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CONTINUOUS-TIME STOCHASTIC PROCESSES

Discrete-Time Random Walk The concept of a Wiener process is an ex-
trapolation of that of a discrete-time random walk. A standardised random
walk is a process that is defined over the set of integers {t = 0,±1,±2, . . .},
which represent dates separated by a unit time interval. It may be denoted by
w(t) = {wt; t = 0,±1,±2, . . .}, and it can be represented by the equation

wt+1 = wt + εt+1, (1)

wherein εt is an element of a sequence ε(t) = {εt; t = 0,±1,±2, . . .} of inde-
pendently distributed standard normal random elements with a mean value of
of E(εt) = 0 and a variance of V (εt) = 1, for all t, which is described as a
white-noise process.

By a process of back-substitution, the following expression can be derived:

wt = w0 +
{
εt + εt−1 + · · · + ε1

}
. (2)

This depicts wt as the sum of an initial value w0 and of an accumulation of
stochastic increments. If w0 has a fixed finite value, then the mean and the
variance of wt, conditional of this value, are be given by

E(wt|w0) = w0 and V (wt|w0) = t. (3)

There is no central tendency in the random-walk process; and, if its starting
point is in the indefinite past rather than at time t = 0, then the mean and
variance are undefined.

To reduce the random walk to a stationary stochastic process, it is neces-
sary only to take its first differences. Thus

wt+1 − wt = εt+1. (4)

We should also observe that we can take larger steps through time without
fundamentally altering the nature of the process. Let h be any integral number
of time periods. Then

wt+h − wt =
h∑

j=1

εt+j = ζt+h

√
h, (5)

where ζt+h is an element of a sequence {ζt+jh; j = 0,±1,±2, . . .} of indepen-
dently and identically distributed standard normal variates. The factor

√
h has

D.S.G. Pollock: stephen pollock@sigmapi.u-net.com



CONTINUOUS-TIME STOCHASTIC PROCESSES

entered the equation for the reason that we are now taking steps through time
of length h whereas, previously, we were taking steps of unit length.

A random walk, as the name implies, have a tendency to wander haphaz-
ardly. However, if the variance of the white-noise process that is driving the
random walk is small, then the values of the stochastic increments will also be
small and the random walk will wander slowly.

A first-order random walk over a surface is know as Brownian motion.
For a physical example of Brownian motion, one can imagine small particles,
such a pollen grains, floating on the surface of a viscous liquid. The viscosity
might be expected to bring the particles to a halt quickly if they are in motion.
However, if the particles are very light, then they will dart hither and thither on
the surface of the liquid under the impact of its molecules, which are themselves
in constant motion. The term Brownian motion has been adopted to describe
a univariate processes.

Wiener Processes A Wiener process is the consequence of allowing the in-
tervals of a discrete-time random walk to tend to zero. The dates at which
the process is defined become a continuum. The result is a process that is
continuous almost everywhere but nowhere differentiable.

The Wiener process has all of the characteristics of the random walk pro-
cess that has been described above. When sampled at regular intervals, it
has the same mathematical description as a discrete-time process. However,
whereas the random walk is defined only on the set of integers, the Wiener
process is defined for all points on a real line that represents continuous time.

The generalisation can be achieved by replacing the integer h of equation
(5) by an increment dt that can take infinitesimally small values. The equation
can be rewritten accordingly as

dw(t) = w(t + dt) − w(t) = ζ(t + dt)
√

dt (6)

This equation describes a standard Wiener process. The process fulfils the
following conditions:

(a) w(0) = 0 ,

(b) E{w(t)} = 0, for all t,

(c) w(t) is normally distributed,

(d) dw(s), dw(t) for all t �= s are independent stationary increments,

(e) V {w(t + h) − w(t)} = h for h > 0.

The assumption (a) that the initial value w(0) is zero is unrestrictive, so long
as it can be assumed that the process takes a finite value at time t = 0. For
that value can subtracted from the process to yield condition (a).
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Arithmetic Brownian Motion The standard Wiener process is inappropri-
ate to much of financial modelling. However, some quite general continuous
stochastic processes can be derived that are functions of a standard Wiener
process.

