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BINOMIAL OPTION PRICING MODEL

A One-Step Binomial Model The Binomial Option Pricing Model is a sim-
ple device that is used for determining the price cτ |0 that should be attributed
initially to a call option that gives the right to purchase an asset at time τ at
a strike price of Kτ |0.

The model supposes a portfolio where the assets are N units of stock, with
a spot price of S0 per unit, and the liability is one call option. The initial value
of the portfolio at time t = 0 will be

V0 = NS0 − cτ |0. (1)

There will be an direct relationship between the ensuing movements of the
stock price and the option price. When the value of the stock, which is the
asset, rises, that of the option, which is a liability, will also rise. It is possible
to devise a portfolio in which such movements are exactly offsetting.

We may begin by envisaging two eventualities affecting the spot price of
the stock. Either it increases to become Su

τ = S0U at time t = τ , where U > 1,
or else it decreases to become Sd

τ = S0D, where D < 1. In the hands of its
owner, the value of the call option will be Sτ − Kτ |0, if Sτ > Kτ |0, in which
case the option will be exercised, or it will be worthless, if Sτ ≤ Kτ |0. Thus

cτ |τ = max(Sτ −Kτ |0, 0). (2)

Let the values of the option corresponding to Su
τ and Sd

τ be cu
τ and cd

τ ,
respectively. Then, the value of the portfolio at time t = τ will be

Vτ =
Ω

NS0U − cu
τ , if Sτ = Su

τ = S0U ;

NS0D − cd
τ , if Sτ = Sd

τ = S0D.
(3)

The number of units of the asset can be chosen so that the values of the portfolio
are the same in these two cases. Then, the portfolio will be riskless; and,
according to the argument that there should be no arbitrage opportunities, it
should earn the same as the sum V0 invested for τ periods at the riskless rate
of interest. Thus

Vτ = V0e
rτ or, equally, V0 = Vτe−rτ . (4)

There are therefore two equations that cover the two eventualities:

Vτ = S0UN − cu
τ ⇐⇒ cu

τ = S0UN − Vτ ,

Vτ = S0DN − cd
τ ⇐⇒ cd

τ = S0DN − Vτ .
(5)
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Their solutions for N and Vτ are as follows:

N =
cu
τ − cd

τ

S0(U −D)
and Vτ =

cu
τ D − cd

τU

U −D
. (6)

From (1), it follows that the initial value of the option is

cτ |0 = NS0 − V0

= NS0 − Vτe−rτ ,
(7)

where the second equality follows from (4). Putting the values for N and Vτ

from (6) into this equation gives

cτ |0 =
Ω

cu
τ − cd

τ

S0(U −D)

æ
S0 −

Ω
cu
τ D − cd

τU

U −D

æ
e−rτ

= e−rτ

Ω
erτ (cu

τ − cd
τ )− (cu

τ D − cd
τU)

U −D

æ

= e−rτ

Ωµ
erτ −D

U −D

∂
cu
τ +

µ
U − erτ

U −D

∂
cd
τ

æ
.

(8)

The latter, which is the value of the call option at time t = 0, can be written
as

cτ |0 = e−rτ
©
cu
τ p + cd

τ (1− p)
™

, (9)

where
p =

erτ −D

U −D
and 1− p =

U − erτ

U −D
(10)

can be regarded as the probabilities of cu
τ and cd

τ , respectively.

A Multi-Step Binomial Model To produce a more practical model, we need
to value the option under the assumption that there are many revaluations of
the stock between the time t = 0, when the option is written, and the time
t = τ , when it expires. This will given rise to a wide range of possible eventual
prices.

To begin the generalisation to a multistep model, we may consider a model
with two steps. In the first step, the spot price of the stock moves either up to
Su = S0U or down to Sd = S0D. In the next step, the price can move up or
down from these values to give three possible prices Suu = S0U2, Sud = S0UD
and Sdd = S0D2. The following table displays these outcomes:

Suu = S0U2

Su = S0U

S0 Sud = S0UD

Sd = S0D

Sdd = S0D2
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The method of pricing the call option is to start at the time of expiry and
to work backwards so as to derive prices for the option at the intermediate
nodes of the binomial tree. From these, one can derive the price cτ |0 of the
option at the base of the tree.

