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GEOMETRIC GROWTH AND THE RATE OF INTEREST

Investments

Imagine that a sum of y0 = £100 is invested at an annual rate of interest
of r = 5% per annum. After one year has elapsed, the sum will have grown to
y0(1 + r) = £105; and the opportunity will arise for deciding how to dispose of
the funds. There are two options which might be considered. On the one hand,
one might decide leave £100 permanently on account and to treat the interest
payment of r = £5 as a small annual income or annuity. Alternatively, one
might decide leave all of the money on account, and to watch it grow steadily
through successive years. In that case, one would be interested in knowing
what the investment would amount to after a definite period of years; and, for
this purpose, one should need to understand the principle of geometric growth.

Geometric Growth

A process of geometric growth is defined by the equation

(1) yt = y0(1 + r)t,

wherein y0 stands for the value of the process at time 0 and yt stands for the
value at time t. Here t, which denotes time, takes only integer values.

There are two ways in which the value of yt can be calculated from those
of y0 and r. The first method uses logarithms:

(2) ln(yt) = t× ln(1 + r) + ln(y0).

The value of yt is found by applying anti-logarithms to the value obtained from
the RHS of the equation. The second method of computing yt is by iteration.
Imagine that t = 3. Then

(3) y3 = (1 + r)3y0 =
{

(1 + r)
[
(1 + r){(1 + r)y0}

]}
.

This equation can be decomposed into three stages:

(4)

y1 = (1 + r)y0,

y2 = (1 + r)y1,

y3 = (1 + r)y2.

The generic form of these equations is

(5) yt = (1 + r)yt−1;

1



    

MATHEMATICAL THEORY FOR SOCIAL SCIENTISTS, 1995

and one can imagine pursuing the iteration though any number of stages. In
fact, if we were writing a computer program for the purpose of finding values
of yt, then we should use the iterative scheme on the grounds that it is the
quicker one which entails fewer machine operations.

Geometric growth is synonymous with constant proportional growth,
which is to say the value of y increases by the same percentage in each time
period. To see this, consider

(6)

∆yt
yt

=
yt+1 − yt

yt

=
yt(1 + r)− yt

yt
= r.

Exponential Growth

The continuous-time analogue of geometric growth is what is known as
exponential growth. Such a process is defined by an equation in the form of

(7) yt = y0e
ρt.

Here y0 continues to represent the value of the process at time t = 0 and yt
stands for the value at time t. The parameter ρ is the exponential growth rate.

In the case of the exponential process, t can assume any real value. How-
ever, if t takes an integer value, then equation (7) can be identified with equation
(1) of geometric growth by setting

(8) eρ = 1 + r or, equivalently, ρ = ln(1 + r).

The absolute value of the geometric growth rate exceeds that of the exponen-
tial growth rate so that inequality r > ρ holds for positive values. For small
values of a few percentage points, the difference between the two rates is negli-
gible. Later, with the help of Taylor’s Theorem, we shall establish the precise
relationship between r and ρ. For the moment, we need only observe that the
geometric rate tends to the exponential rate as the length of the unit time
period decreases.

In common with the geometric process, the exponential process may be
described as one of constant proportional growth. Thus it is straightforward to
confirm that

(9)

1

y

dy

dt
=

1

y0eρt
× y0e

ρtρ

= ρ.
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Given two successive observation on a process of exponential growth which
are separated by a unit time interval, it is straightforward to infer the value of
the growth rate. Consider yt = exp{ρt}y0 and yt+1 = exp{ρ(t+ 1)}y0. Taking
logarithms gives

(10) ln(yt) = ln(y0) + ρt and ln(yt+1) = ln(y0) + ρ(t+ 1).

The difference is

(11) ρ = ln(yt+1)− ln(yt).

The Present Value of an Annuity

An annuity is a sequence of regular payments, made once a year, until
the end of the nth year. Usually, such an annuity may be sold to another
holder; and, almost invariably, its outstanding value can be redeemed from the
institution which has contracted to make the payments. There is clearly a need
to determine the present value of the annuity if it is to be sold or redeemed.
The principle which is applied for this purpose is that of discounting.

Imagine that a sum of £a is invested for one year at an annual rate of
interest of r×100%. At the end the year, the principal sum is returned together
with the interest via a payment of £(1 + r)a. A straightforward conclusion is
that £(1 + r)a to be paid one year hence has the value of £a paid today. By
the same token, £a to be paid one year hence has a present value of

(12) V =
a

1 + r
= aδ, where δ =

1

1 + r
is the discount rate.

It follows that £a to be paid two years hence has a present value of £aδ2. More
generally, if the sum of £a is to be paid j years hence, then it is worth £aδj

today. The present value of an annuity of £a to be paid for the next n years is
therefore

(13)
Vn = aδ + aδ2 + · · ·+ aδn

= aδ
(
1 + δ + · · ·+ δn−1

)
.

Finding the value Vn is a matter of summing a geometric progression.
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The Sum of a Geometric Progression

Consider the indefinite sum S = {1 + x + x2 + · · ·}. Given the condition
|x| < 1, this will have a finite value. Our purpose is to show that, in that case,
S = (1− x)−1. The calculation is as follows:

(14)

S = 1 + x+ x2 + · · ·
xS = x+ x2 + · · ·
S − xS = 1.

Then S(1− x) = 1 immediately implies that S = 1/(1− x).
There is also a formula for the partial sum of the first n terms of the series

which is Sn = 1 + x+ · · ·+ xn−1. Consider the following subtraction:

S = 1 + x+ · · ·+ xn−1 + xn + xn+1 + · · ·
xnS = xn + xn+1 + · · ·
S − xxS = 1 + x+ · · ·+ xn−1.

This shows that S(1− xn) = Sn whence

(15) Sn =
1− xn
1− x .

The latter result can be applied immediately to the problem of finding the
present value of the annuity; for it follows that

(16)

Vn = aδ
(
1 + δ + · · ·+ δn−1

)
= aδ

1− δn
1− δ .

A special case is that of a perpetuity which is an annuity to be paid for
ever. Its present value is

(17) V = lim
n→∞

aδ
1− δn
1− δ = a

δ

1− δ =
a

r
.
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