses much of its explanatory
power when the differences of the data are used instead.

In such circumstances, one might use the so-called error-correction model.
The model depicts a mechanism whereby two trended economic variables main-
tain an enduring long-term proportionality with each other. Moreover, the data
sequences comprised by the model are stationary, either individually or in an
appropriate combination; and this enables us apply the standard procedures of
statistical inference that are available to models comprising data from station-
ary processes.

Consider taking y(t — 1) from both sides of the equation of (267) which
represents the first-order dynamic model. This gives

Vy(t) = y(t) — ylt — 1) = (& — Dylt — 1) + Be(t) + (1)
(276) :<1—¢>{ B m(t)—y(t—l>}+e<t>

1-¢
=Myz(t) —y(t =1} +e(t),

where A\ = 1 — ¢ and where ~ is the gain of the transfer function as defined
under (257). This is the so-called error-correction form of the equation; and
it indicates that the change in y(t) is a function of the extent to which the
proportions of the series z(t) and y(t—1) differs from those which would prevail
in the steady state.

The error-correction form provides the basis for estimating the parameters
of the model when the signal series x(t) is trended or nonstationary. A pair
of nonstationary series that maintain a long-run proportionality are said to
be cointegrated. It is easy to obtain an accurate estimate of ~, which is the
coefficient of proportionality, simply by running a regression of y(t — 1) on z(t).

Once a value for v is available, the remaining parameter A may be es-
timated by regressing Vy(t) upon the composite variable {yz(t) — y(t — 1)}.
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However, if the error-correction model is an unrestricted reparametrisation of
an original model in levels, then its parameters can be estimated by ordinary
least-squares regression. The same estimates can also be inferred from the
least-squares estimates of the parameters of the original model in levels.

It is straightforward to derive an error-correction form for the more general
autoregressive distributed-lag model. The technique can be illustrated with the
following second-order model:

(277) y(t) = o1yt — 1) + gay(t — 2) + Box(t) + Srw(t — 1) + ().

The part ¢1y(t — 1) + ¢2y(t —2) comprising the lagged dependent variables can
be reparameterised as follows:

{o a1 Y2 Y= oy

Here, the matrix that postmultiplies the row vector of the parameters is the
inverse of the matrix that premultiplies the column vector of the variables. The
sum [ox(t) + f1x(t — 1) can be reparametrised, likewise, to become

R R P SR

If follows that equation (277) can be recast in the form of
(278) y(t) =0yt — 1)+ pVy(t — 1) + kx(t) + 0Vz(t) + e(t).

Taking y(t — 1) from both sides of this equation and rearranging it gives

Vy(t) = (1 - 0) { - - So(t) —y(t - 1)} + pVy(t — 1) + 6Va(t) + 2 (t)

=Ayz(t) —y(t — 1)} + pVy(t — 1)+ 6V(t) + e(t).

(279)

This is an elaboration of equation (267); and it includes the differenced se-
quences Vy(t — 1) and Vz(t). These are deemed to be stationary, as is the
composite error sequence yx(t) — y(t — 1).

Additional lagged differences can be added to the equation (279); and this
is tantamount to increasing the number of lags of the dependent variable y(t)
and the number of lags of the input variable z(¢) within equation (277).

Lagged Dependent Variables and Autoregressive Residuals

A common approach to building a dynamic econometric model is to begin
with a model with a single lagged dependent variable and, if this proves inad-
equate on account serial correlation in the residuals, to enlarge the model to
include an AR(1) disturbance process.
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The two equations

(280) y(t) = gy(t — 1) + Bx(t) + n(t)
and
(281) n(t) = pn(t —1) +<(?)

of the resulting model may be combined to form an equation which may be
expressed in the form

1

(282) (1= 6L)y(1) = fa(t) + ——7<()
or in the form
(283) (1 —oL)(1—pL)y(t) = B(1 — pL)x(t) +(t)

or in the rational from

3 1
(284) v ="+ T DT =0

Equation (283) can be envisaged as a restricted version of the equation

e(t).

(285) (1= d1L — ¢2L?)y(t) = (Bo + BrL)a(t) +(t)
wherein the lag-operator polynomials

1—¢1L —¢oL? = (1—-¢L)(1—pL)  and

286
(286) Bo+ 1L = p(1—pL)

have a common factor of 1 — pL.

Recognition of this fact has led to a certain model-building prescription.
It is maintained, by some authorities, that one should begin the model-building
procedure by estimating equation (285) as it stands. Then, one should apply
tests to the estimated model to ascertain whether the common-factor restric-
tion is justifiable. Only if the restriction is acceptable, should one then proceed
to estimate the model with a single lagged dependent variable and with autore-
gressive residuals. This strategy of model building is one which proceeds from
a general model to a particular model.

Notwithstanding such prescriptions, many practitioners continue to build
their models by proceeding in the reverse direction. That is to say, they begin
by estimating the equation under (268) which is a simple regression equation
with a single lagged dependent variable. Then they proceed to examine the
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results of tests of misspecification which might induce them to supplement their
model with a disturbance scheme. Therefore, their strategy of model building
is to proceed from a particular model to a more general model in the event of
a misspecification.

In is important to recognise that, when the regression model contains a
lagged dependent variable, it is no longer valid to use the Durbin—Watson
statistic to test for the presence of serial correlation amongst the disturbances.
The problem is that, if the disturbances are serially correlated, then the ap-
plication of ordinary least-squares regression to the equation no longer results
in consistent estimates of 3 and ¢. Therefore it is erroneous to imagine that
the regression residuals will provide adequate substitutes for the unobservable
disturbances if one is intent on determining the character of the latter.

The inconsistency of the ordinary least-squares estimates of the parameters
of equation (280) in attributable to the correlation of the disturbances of 7(t)
with the elements of y(¢ — 1) which assume the role of regressors. Thus, if n(t)
and y(t) are serially correlated sequences—which they clearly are in view of
equations (281) and (280) respectivey—and if the elements of n(t) form part
of the contemporaneous elements of y(t), then contemporaneous elements of
y(t — 1) and 7n(t) must be serially correlated.

There are ways of testing for the presence of serial correlation in the dis-
turbances of the regression model containing a lagged dependent variable which
are valid in large samples. Thus Durbin has suggested using the statistic

T
(287) h=r,| T-Tv(o)

wherein T is the sample size, r is the autocorrelation of the residuals defined
under (226) and V(¢) is the estimated variance of the coefficient associated
with the lagged dependent variable in the fitted equation. Notice that, in view
of (225), we may put (1 — d/2) ~ r in place of r. Under the null hypothesis
that there is no serial correlation amongst the disturbances, the distribution of
statistic h tends to the standard normal distribution. The statistic is undefined
if the quantity under the square-root sign is negative.

The h statistic is applicable only to cases where the regression model con-
tains the dependent variable lagged by one period. A statistic which serves the
same purpose as the h statistic and which is also available in a wider range
of circumstances is the Lagrange-multiplier test-statistic which generally dis-
tributed as a x? variate.
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