Let the values of the option corresponding to the outcomes Suu, Sud and
Sdd be denoted by cuu, cud and cdd, respectively, and let those corresponding
to the intermediate outcomes Su, Sd be cu, cd. (Here, we are omitting the
temporal subscripts for ease of notation.) Then,

cu = e−rτ/2
©
cuup + cud(1− p)

™
, cd = e−rτ/2

©
cudp + cdd(1− p)

™
. (11)

From these, we derive

cτ |0 = e−rτ/2
©
cup + cd(1− p)

™

= e−rτ
nh

cuup + cud(1− p)
i
p +

h
cudp + cdd(1− p)

i
(1− p)

o

= e−rτ
©
cuup2 + 2cudp(1− p) + cdd(1− p)2

™
.

(12)

The generalisation to n sub periods is as follows:

cτ |0 = e−rτ






nX

j=0

n!
(n− j)!j!

pj(1− p)n−jcuj,d(n−j)






= e−rτE(cτ |τ ).

(13)

Here, cτ |τ = cuj,d(n−j) is the value of the option after the price has reached the
value of Sτ = S0U jDn−j by moving up j times and down n− j times. This is
given by

cuj,d(n−j) = max(Sτ −Kτ |0, 0)

= max(S0U
jDn−j −Kτ |0, 0).

(14)

By subdividing the period [0, τ ] into n sub periods, we succeed in generat-
ing a range of possible outcomes for the value of Sτ , which are n+1 in number.
In fact, as n→∞, the trajectory price tends to that of a geometric Brownian
motion.

Convergence of the Binomial to the Black–Scholes Model The Black–
Scholes formula for the price of a European call option is

cτ |0 = S0Φ(d1)−Kτ |0e
−rτΦ(d2), (15)

where Φ(d) denotes the value of the cumulative Normal distribution function
that is the probability that z ≤ d when z ∼ N(0, 1) is a standard normal
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variate, and where

d1 =
ln(S0/Kτ |0) + (r + σ2/2)τ

σ
√

τ
and

d2 =
ln(S0/Kτ |0) + (r − σ2/2)τ

σ
√

τ
= d1 − σ

√
τ .

(16)

We can show that, as the number n of the subintervals of the finite period
[0, τ ] increases indefinitely, the binomial formula for the value cτ |0 of the call
option converges on the Black–Scholes formula.

We may begin by simplifying the binomial formula. Observe that, for some
outcomes, there is max(S0U jDn−j−Kτ |0, 0) = 0. Let a be the smallest number
of upward movements of the underlying stock price that will ensure that the
call option has a positive value, which is to say that it finishes in the money.
Then, S0UaDn−a ' Kτ |0; and only the binomial paths from j = a onwards
need be taken into account. Therefore, equation (13) can be rewritten as

cτ |0 = e−rτ






nX

j=a

n!
(n− j)!j!

pj(1− p)n−j [S0U
jDn−j −Kτ |0]






= S0




e−rτ
nX

j=a

n!
(n− j)!j!

pj(1− p)n−jU j ,Dn−j






−Kτ |0e
−rτ






nX

j=a

n!
(n− j)!j!

pj(1− p)n−j




 .

(17)

To demonstrate that this converges to equation (15) as n → ∞, it must be
shown that the terms in braces, associated with S0 and Kτ |0e

−rτ , converge to
Φ(d1) and Φ(d2)respectively.

The term associated with Kτ |0e
−rτ is a simple binomial sum; and, in the

limit as n → ∞, it converges to the partial integral of a standard normal
distribution. The term associated with S0 can be simplified so that it too
becomes a binomial sum that converges to a normal integral.

Define the growth factor R by the equation Rn = e−rτ . Then, in reference
to (10), it can be seen that, within the context of the n-period binomial model,
there is

p =
R−D

U −D
and 1− p =

U −R

U −D
. (18)

Now define
p∗ =

U

R
p and 1− p∗ =

D

R
(1− p). (19)
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Then the term associated with S0 can be written as

nX

j=a

n!
(n− j)!j!

pj
∗(1− p∗)n−j . (20)

The task is now to replace the binomial sums, as n→∞, by the corresponding
partial integrals of the standard normal distribution.

