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BLACK–SCHOLES OPTION PRICING

The Differential Equation The Black-Scholes model of option pricing as-
sumes that the price St of the underlying asset has a geometric Brownian
motion, which is to say that

dS = µSdt + σSdw, (1)

where µ and σ are constant parameters.
Let f = f(S, t) be the price of a derivative, which might be a call option

contingent on the price S of the underlying asset. Then, according to Ito’s
lemma, there is
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Because the forcing function in both equations (1) and (2) is the same
Wiener process, it is possible to construct a portfolio that eliminates risk, which
is to say that the Wiener increment dw can be eliminated from the equation
expressing the value of the portfolio.

The relevant portfolio comprises ∂f/∂S units of the asset and 1 unit of
the derivative or option as a liability. The value of the portfolio at time t is
given by
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and the change in its value is
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Substituting (1) and (2) into the latter and cancelling various terms gives
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which does not involve the stochastic increment dw.
On the instant, this portfolio must earn the same as a sum Vt invested in

a riskless asset at a rate of return of r, which is to say that

dVt = rVtdt. (6)

By putting (5) into the LHS of this and (3) into the RHS, we get
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whence
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This it the Black-Scholes differential equation for option pricing.
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