A straightforward generalisation corresponds to a so-called random walk
with drift. In discrete time, this can be represented by the equation

x(t + 1) = x(t) + µ + σε(t + 1). (7)

The continuous-time analogue of this process is described by

dx(t) = µdt + σdw(t). (8)

A generalisation of the latter is the Ito process, where the drift parameter µ
and the variance or volatility parameter σ2 become time-dependent functions
of the level of the process:

dx(t) = µ(x, t)dt + σ(x, t)dw(t). (9)

Geometric Brownian Motion The domain of a normally distributed random
variable is the entire real line, which extends from −∞ to +∞. Many variables,
such as those that represent physical quantities, are constrained to lie in the
interval [0,∞). Therefore, it is inappropriate to describe them with a model
that corresponds to a linear function of a normal random variable. In finance,
there is an evident constraint that nominal interest rates must be nonnegative.
Also, asset values cannot become negative.

Such difficulties in modelling can sometimes be overcome by replacing the
variables in question by their logarithms. The logarithmic transformation maps
from the interval [0,∞) to the interval (−∞,∞).

The logarithmic version of the random walk is described by the following
equation:

lnx(t + 1) = lnx(t) + σε(t + 1). (10)

The corresponding continuous-time version can be written as

d{lnx(t)} = σdw(t). (11)

Given that
d

dt
lnx =

1
x

dx

dt
or d{lnx(t)} =

dx

x
,

it follows that equation (11) can also be written as

dx = σxdw(t). (12)
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This equation might be used in describing the trajectories of financial assets.
Observe that the process has an absorbing barrier at zero. That is to say, if
x = 0 at any time, then it will remain at that value thereafter.

A equation that can be applied more generally in describing financial assets
is one that incorporates a drift term:

dx = xµdt + σxdw(t). (13)

On the strength of the preceding reasoning, it might be imagined that
this is synonymous with the process described by the equation d{ln y(t)} =
µdt + σdw(t). It is interesting to discover that this is not the case.

To find the logarithm of the process described by (13), we must use Ito’s
Lemma. This indicates that, for any process described by equation (9), and for
any continuous differentiable function f(x), there is

df(x, t) =
{

µ(x, t)
∂f

∂x
+

∂f

∂t
+ σ2(x, t)

1
2

∂2f

∂x2

}
dt + σ(x, t)

∂f

∂x
dw. (14)

We take f(x) = lnx. Also, equation (13) is assimilated to equation (9) by
setting µ(x, t) = xµ and σ(x, t) = σx. Then,

∂f

∂x
=

1
x

,
∂f

∂t
= 0 and

1
2

∂2f

∂x2
= − 1

2x2
. (15)

Therefore, from Ito’s lemma, we obtain

d lnx =
{

1
x

xµ − 1
2x2

σ2x2

}
dt +

1
x

σxdw

=
{

µ − σ2

2

}
dt + σdw.

(16)

Here, the drift parameter is µ−σ2/2, where we might have expected to find just
µ. However, on reflection, it seems reasonable that the drift parameter, which
denotes a rate of exponential growth, should be diminished by an increase in
the volatility.

The cumulation of lnx over a finite time inteval [t, t + h] generates a nor-
mally distributed random variable

(lnxt+h − lnxt) = ln
(

xt+h

xt

)
∼ N

({
µ − σ2

2

}
h, σ2h

)
. (17)

If ln y ∼ N(µ, σ2) is a normally distributed random variable, then y is said to
have a log-normal distribution. For any such log-normal variable y, it is the
case that

ln{E(y)} = E{ln y} +
1
2
V {ln y}

= µ +
σ2

2
.

(18)
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The equality must be rearranged to give the expected value in (17). Observe
that, since the logarithmic transformation in nonlinear, it follows that the log-
arithm of the expectation is not the expectation of the logarithm.

We shall make the assumption that the spot price S of a financial asset
follows a geometric Brownian walk. This leads us to write

d lnS =
{

µ − σ2

2

}
dt + σdw. (19)

Over a finite interval from t = 0 to t = τ , this gives rise to a normally distributed
random variable

(lnSτ − lnS0) = ln
(

Sτ

S0

)
∼ N

({
µ − σ2

2

}
τ, σ2τ

)
. (20)

Also, consider the formula

Sτ = S0e
ρτ , (21)

from which

ρ =
1
τ

ln
(

Sτ

S0

)
. (20)

It follows directly from (20) that

ρ ∼ N

({
µ − σ2

2

}
,
σ2

τ

)
. (22)
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