First, observe that the condition S0UaDn−a ' Kτ |0 can be solved to give

a =
ln(Kτ |0/S0)− n lnD

ln(U/D)
+ O(n−1/2). (21)

Next, let Sτ = S0U jDn−j be the stock price on expiry. This gives

ln(Sτ/S0) = j ln(U/D) + n lnD, (22)

from which
E{ln(Sτ/S0)} = E(j) ln(U/D) + n lnD and

V {ln(Sτ/S0)} = V (j){ln(U/D)}2.
(23)

The latter are solved to give

E(j) =
E{ln(Sτ/S0)} − n lnD

ln(U/D)
and V (j) =

V {ln(Sτ/S0)}
{ln(U/D)}2

. (24)

Now the value a, which marks the first term in each of the binomial sums,
must to converted to a value that will serve as the limit of the corresponding
integrals of the standard normal distribution.

The standardised value in question is d = −{a − E(j)}/
√

V (j), to which
a negative sign has been applied to ensure that the integral is over the interval
(−∞, d], which accords with the usual tabulation of the cumulative normal
distribution, instead of the interval to (−d,∞], which would correspond more
directly to the binomial summation from a to n.

Substituting the expressions from (21) and (24) into the expression for d
gives

d =
−{a−E(j)}p

V (j)
=

ln(S0/Kτ |0) + E{ln(Sτ/S0)}p
V {ln(Sτ/S0)}

−O(n−1/2). (25)

As n → ∞, the term of order n−1/2 vanishes. Also, the trajectory of the
stock price converges to a geometric Brownian motion; and, from the note on
continuous stochastic processes, we can gather the result that V {ln(Sτ/S0)} =
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σ2τ . This is regardless of the size of the drift parameter µ, which will vary with
the values of p and p∗. Therefore, in the limit, there is

d =
ln(S0/Kτ |0) + E{ln(Sτ/S0)}

σ
√

τ
. (26)

It remains to show that

E{ln(Sτ/S0)} =

(
(r − σ2/2)τ if the probability of U is p,

(r + σ2/2)τ if the probability of U is p∗.
(27)

First, we consider Sτ/S0 =
Qn

i=1(Si/Si−1), where Sn is synonymous with
Sτ . Since this is a product of a sequence of independent and identically dis-
tributed random variables, there is

E(Sτ/S0) =
nY

i=1

E(Si/Si−1) = {E(Si/Si−1)}n. (28)

Moreover, since Si/Si−1 = U with probability p and Si/Si−1 = D with proba-
bility 1− p, the expected value of this ratio is

E(Si/Si−1) = pU + (1− p)D
= R,

(29)

where the second equality follows in view of the definitions of (18). Putting
this back into (28) gives

E(Sτ/S0) = Rn and ln{E(Sτ/S0)} = n lnR. (30)

It follows from a property of the log-normal distribution that

ln{E(Sτ/S0)} = E{ln(Sτ/S0)} +
1
2
V {ln(Sτ/S0)}. (31)

This is rearranged to give

E{ln(Sτ/S0)} = ln{E(Sτ/S0)} −
1
2
V {ln(Sτ/S0)}

= (r − σ2/2)τ.
(32)

The final equality follows on recalling the definitions that Rn = erτ and that
V {ln(S0/Sτ )} = τσ2. This provides the first equality of (27).
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Now, in pursuit of the second equality of (27), we must consider S0/Sτ

=
Qn

i=1(Si−1/Si), which is the inverse of the ratio in question. In the manner
of (28), there is

E(S0/Sτ ) =
nY

i=1

E(Si−1/Si) = {E(Si−1/Si)}n. (33)

However, the expected value of the inverse ratio is

E(Si−1/Si) = p∗U
−1 + (1− p∗)D−1

= R−1,
(34)

which follows in view of the definitions of p∗ and 1 − p∗ of (19). Putting this
back into (33) gives

E(S0/Sτ ) = R−n whence ln{E(S0/Sτ )} = −n lnR. (35)

Now the object is to find E{ln(Sτ/S0)} from ln{E(S0/Sτ )}. The property of
the log-normal distribution that gave (31) now gives

ln{E(S0/Sτ )} = E{ln(S0/Sτ )} +
1
2
V {ln(S0/Sτ )}

= −E{ln(Sτ/S0)} +
1
2
V {ln(Sτ/S0)}.

(36)

Here, the second equality follows from the inversion of the ratio. This induces
a change of sign of its logarithm, which affects the expected value on the RHS
but not the variance. Rearranging the expression and using the result from
(35) gives

E{ln(Sτ/S0)} = n lnR +
1
2
V {ln(Sτ/S0)}

= (r + σ2/2)τ.
(37)

This provides the second equality of (27).

D.S.G. Pollock: stephen pollock@sigmapi.u-net.com


