EC3070 FINANCIAL DERIVATIVES

Exercise 1

1. A credit card company charges an annual interest rate of 15%, which is effective only if the interest on the outstanding debts is paid in monthly instalments. Otherwise, the interest charges are compounded with the borrowings. What would be the effective annual rate of interest if $£ \mathrm{Q}$ are borrowed at the beginning of the year and repaid with interest at the end of the year?

Answer. Interest is charged each month on the outstanding loan at the rate of $15 / 12=$ 1.25%. Therefore, after one year, the total amount that must be repaid is

$$
\$ Q(1+0.0125)^{12}=\$ Q 1.161
$$

which gives an effective annual rate of interest of 16%.
Using log tables, I compute $(1+0.0125)^{12}$ as

$$
\begin{aligned}
\operatorname{Antilog}\{12 \times \log (1.0125)\} & =\text { Antilog }\{12 \times 0.0054\} \\
& =\text { Antilog }\{0.0640\}=0.0159
\end{aligned}
$$

which gives 16% approximately. (In fact, for this calculation, four-figure base-10 logarithms are insufficiently accurate.) The alternative is to enter 1.0125 in your calculator to do the multiplication twelve times over.

	0	1	2	3	4	5	6	7	8	9	123	45	789
10	0000	0043	008	O128	0170	02	0253	0294	0334	0374	$\left\|\begin{array}{ll} 5913 \\ 4812 \end{array}\right\|$	$\begin{aligned} & 172126 \\ & 162024 \end{aligned}$	$\begin{aligned} & 303438 \\ & 283236 \end{aligned}$
11	0414	0453	04	0531	$\overline{0569}$	0607	0645	0682	O719	0755	4812 4711	$\begin{array}{r} 162023 \\ 151822 \\ \hline \end{array}$	$\left\lvert\, \begin{array}{lll} 27 & 31 & 35 \\ 262933 \end{array}\right.$
12	0792	0828	$\overline{0864}$	$\overline{089}$	0934	0969	-1004	1038	1072	1106	$\begin{aligned} & 3711 \\ & 37 \\ & 37 \end{aligned}$	141821 141720	$\begin{aligned} & 252832 \\ & 242731 \end{aligned}$
13	II39	1173	1206	1239	1271	1303	1335	1367	1399	1430	$\begin{aligned} & 3610 \\ & 3710 \\ & \hline \end{aligned}$	$\begin{aligned} & 131619 \\ & 131619 \end{aligned}$	$\begin{aligned} & 232629 \\ & 222529 \end{aligned}$
14	1461	1492	$\overline{1523}$	1553	1584	1614	1644	1673	1703	$\underline{1732}$	$\begin{aligned} & 36 \\ & 36 \\ & \hline \end{aligned}$	121519 121417	$\begin{aligned} & 222528 \\ & 202326 \\ & \hline \end{aligned}$
15	17	1790	1818	$\overline{1847}$	1875	19	1931	1959	1987		$\begin{array}{ll} 36 & 9 \\ 36 & 8 \end{array}$	111417 111417	$\begin{aligned} & 202326 \\ & 192225 \end{aligned}$
16	2041	2068	2095	21	$\overline{2148}$	217	2201	2227	2253	2279	$\left\|\begin{array}{ll} 3 & 6 \\ 3 & 8 \\ 35 & 8 \end{array}\right\|$	111416 101316	192224 182123
17	2304	2330	2355	23	2405	2430	2455	2480	2504	2529	$\begin{array}{\|l\|} \hline 358 \\ 35 \\ \hline \end{array}$	101315 101215	$\begin{aligned} & 182023 \\ & 172022 \end{aligned}$
18	2553	2577	$\overline{2601}$	2625	2648	2672	2695	2718	$\underline{2742}$	2765	$\begin{array}{\|ll\|} \hline 25 & 7 \\ 24 & 7 \\ \hline \end{array}$	91214 91114	171921 161821 161820
19	88	2810	$\overline{2833}$	$\overline{2856}$	2878	29	2923	2945	2967	$\underline{2989}$	24 7 24 6 2	91113 81113	$\begin{aligned} & \hline 161820 \\ & 151719 \end{aligned}$
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	24	$8 \mathrm{III3}$	151719
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	24	81012	141618
22	3424	3444	3464	3483	3502	3522	354I	3560	3579	3598	24	81012	141517
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	24	7911	131517
24	3802	38	3838	3856	3874	3892	3909	3927	3945	3962	24	7911	121416
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	23	7910	121415
26	4150	4166	4183	4200	4216	4232	4249	4265	428I	4298	23	7810	111315
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	23	68	111314
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	23	689	111214
29	4624	4639	4654	4669	46	4698	4713	47	4742	4757	13	679	101213
30	477x	4786	4800	4814	4829	4843	4857	4871	4886	4900	13	67	101113
81	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	13	67	101112
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	13	57	91112
33	5185	5198	52 II	5224	5237	5250	5263	5276	5289	5302	13	56	91012
34	5315	53	5340	5353	53	53	53	5403	54	5428	13	56	910 II
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	12	56	91011
36	5563	5575	5587	5599	561	5623	5635	5647	5658	5670	12	56	81011
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	12	56	8910
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	$\begin{array}{ll}12 & 2 \\ 1 & \\ 1\end{array}$	56	8910
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	60	123	457	89 ro
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	12	456	8910
41	6128	6138	6I49	6160	6170	6180	6191	6201	6212	6222	12	45	789
4	6232 6335	6243 6345	6253	6263 6365	6274 6375	6284	6294	6304 6405	6314 6415	6325	12	4	$\begin{array}{lll}78 \\ 78 \\ 7 & 9\end{array}$
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522		456	788
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	12	456	78
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	12	456	77
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	12	45	67
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	12	44	6
49	6902	6911	6920	692	6937	6946	6955	6964	6972	6981	12	44	67

