
    

MATHEMATICAL THEORY FOR SOCIAL SCIENTISTS

MATRIX ALGEBRA

By gathering the elements of the equation B = A−1 under (16) and (17), we
derive the following expression for the inverse of a 2× 2 matrix:

(18)

[
a11 a12

a21 a22

]−1

=
1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
.

Here the quantity a11a22 − a12a21 in the denominator of the scalar factor which
multiplies the matrix on the RHS is the so-called determinant of the original matrix
A denoted by det(A) or |A|. The inverse of the matrix A exist if and only if the
determinant has a nonzero value.

The formula above can be generalised to accommodate square matrices of an
arbitrary order n. However, the general formula rapidly becomes intractable as the
value of n increases. In the case of a matrix of order 3× 3, the inverse is given by

(19) A−1 =
1

|A|

 c11 −c21 c31

−c12 c22 −c32

c13 −c23 c33

 ,
where cij is the determinant of a submatrix of A formed by omitting the ith row
and the jth column, and where |A| is the determinant of A which is given by

(20)

|A| = a11c11 − a12c12 + a13c13

= a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
= a11

(
a22a33 − a23a32

)
− a12

(
a21a33 − a31a23

)
+ a13

(
a21a32 − a31a22

)
.

Already this is becoming unpleasantly complicated. The rules for the general case
can be found in textbooks of matrix algebra.

In fact, the general formula leads to a method of deriving the inverse matrix
which is inefficient from a computational point of view. It is both laborious and
prone to numerical rounding errors. The method of finding the inverse which is
used by the computer is usually that of Gaussian reduction which depends upon
the so-called elementary matrix transformations which are described below.

The basic rules affecting matrix inversion are as follows:

(21)

(i) The inverse of A−1 is A itself, that is (A−1)−1 = A,

(ii) The inverse of the transpose is the transpose of the inverse,

that is, (A′)−1 = (A−1)′,

(iii) If C = AB, then C−1 = B−1A−1.

The first of these comes directly from the definition of the inverse matrix whereby
AA−1 = A−1A = I. The second comes from comparing the equation (AA−1)′ =
(A−1)′A′ = I, which is the consequence of the reversal rule of matrix transposition,
with the equation A′(A′)−1 = (A′)−1A′ = I which is from the definition of the
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inverse of A′. The third rule, which is the reversal rule of matrix inversion, is
understood by considering the two equations which define the inverse of the product
AB:

(22)
(i) (AB)−1AB = B−1

{
A−1A

}
B = B−1B = I,

(ii) AB(AB)−1 = A
{
BB−1

}
A−1 = AA−1 = I.

One application of matrix inversion is to the problem of finding the solution
of a system of linear equations such as the system under (1) which is expressed in
summary matrix notation under (3). Here we are looking for the value of the vector
x of unknowns given the vector y of constants and the matrix A of coefficients. The
solution is indicated by the fact that

(23) If y = Ax and if A−1 exists, then A−1y = A−1Ax = x.

Example. Consider a pair of simultaneous equations written in matrix form:[
1 5
2 3

] [
x1

x2

]
=

[
−2
3

]
.

The solution using the formula for the inverse of 2× 2 matrix found under (18) is

(24)

[
x1

x2

]
=
−1

7

[
3 −5
−2 1

] [
−2
3

]
=

[
3
−1

]
.

We have not used the formula under (19) to find the solution of the system of three
equations under (4) because there is an easier way which depends upon the method
of Gaussian elimination.

Elementary Operations

There are three elementary row operations which serve, in a process described
as Gaussian elimination, to reduce an arbitrary matrix to one which has units and
zeros on its principal diagonal and zeros everywhere else. We shall illustrate these
elementary operations in the context of a 2 × 2 matrix; but there should be no
difficulty in seeing how they may be applied to square matrices of any order.

The first operation is the multiplication of a row of the matrix by a scalar
factor:

(25)

[
λ 0
0 1

] [
a11 a12

a21 a22

]
=

[
λa11 λa12

a21 a22

]
.

The second operation is the addition of one row to another, or the subtraction of
one row from another:

(26)

[
1 0
−1 1

] [
a11 a12

a21 a22

]
=

[
a11 a12

a21 − a11 a22 − a12

]
.
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The third operation is the interchange of one row with another:

(27)

[
0 1
1 0

] [
a11 a12

a21 a22

]
=

[
a21 a22

a11 a12

]
.

