EC3070 FINANCIAL DERIVATIVES

Exercise 2

1. A stock price is currently $S_{0}=40$. At the end of the month, it will be either $S_{1}^{u}=42$ or $S_{1}^{d}=38$. The risk-free rate of continuously compounded interest is 8% per annum. What is the value $c_{1 \mid 0}$ of a one-month European call option with a strike price of $\$ 39$?
2. A stock price is currently 50 . At the end of six months, it will be either 45 or 55 . The risk free-rate of interest continuously compounded is 10% per annum. What is the value of a six-month European put option with a strike price of 50 ?
3. Let the annual rate of interest be r and let the price of a share at the present time of $t=0$ be $S_{0}=100$. Suppose that, after one year, when $t=1$, the price will be either $S_{1}^{u}=200$ or $S_{1}^{d}=50$. A call option to buy the share at time $t=1$ at a price of $K_{1 \mid 0}=150$ can be purchased at time $t=0$ for $c_{1 \mid 0}$.
Show that, unless $c_{1 \mid 0}=\left\{100-50\left(1+r^{-1}\right)\right\} / 3$, there will always exist a combination of x shares and y options that will yield a profit. (Here, x is negative, if you are selling shares at time $t=0$, and postive, if your are purchasing them, and likewise for the number of options purchased or sold.)