A2

ANTILOGARITHMS

	0	1	2	8									
	1000	1002									001		
									1042				
				1054									
		10	1076	I079					1091	1094			
			11		1107				1117	1119			
	1122	1125							1143				
. 06										1172			
						1189	1191	1194	1197	1199			
-08					1213		1219		1225				
. 09	1230				1242	1245	1247	1250	1253				
10					1271	1274	析	1279	1282				
$\cdot 1$		12	1294	12	1300	1303	1306	1309	1312	1315			
- 1	131	132	1324	1327	1330	1334	1337	1340	1343	1346			
	1349	135	1355	1358	1361	1365	1368	1371	1374	1377			33
	13	13	13	1390	1393		1400	1403		1409			
						1429			1	1442			3
	14	1449	1452		1459								
	14												
			15				15						
	15	15	1556		1563	1567							
20				1596	1600	1603	16	1611	1614	618			
$\cdot 21$	16	16											
-22	1660	16											
. 24	1698				1714		1722						
- 24	173	1742											
2	17		1786	179		17	1803	1807					
- 2		18	1828	1832	1837								
-2	I8		1871	1875	1879				1897	1901			
. 28	1905		1914	1919			1932		19	1945			
-29	195		1959	1963		197	1977	108	19				
	12						2023						
				20		2065		2075					
						13	21						
-83								2223					
35									2280	2286			
							2323						
			2355										
										2449		33	445
-38										2506			455
40			23	2529	2535	254	2547	553	559	2		234	
	257	257	2582	2588	2594		2606	261	2618			23	45
	2630	263	2642	2649	2655		266	26	2679			3	456
	269	26	2704	2710	2716		2729	273	2742			-	45
$\cdot 4$	27		2767	27	27		2793		2805	281			456
								286				334	
		28			2	29				2944			
		29			3048	29	3062	2999					