If the matrix A possesses an inverse, then, by the application of a succession of
such operations, one may reduce it to the identity matrix. Thus, if the elementary
operations are denoted by Ej ; j = 1, . . . , q, then we have

(28)
{Eq · · ·E2E1}A = I or, equivalently, BA = I,

where B = Eq · · ·E2E1 = A−1.

Example. A 2×2 matrix which possesses an inverse may be reduced to the identity
matrix by applying four elementary operations:

(29)

[
1/α11 0

0 1

] [
α11 α12

α21 α22

]
=

[
1 α12/α11

α21 α22

]
,

(30)

[
1 0
−β21 1

] [
1 β12

β21 β22

]
=

[
1 β12

0 β22 − β21β12

]
,

(31)

[
1 0
0 1/γ22

] [
1 γ12

0 γ22

]
=

[
1 γ12

0 1

]
,

(32)

[
1 −γ12

0 1

] [
1 γ12

0 1

]
=

[
1 0
0 1

]
.

Here, we have expressed the results of the first two opertations in new symbols
in the interests of notational simplicity. Were we to retain the original notation
throughout, then we could obtain the expression for the inverse matrix by forming
the product of the four elementary matrices.

It is notable that, in this example, we have used only the first two of the three
elementary operations. The third would be called for if we were confronted by a
matrix in the form of

(33)

[
α β
γ 0

]
;

for then we should wish to reorder the rows before embarking on the process of
elimination.

Example. Consider the equations under (4) which can be written in matrix format
as

(34)

 1 3 2
4 5 −6
3 2 1

x1

x2

x3

 =

 9
8
8

 .
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Taking four times the first equation from the second equation and three times the
first equation from the third gives

(35)

 1 3 2
0 −7 −14
0 −7 −5

x1

x2

x3

 =

 9
−28
−19

 .
Taking the second equation of this transformed system from the third gives

(36)

 1 3 2
0 −7 −14
0 0 9

x1

x2

x3

 =

 9
−28

9

 .
An equivalent set of equations is obtained by dividing the second equation by −7
and the third equation by 9:

(37)

 1 3 2
0 1 2
0 0 1

x1

x2

x3

 =

 9
4
1

 .
Now we can solve the system by backsubstitution. That is to say

(38)

x3 = 1,

x2 = 4− 2x3 = 2,

x3 = 9− 3x2 − 2x3 = 1.

Exercise. As an exercise, you are asked to find the matrix which transforms the
equations under (34) to the equations of (35) and the matrix which transforms the
latter into the final equation under (37).

Geometric Vectors in the Plane

A vector of order n, which is defined as an ordered set of n real numbers, can
be regarded as point in a space of n dimensions. It is difficult to draw pictures in
three dimensions and it is impossible directly to envisage spaces of more than thee
dimensions. Therefore, in discussing the geometric aspects of vectors and matrices,
we shall confine ourselves to the geometry of the two-dimensional plane.

A point in the plane is primarily a geometric object; but, if we introduce a
coordinate system, then it may be described in terms of an ordered pair of numbers.

In constructing a coordinate system, it is usually convenient to introduce two
perpendicular axes and to use the same scale of measurement on both axes. The
point of intersection of these axes is called the origin and it is denoted by 0. The
point on the first axis at a unit distance from the origin 0 is denoted by e1 and the
point on the second axis at a unit distance from 0 is denoted by e2.

An arbitrary point a in the plane can be represented by its coordinates a1

and a2 relative to these axes. The coordinates are obtained by the perpendicular
projections of the point onto the axes. If we are prepared to identify the point with

8



     

MATHEMATICAL THEORY FOR SOCIAL SCIENTISTS

its coordinates, then we may write a = (a1, a2). According to this convention, we
may also write e1 = (1, 0) and e2 = (0, 1).

a1

a2 a = (a1, a2)

e2 = (0, 1)

e1 = (1, 0)

Figure 1. The coordinates of a vector a relative to two perpendicular axes

The directed line segment running from the origin 0 to the point a is described
as a geometric vector which is bound to the origin. The ordered pair (a1, a2) = a
may be described as an algebraic vector. In fact, it serves little purpose to make
a distinction between these two entities—the algebraic vector and the geometric
vector—which may be regarded hereafter as alternative representations of the same
object a. The unit vectors e1 = (1, 0) and e2 = (0, 1), which serve, in fact, to define
the coordinate system, are described as the basis vectors.

The sum of two vectors a = (a1, a2) and b = (b1, b2) is defined by

(39)
a+ b = (a1, a2) + (b1, b2)

= (a1 + b1, a2 + b2).

