
MATHEMATICAL THEORY FOR SOCIAL SCIENTISTS

EXPONENTIAL AND LOGISTIC GROWTH

Constant Proportional Growth

There is a close connection between the processes of geometric growth and
exponential growth. Geometric growth is defined by the equation

(1) yt = y0(1 + r)t.

wherein y0 stands for the value of the process at time 0 and yt stands for the
value at time t. Here t, which denotes time, is usually given only integer values;
and the process is described as a discrete-time process. Geometric growth is
constant proportional growth, which is to say the value of y increases by the
same percentage in each time period. To see this, consider

(2)

∆yt
yt

=
yt+1 − yt

yt

=
yt(1 + r)− yt

yt
= r.

The same characteristic of constant proportional growth is manifested by
an exponential process which is defined by

(3) yt = y0e
ρt.

It is straightforward to confirm that

(4)
1
y

dy

dt
=

1
y0eρt

× y0e
ρtρ

= ρ.

On comparing equations (1) and (3), we find that yt/y0 = (1+ r)t = eρt; which
indicates that 1 + r = eρ. The exponential and the geometric rates, which are
denoted by ρ and r respectively, differ with r > ρ. However, the geometric rate
tends to the exponential rate as the length of the unit time period decreases.

Compound Interest and Exponential Growth

To demonstrate the convergence of geometric and exponential growth, and
to discover a means of evaluating the natural number e, we can take the analogy
of the growth of a fixed-interest financial investment. The aim is to determine
the effect of compounding the earnings with the capital at ever-decreasing in-
tervals of time.

If the earnings were compounded with the investment twice a year, then
the growth factor would be (1 + 1

2r)
2. If they were compounded ever quarter,

the factor would be (1 + 1
4r)

4. If the earnings were compounded continuously,
then the growth factor would be lim(n→∞)(1 + r

n )n. To evaluate this limit,
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we may expand the expression in a power series. Recall that, according to the
binomial theorem,

(5)
(a+ b)n = an + nan−1b+

n(n− 1)
2

an−2b2 +
n(n− 1)(n− 2)

3!
an−3b3

+ · · ·+ n(n− 1)
2

a2bn−2 + nabn−1 + bn.

This indicates that

(6)
(

1 +
r

n

)n
=
{

1 + n
r

n
+
n(n− 1)

2
r2

n2
+
n(n− 1)(n− 2)

3!
r3

n3
+ · · ·

}
.

The consequence is that

(7) lim
n→∞

(
1 +

r

n

)n
=
{

1 + r +
r2

2!
+
r3

3!
+ · · ·

}
.

Setting r = 1 in this expression gives

(8)
lim
n→∞

=
(

1 +
1
n

)n
=
{

1 + 1 +
1
2!

+
1
3!

+ · · ·
}

= e,

and this provides the means of calculating the natural number to any desired
degree of accuracy. Finally, by defining q = n/r and by observing that, if r is
fixed, then q →∞ as n→∞, we can see that

(9) lim
n→∞

(
1 +

r

n

)n
=
{

lim
q→∞

(
1 +

1
q

)q}r
= er.

Rates of Return

In determining the rate of return of a financial asset, we have the option
of calculating either the exponential growth rate ρ or the geometric rate r.
Consider the values of the asset at time t and at time t+ 1. The two values are
related as follows:

(10)
yt+1 = yt(1 + r)

= yte
ρ = yt

(
1 + ρ+

ρ2

2!
+
ρ3

3!
+ · · ·

)
.

The geometric growth rate is calculated as the relative difference of the two
values:

(11) r =
yt+1 − yt

yt
.

The exponential rate is calculated as the logarithm of the ratio of the values
or, equivalently, as the difference of their logarithms:

(12) ρ = ln
(
yt+1

yt

)
= ln(yt+1)− ln(yt).
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When dealing with rates of growth of a few percentage points per period, the
difference between the exponential growth rate and the geometric rate is negli-
gable. In effect, the term ρ2/2! and all succeeding terms in the series expansion
of eρ given under (13) are of such small values that they can be set to zeros.