	0	1	2	8	4	5	6	7	8	8	123	45	7
	3162	31	3177	31	31	3199	32	32	32	3228		34	567
	323	32	3251	3258	3266	3273	3281	3289	3296	3304		3	567
	3311	33	3327	3334	3342	3350	3357	3365	3373	3381		3	567
	33	339	3404	3412	34		3436	3443	3451	345		3	667
	346	3475	348	3491	3499	350	351	35	3532	35		3	667
	3548	3556	35	3	35	3589	35	3606	3614	3622		3	677
- 56	3631	3639						36		3707		3	678
	371	37	3733	3741	37		37	37		3793		345	678
							3855					445	678
	38	38	39	3917	39	393	3945	395	39	3972	123	4	678
	398I	39	3999	4009	4018	4027	4036	4046	4055	4064		45	678
	4074	4083	409	4102	41	4121	4130	4140	4150	41		45	7
-62	4169	4178	4188	4198	4207	4217	4227	4236	4246	42	123	456	789
	4266	4276	4285	4295	4305	4315	4325	4335	43	4	123	456	789
	4365	4375	4385	4395	4406	4416	4426			44		456	789
	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	3		7
	4571	45	4592	4603	4613	4624	4634	4645	4656	4667		45	7
$\cdot 6$		47		4				48					
	4898	49	49	4932	4943	4955	49	4977	4989	500		5	Io
		5	50	5		5	5082	5093	5105	51		567	89 II
		51	5152	51	5176		52	521	5224			567	81011
	52		5272		5297	5309	53	53	5346			567	91011
			5395		5420	5433	54				34		91011
	5495	55	55	5		5559	55	55	55			568	91012
. 7	5	56	56	5662		5689	57	5715	57	5741	4	578	91012
			57								134	578	9
			5916	5929	5943	5957	5970	5984	59			578	101112
			6053	6067		60	6109		61			678	101113
-79			61			623	62					679	
-80	63	6324	6339	6353	6368	6383	6397	6412	6427	6442		679	101213
-81	645	6471	6486		6516		6546	6561	6577	692	2 5	689	11
	660	6622	66	66	66	6683	6699	6714		6745		689	II 1214
.83												689	111314
. 8	70	7096	7112	29	7145	7161	7178	7194	7211	7228		8	121315
	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	235	8	
-87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	235	910	
-88	758	7603	7621	7638	7656	7674	7691	7709	7727	7745		9	
-88	77	77	7798	7816	7834	7852	7870	7889	7907	7925	245	9	
-90		7962	7980	7998	8017	8035	8054	8072	8091	8110	24	7911	
	81	8147	8166	8185	8204	8222	8241	82	8279	8299	246	8911	131517
	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	246	81012	
-9	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	246	810	141618
$\cdot 9$	8710	8730	8750	8770	8790		8831	8851	8872	8892	246		14 ${ }^{1}$
9	8913	8933	8954	8974	8995	9016	9036	51	9078	9099	246	81012	151719
	9120	9141	9162	9183	9204	9226	9247	9268	9290	9311	246	81113	151719
-97	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	24	91113	
-98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	24	91113	161820
$\cdot 9$	9772			884			990					III	

EC3070 Exercise 1

2. How long will it take to double your investment if you receive an annual rate of interest of 5% and if the interest is compounded with the principal?

Answer. The equation to be solved is

$$
(1+r)^{n}=2
$$

where $r=0.05$ is the rate of interest. The solution, using log tables, is

$$
n=\frac{\log 2}{\log (1+r)}=\frac{\log 2}{\log (1.05)}=\frac{0.3010}{0.0212}=14.2,
$$

which is confirmed by my computer. My calculator tells me that $1.05^{15}=2.0789$

The natural number e. The number $e=\{2.7183 \ldots\}$ is defined by

$$
e=\lim (n \rightarrow \infty)\left(1+\frac{1}{n}\right)^{n}
$$

The binomial expansion indicates that

$$
\begin{array}{r}
(a+b)^{n}=a^{n}+n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}+ \\
\frac{n(n-1)(n-2)}{3!} a^{n-3} b^{2}+\cdots .
\end{array}
$$

Using this, we get

$$
\begin{array}{r}
\left(1+\frac{1}{n}\right)^{n}=1+n\left(\frac{1}{n}\right)+\frac{n(n-1)}{2!}\left(\frac{1}{n}\right)^{2}+ \\
\frac{n(n-1)(n-2)}{3!}\left(\frac{1}{n}\right)^{3}+\cdots .
\end{array}
$$

Taking limits as $n \rightarrow \infty$ of each term of the expansion gives

$$
\lim (n \rightarrow \infty)\left(1+\frac{1}{n}\right)^{n}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots=e
$$

The expansion of e^{x}. There is also

$$
\begin{aligned}
e^{x} & =\lim (p \rightarrow \infty)\left(1+\frac{1}{p}\right)^{p x} \\
& =\lim (n \rightarrow \infty)\left(1+\frac{x}{n}\right)^{n} ; n=p x .
\end{aligned}
$$

Using the binomial expansion in the same way as before, it can be shown that

$$
e^{x}=\frac{x^{0}}{0!}+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Also

$$
e^{x t}=1+x t+\frac{x^{2} t^{2}}{2!}+\frac{x^{3} t^{3}}{3!}+\cdots
$$

EC3070 FINANCIAL DERIVATIVES

3. With reference to the relevant Taylor-series expansions, demonstrate the following approximations

$$
\ln (1+x) \simeq x, \quad e^{x} \simeq 1+x,
$$

which are valid when x is small. Calculate the value of n in question 2 using the relevant approximation in the denominator.

