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CONSTRAINED OPTIMISATION OF BIVARIATE FUNCTIONS

Constrained Optimisation of a Bivariate Function

It has been said that one of the defining problems of economics is that of
the optimisation of functions subject to constraints. Examples are provided
both by the theory of consumer demand and by the theory of the firm.

The consumers who are depicted by microeconomic theory are supposed
to be maximising their personal utilities by choosing freely from amongst the
available goods and services while facing the constraint of their limited budgets.

A manufacturer is depicted as maximising his profits subject to the con-
straints of the available technology which enables him to transform his raw
materials into finished products. He may face other constraints as well, such as
the shortage of capital funds or his inability, in the short run, to recruit skilled
workers.

The techniques of constrained optimisation are best introduced by con-
centrating on a specific example from which the general principles may be
extracted. The technique which is applied to many problems of constrained
optimisation is that of Lagrangean multipliers which may appear at first to be
of a somewhat arbitrary nature.

The problem which we shall select for our example is that of a consumer
endeavouring to maximise his personal utility by distributing his budget opti-
mally between two goods. We shall begin by solving the problem without the
benefit of the Lagrangean technique.

The Consumer’s Choice

Imagine that a consumer is endowed with a total budget of £M which is
to be divided between two goods. If the prices of the two goods are denoted
by p1 and p2 and if the quantities which are purchased are denoted by x1 and
x2, then the condition that the budget is spent entirely is expressed by the
equation

(1) M = p1x1 + p2x2.

The graph of this equation represents a straight line which cuts the hori-
zontal and vertical axes at the points x1 = M/p1 and x2 = M/p2 respectively.
These are the quantities which could be purchased if the entire budget were
devoted to the goods in question.

The slope of this budget line is given by−p1/p2. This result can be deduced
in various ways. One way is to consider the movement along the line from the
point of intersection with the horizontal axis to the point of intersection with
the vertical axis. The ratio of the vertical and horizontal changes is
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Figure 1. Utility is maximised at the point where the budget line is

tangential to the highest attainable indifference curve.

which is the slope of the line. Equally, we may take differentials within the
budget equation. This gives

(3) dM = 0 = p1dx1 + p2dx2.

Here the condition dM = 0 reflects the fact that the budget is a fixed sum. By
forming the ratio of dx2 and dx1, we obtain, once more, the slope of the budget
line.

The consumer is supposed to choose how much of either good to purchase
by assessing the overall utility which the goods generate in combination. The
utility function may be denoted by U = U(x1, x2). This is a function of the
two quantities alone; and it is assumed that it is an increasing function of x1

and of x2. A further crucial assumption is made concerning the contours of
the utility function which are the indifference curves in other words. These are
assumed to be convex when viewed from the origin. We shall be able to justify
this assumption shortly.

Each indifference curve represent a set of combinations of the goods—that
is to say a set of points (x1, x2)—which afford equal utility to the consumer.
Thus, if (dx1, dx2) is a small change from one point on the indifference curve to
another point on the curve which is virtually contiguous, then it follows that

(4) dU = 0 =

(
∂U

∂x1

)
dx1 +

(
∂U

∂x2

)
dx2.
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Therefore the slope of the indifference curve is given by the formula

(5)
dx2

dx1
= −

{
∂U

∂x1

/
∂U

∂x2

}
.

Given that the contours of the indifference curve are convex to the origin
and given the assumption that U is an increasing function of x1 and x2, it
now follows, from a simple geometric argument, that the highest accessible
indifference curve is attained at a point where the slope of the budget line and
that of the indifference curve coincide. Therefore the utility of the consumer is
maximised when

(6)

{
∂U

∂x1

/
∂U

∂x2

}
=
p1

p2
.

There are various ways in which this result may be expressed in order to
heighten its intuitive appeal. One way is to declare that, at the optimal point,
the ratio of the marginal utilities of the two goods—which is the LHS of the
equation—must equal that rate at which the market allows the goods to be
traded one for another—which is the price ratio of the RHS. An alternative
formulation of the condition entails defining the quantities

(7) λ1 =
1

p1

∂U

∂x1
and λ2 =

1

p2

∂U

∂x2
.

These are the satisfactions derived from marginal increases in the expenditures
on either good. The condition of utility maximisation is that these two quanti-
ties should be equal. Clearly, if they were unequal, then extra utility could be
derived by reducing the expenditure on one of the goods in order to increase
the expenditure on the other.

Example. If the object of the exercise is to determine the quantities x1 and
x2 of the two goods that are purchased by the consumer, then we should need
to have an explicit expression for the utility function. Let us take, for example,
the function

(8) U(x1, x2) = αxβ1x
γ
2 .

Then the two partial derivatives which are entailed by the condition of opti-
mality are

(9)
∂U

∂x1
= αβxβ−1

1 xγ2 and
∂U

∂x2
= αγxβ1x

γ−1
2 .

Therefore the condition of optimality under (6) may be evaluated as

(10)
βx2

γx1
=
p2

p1
or, equivalently, βp1x2 − γp2x1 = 0.
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This is a simple linear equation in x1 and x2; and it may be solved in the
company of the linear equation of the budget constraint given under (1) to find
the two quantities.

The Lagrangean Method Constrained Optimisation

The method of Lagrangean multipliers entails converting the constrained
optimisation problem into one which is seemingly unconstrained. In our illus-
trative bivariate optimisation problem, this could be achieved by recognising
that, in effect, the consumer has only one degree of freedom which corresponds
to the choice of where to locate the point (x1, x2) on the budget line. By elim-
inating one or other of the two variables—by setting x2 = M − p1x1/p2, or
by setting x1 = M − p2x2/p1—an unconstrained univariate problem could be
derived. Paradoxically, the method of Lagrange entails the introduction of a
third variable which is the so-called Lagrangean multiplier λ.

The Lagrangean criterion function, which is an amended version of the
utility function, takes the form of

(11) L(x1, x2, λ) = U(x1, x2) + λ(M − p1x1 − p2x2),

Differentiating the function in respect of all three variables and setting the
results to zero gives rise to the following first-order conditions:

(12)

∂L

∂x1
=
∂U

∂x1
− λp1 = 0,

∂L

∂x2
=
∂U

∂x2
− λp2 = 0,

∂L

∂λ
= M − p1x1 − p2x2 = 0.

The last of these is nothing but the equation (1) of the budget line. The first
and the second equation can be rearranged to give

(13)
1

p1

∂U

∂x1
= λ and

1

p2

∂U

∂x2
= λ.

These are exactly the equations which arise from (7) when the condition λ1 =
λ2 = λ2 is imposed. It may be recalled that this is the condition that the
satisfaction derived from additional marginal expenditures is the same for both
goods.

It should be be clear that the results obtained via the method of La-
grangean multipliers coincides exactly with those which we have obtained pre-
viously.
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