Logistic Growth

The rate of increase in a population is the difference between the rate of
addition of individuals due to birth B and immigration I and the rate of loss
due to death D and emigration E:

(13)
dy

dt
= B + I −D − E.

Matters are simplified if we consider a closed population with I = E = 0.
In most models which are of any interest, the rates of birth and death are
functionally related to the size y of the population itself. This is certainly true
in the case of exponential growth were the births and deaths are assumed to
be directly proportional to y. Thus, with B = βy and D = δy, we have

(14)
dy

dt
= βy − δy = ρy,

where ρ = β − δ. This corresponds to the differential equation of (4) which
serves to define the exponential process with the growth rate of ρ. In the closed
population, any increase is due entirely to the excess of births over deaths.

It is only in rare cases and for short periods that a population can follow
an exponential growth path. Very soon a scarcity of resources or of space, and
perhaps an increasing problem of environmental pollution, will slow or arrest
the growth. The effect will be achieved either via a decline in the birth rate β
or an increase in the death rate δ or in both of these ways. A simple notion is
to postulate that the birth rate is a declining linear function of y and that the
death rate is an increasing linear function of y:

(15)
β = λ0 + λ1y, λ1 < 0

δ = µ0 + µ1y, µ1 > 0.

In that case, there will be a certain population size, say ȳ, where the numbers
of births and deaths are equal. Thus, if

(16) λ0 + λ1ȳ = µ0 + µ1ȳ,

then

(17) ȳ =
λ0 − µ0

µ1 − λ1
.

Amongst ecologists, this population level is described as the carrying ca-
pacity of the environment. It is useful to adopt special symbols both for the
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carrying capacity and for the differential between births and deaths at the point
where y = 0:

(18) γ =
λ0 − µ0

µ1 − λ1
, ρ = λ0 − µ0.

In these terms, the rate of growth of the population is given by

(19)

dy

dt
= (β − δ)y

= ρy

(
γ − y
γ

)
.

The expression on the RHS stands for a quadratic function of y whose curve
passes through the origin and reaches a maximum at y = γ/2. This is the
so-called logistic model of population growth which is also called the Verhulst–
Pearl model.

It is easy to interpret the logistic model which is merely the exponential
model of (1) modified by the factor (γ − y)/γ. To understand the effect of
this factor, imagine that y is close to zero. Then the value of the factor will
be close to unity and the process of growth will be almost exponential. Now
imagine that y = γ, which is to say that the population has reached the carrying
capacity of the environment. Then the factor will have the value of zero and
there will be no population growth.

The model does not preclude the case where y > γ. In that case dy/dt < 0,
and the population will decline toward the level of γ. However, there might be
a need to explain how the population has come to exceed the carrying capacity
of the environment. The excess population might be due to immigration or it
might be due to a reduction that has occurred in the carrying capacity.

The logistic model is uncommon amongst continuous-time models of pop-
ulation dynamics in that its trajectory can be represented by a simple analytic
function. Usually such trajectories have to be calculated by a process of numer-
ical integration. The form of the solution for the logistic model depends upon
whether the carrying capacity, which represents the steady-state asymptote of
the dynamic system, is being approached from above or below. Assuming that
y < γ, a solution is given by the equation

(20) y =
γ

1 + e−ρt
=

γeρt

1 + eρt
.

Here the second equality comes from multiplying top and bottom by eρt.
To confirm that the function of (20) does satisfy equation (19), we need to

differentiate it:

(21)

dy

dt
=

γρe−ρt

(1 + e−ρt)2

= ρy
e−ρt

1 + e−ρt
.

Then it only remains to be confirm that

(22)
e−ρt

1 + e−ρt
=
γ − y
γ

,

which is easily done.
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