Answer. Observe that, in this case, we must work with natural logarithms as opposed to base-10 logarithms. The calculation is as follows:

$$
n=\frac{\ln 2}{\ln (1+r)} \simeq \frac{\ln 2}{r}=13.86 .
$$

The Expansion of $(1-x)^{-1}$

The simplest of all power series expansions is that of the geometric progression:

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots .
$$

There are various way of achieving this expansion, including by the use of Taylor's theorem. Another way is by the method of detached coefficients.

We assume that $(1-x)^{-1}=\left\{\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\cdots\right\}$, and we rewrite this equation as

$$
1=\{1-x\}\left\{\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\cdots\right\} .
$$

Then, by performing the multiplication on the RHS, and by equating the coefficients of the same powers of x on the two sides of the equation, we find that

$$
\begin{array}{ll}
1=\alpha_{0}, & \alpha_{0}=1 \\
0=\alpha_{1}-\alpha_{0}, & \alpha_{1}=\alpha_{0}=1 \\
0=\alpha_{2}-\alpha_{1}, & \alpha_{2}=\alpha_{1}=1 \\
\quad \vdots & \\
0 & \vdots \\
0=\alpha_{n}-\alpha_{n-1}, & \alpha_{n}=\alpha_{n-1}=1
\end{array}
$$

Another way of achieving the expansion is by long division:

$$
\begin{aligned}
1-x) & \begin{array}{l}
1+x+x^{2}+\cdots \\
\frac{1-x}{x} \\
\\
\\
\\
\\
\\
\\
\quad \begin{aligned}
x-x^{2} \\
x^{2} \\
x^{2}-x^{3}
\end{aligned}
\end{array}
\end{aligned}
$$

The Sum of a Geometric Progression

We can also proceed in the opposite direction. That is to say, we can evaluate $S=$ $\left\{1+x+x^{2}+\cdots\right\}$ to show that $S=(1-x)^{-1}$. The calculation is as follows:

$$
\begin{aligned}
& S=1+x+x^{2}+\cdots \\
& x S=\quad x+x^{2}+\cdots \\
& \hline S-x S=1 .
\end{aligned}
$$

Then $S(1-x)=1$ immediately implies that $S=1 /(1-x)$.

The Partial Sum of a Geometric Progression

There is also a formula for the partial sum of the first n terms of the series, which is $S_{n}=1+x+\cdots+x^{n-1}$. Consider the following subtraction:

$$
\begin{aligned}
& S=1+x+\cdots+x^{n-1}+x^{n}+x^{n+1}+\cdots \\
& \begin{array}{l}
x^{n} S=\quad x^{n}+x^{n+1}+\cdots \\
\hline S-x^{n} S=1+x+\cdots+x^{n-1}
\end{array}
\end{aligned}
$$

This shows that $S\left(1-x^{n}\right)=S_{n}$, whence

$$
S_{n}=\frac{1-x^{n}}{1-x} .
$$

Example. An annuity is a sequence of regular payments, made once a year, until the end of the nth year. Usually, such an annuity may be sold to another holder; and, almost invariably, its outstanding value can be redeemed from the institution which has contracted to make the payments. There is clearly a need to determine the present value of the annuity if it is to be sold or redeemed. The principle which is applied for this purpose is that of discounting.

Geometric Progression

Imagine that a sum of $£ A$ is invested for one year at an annual rate of interest of $r \times 100 \%$. At the end the year, the principal sum is returned together with the interest via a payment of $£(1+r) A$. A straightforward conclusion is that $£(1+r) A$ to be paid one year hence has the value of $£ A$ paid today. By the same token, $£ A$ to be paid one year hence has a present value of

$$
V=\frac{A}{1+r}=A \delta, \quad \text { where } \quad \delta=\frac{1}{1+r} \quad \text { is the discount rate. }
$$

It follows that $£ A$ to be paid two years hence has a present value of $£ A \delta^{2}$. More generally, if the sum of $£ A$ is to be paid n years hence, then it is worth $£ A \delta^{n}$ today.