The geometric representation of vector addition corresponds to a parallelogram of
forces. Forces, which have both magnitude and direction, may be represented by
directed line segments whose lengths correspond to the magnitudes. Hence forces
may be described as vectors; and, as such, they obey the law of addition given
above.

0

b

a

a + b

Figure 2. The parallelogram law of vector addition
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If a = (a1, a2) is a vector and λ is a real number, which is also described as a
scalar, then the product of a and λ is defined by

(40)
λa = λ(a1, a2)

= (λa1, λa2).

The geometric counterpart of multiplication by a scalar is a stretching or a con-
traction of the vector which affects its length but not its direction.

The axes of the coordinate system are provided by the lines E1 = {λe1} and
E2 = {λe2} which are defined by letting λ take every possible value. In terms of the
basis vectors e1 = (1, 0) and e2 = (0, 1), the point a = (a1, a2) can be represented
by

(41)
a = (a1, a2)

= a1e1 + a2e2.

Norms and Inner Products.

The length or norm of a vector a = (a1, a2) is

(42) ‖a‖ =
√
a2

1 + a2
2;

and this may be regarded either as an algebraic definition or as a consequence of
the geometric theorem of Pythagoras.

The inner product of the vectors a = (a1, a2) and b = (b1, b2) is the scalar
quantity

(43) a′b = [ a1 a2 ]

[
b1
b2

]
= a1b1 + a2b2.

This is nothing but the product of the matrix a′ of order 1× 2 and the matrix b of
order 2× 1.

a1b1

a2

b2

θ

θ

a

b

Figure 3. Two vectors a = (a1, a2) and b = (b1, b2) which

are at right angles have a zero-valued inner product.
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The vectors a, b are said to be mutually orthogonal if a′b = 0. It can be shown
by simple trigonometry that a, b fulfil the condition of orthogonality if and only
if the line segments are at right angles. Indeed, this condition is indicated by the
etymology of the word orthogonal—Gk. orthos right, gonia angle.

In the diagram, we have a vector a of length p =
√
a2

1 + a2
2 and a vector b of

length q =
√
b21 + b22. The vectors are at right angles. By trigonometry, we find

that

(44)

a1 = p cos θ,

a2 = p sin θ,

b1 = −q sin θ,

b2 = q cos θ.

Therefore

(45) a′b = [ a1 a2 ]

[
b1
b2

]
= a1b1 + a2b2 = 0.

Simultaneous Equations

Consider the equations

(46)
ax+ by = e,

cx+ dy = f,

which describe two lines in the plane. The coordinates (x, y) of the point of inter-
section of the lines is the algebraic solution of the simultaneous equations.

The equations may be written in matrix form as

(47)

[
a b
c d

] [
x
y

]
=

[
e
f

]
.

The necessary and sufficient condition for the existence of a unique solution is that

(48) Det

[
a b
c d

]
= ad− bc 6= 0.

Then the solution is given by

(49)

[
x
y

]
=

[
a b
c d

]−1 [
e
f

]
=

1

ad− bc

[
d −b
−c a

] [
e
f

]
.
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We may prove that

(50)
Det

[
a b
c d

]
= 0 if and only if

a = λc and b = λd for some scalar λ.

Proof. From a = λc and b = λd we derive, by cross multiplication, the identity
λad = λbc, whence ad−bc = 0 and the determinant is zero. Conversely, if ad−bc =
0, then we can deduce that a = (b/d)c and b = (a/c)d together with the identity
(b/d) = (a/c) = λ, which implies that a = λc and b = λd.

When the determinant is zero-valued one of two possibilities ensues. The first
in when e = λf . Then the two equations describe the same line and there is infinite
number of solutions, with each solution corresponding to a point on the line. The
second possibility is when e 6= λf . Then the equations describe parallel lines and
there are no solutions. Therefore, we say that the equations are inconsistent.

It is appropriate to end this section by giving a geometric interpretation of

(51) Det

[
a1 a2

b1 b2

]
= a1b2 − a2b1.

This is simply the area enclosed by the parallelogram of forces which is formed by
adding the vectors a = (a1, a2) and b = (b1, b2). The result can be established by
subtracting triangles from the rectangle in the accompanying figure to show that
the area of the shaded region is 1

2 (a1b2 − a2b1). The shaded region comprises half
of the area which is enclosed by the parallelogram of forces.

a1b1

a2

b2

b

a

Figure 4. The determinant corresponds to the

area enclosed by the parallelogram of forces.
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