The present value of an annuity of $£ r A$ to be paid for the next n years is therefore

$$
\begin{aligned}
V_{n} & =\operatorname{Ar}\left(\delta+\delta^{2}+\cdots+\delta^{n}\right)=\operatorname{Ar} \delta\left(1+\delta+\cdots+\delta^{n-1}\right) \\
& =\operatorname{Ar} \delta \frac{1-\delta^{n}}{1-\delta}=A\left(1-\delta^{n}\right), \quad \text { since } \quad \frac{\delta}{1-\delta}=r .
\end{aligned}
$$

If the principal sum is to be repaid at the end of the nth year, then the present value of the contract will be

$$
A\left(1-\delta^{n}\right)+A \delta^{n}=A
$$

which is precisely equal to the value of the sum that is to be invested.

EC3070 Exercise 1

4. Using the expression $x=e^{y}=10^{z}$, find a formula that will enable you to convert between $\log _{e} x$ and $\log _{10} x$, commonly denoted by $\log x$ and $\ln x$, respectively-the latter being described as a natural logarithm or a Naperian logarithm.

Answer. Here, there are $y=\log _{e}(x)$ and $z=\log _{10}(x)$. By taking natural logarithms of the equation $x=e^{y}=10^{z}$, we get

$$
y=\log _{e}(x)=z \times \log _{e}(10)=\log _{10}(x) \times \log _{e}(10)
$$

Also, observe that

$$
10=e^{\log _{e}(10)} \quad \text { implies } \quad \log _{10}(10)=1=\log _{e}(10) \times \log _{10}(e) .
$$

Therefore,

$$
\log _{e}(x)=\frac{\log _{10}(x)}{\log _{10}(e)} \quad \text { and } \quad \log _{10}(x)=\frac{\log _{e}(x)}{\log _{e}(10)}
$$

ARTIST: Sam Cooke, TITLE: Wonderful World (Don't Know Much)
Don't know much about history
Don't know much biology
Don't know much about a science book
Don't know much about the French I took
But I do know that I love you
And I know that if you love me too
What a wonderful world this would be
Don't know much about geography
Don't know much trigonometry
Don't know much about algebra
Don't know what a slide rule is for
But I know that one and one is two
And if this one could be with you
What a wonderful world this would be
Now, I don't claim to be an "A" student
But I'm trying to be
For maybe by being an "A" student baby
I can win your love for me

Basic Slide Rule Instructions

To multiply two numbers on a typical slide rule, the user marks one of the factors on the upper C scale. (In this case, it is 16.6). The second factor is marked on the lower D scale (In this case, it is 42.2). Then, the upper scale is slid forwards until its starting value of unity is aligned with the point on the lower scale marking the second factor. The point which is reached on the lower scale by the mark on the upper scale corresponds to the product of the two factors (700). By these means, the user effectively adds the logs (lengths) of the two numbers and finds the antilog of the sum.

A calculation on a slide rule showing that $42.2 \times 16.6=700$

EC3070 FINANCIAL DERIVATIVES

5. Let $S_{n}=1+r+r^{2}+\cdots+r^{n-1}$, which is a partial sum of n terms of an geometric progression. Show that $S_{n}+r^{n}=1+r S_{n}$ and thence derive an expression of S_{n} in terms of r.

Answer. By rearranging the given expression, we get $S_{n}(1-r)=1-r^{n}$, whence

$$
S_{n}=\frac{1-r^{n}}{1-r} .
$$

EC3070 Exercise 1

6. Annual payments of $£ M$ must be made over a period of n years to redeem a mortgage. The present value of this stream of payments is

$$
M\left(\delta+\delta^{2}+\cdots+\delta^{n}\right)
$$

where $\delta=(1+r)^{-1}$ is the rate of discount and r is the rate of interest. The present value of the stream of payments must equate to the value L of the loan.
If the loan was for $£ 150,000$ and the rate of interest was fixed at 5% for the entire period, what should be the size of the annual payment in order to redeem the loan in 20 year's time?

Answer. The present value of the payments is

$$
M \delta\left(1+\delta+\delta^{2}+\cdots+\delta^{n-1}\right)=M \frac{\delta\left(1-\delta^{n}\right)}{1-\delta}=L
$$

whence

$$
M=L \frac{1-\delta}{\delta\left(1-\delta^{n}\right)}=L \frac{\gamma^{n}(\gamma-1)}{\gamma^{n}-1} \quad \text { where } \quad \gamma=\delta^{-1}=1+r
$$

with $L=150,000, n=20$ and $1+r=1.05$, we find that $M=12,036$.

