
LECTURE 3 : FOURIER METHODS

The Fourier Decomposition of a Time Series

The Fourier decomposition explains a time series entirely as a weighted sum
of sinusoidal functions. Thus the generic element of the sample y0, . . . , yT−1 is
expressed

(2.26) yt =
n∑
j=0

{
αj cos(ωjt) + βj sin(ωjt)

}
.

Assuming that T = 2n is even, this sum comprises T functions at frequencies

(2.27) ωj =
2πj
T
, j = 0, . . . , n =

T

2

which are at equally spaced points in the interval [0, π].
Notice that

(4.15)

sin(ω0t) = sin(0) = 0,
cos(ω0t) = cos(0) = 1,
sin(ωnt) = sin(πt) = 0,
cos(ωnt) = cos(πt) = (−1)t;

so there are indeed T nonzero tigonometrical functions and not T + 2 as, at
first, there seem to be.

The highest velocity ωn = π corresponds to the so-called Nyquist fre-
quency. If ω ∈ (π, 2π) and if ω∗ = 2π − ω, then

(2.28)
cos(ωt) = cos{(2π − ω∗)t}

= cos(2π) cos(ω∗t) + sin(2π) sin(ω∗t)
= cos(ω∗t);

which indicates that ω and ω∗ are observationally indistinguishable. Thus,
ω∗ ∈ [0, π] is described as the alias of ω > π.
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Calculation of the Fourier Coefficients

Let cj = [c0j , . . . , cT−1,j ]′ and sj = [s0,j , . . . , sT−1,j ]′ represent vectors of
T values of the generic functions cos(ωjt) and sin(ωjt) respectively. Then there
are the following orthogonality conditions:

(2.29)
c′icj = 0 if i 6= j,

s′isj = 0 if i 6= j,

c′isj = 0 for all i, j.

In addition, there are the following sums of squares:

(2.30)

c′0c0 = c′ncn = T,

s′0s0 = s′nsn = 0,

c′jcj = s′jsj =
T

2
.

The “regression” formulae for the Fourier coefficients are therefore

(2.31) α0 = (i′i)−1i′y =
1
T

∑
t

yt = ȳ,

(2.32) αj = (c′jcj)
−1c′jy =

2
T

∑
t

yt cosωit,

(2.33) βj = (s′jsj)
−1s′jy =

2
T

∑
t

yt sinωjt.
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The Fourier Decomposition and the Analysis of Variance

The sum of squares of the elements of the vector y is decomposed as

(2.34) y′y = α2
0i
′i+

∑
j

α2
jc
′
jcj +

∑
j

β2
j s
′
jsj .

Since α2
0i
′i = ȳ2i′i = ȳ′ȳ where ȳ′ = [ȳ, . . . , ȳ], it follows that y′y − α2

0i
′i =

y′y − ȳ′ȳ = (y − ȳ)′(y − ȳ). Therefore we can rewrite the equation as

(2.35) (y − ȳ)′(y − ȳ) =
T

2

∑
j

{
α2
j + β2

j

}
=
T

2

∑
j

ρ2
j ,

and it follows that we can express the variance of the sample as

(2.36)

1
T

T−1∑
t=0

(yt − ȳ)2 =
1
2

n∑
j=1

(α2
j + β2

j )

=
2
T 2

∑
j

{(∑
t

yt cosωjt
)2

+
(∑

t

yt sinωjt
)2
}
.

The proportion of the variance which is attributable to the component at fre-
quency ωj is (α2

j + β2
j )/2 = ρ2

j/2, where ρj is the amplitude of the component.
The graph of the function I(ωj) = (T/2)(α2

j +β2
j ) is know as the periodogram.

The Periodogram and the Empirical Autocovariances

The empirical autocovariance of lag τ is defined by the formula

(2.37) cτ =
1
T

T−1∑
t−τ

(yt − ȳ)(yt−τ − ȳ).

The periodogram may be written as

(2.40)
I(ωj) =

2
T

[{ T−1∑
t=0

cos(ωjt)(yt − ȳ)
}2

+
{ T−1∑

t=0

sin(ωjt)(yt − ȳ)
}2
]

=
2
T

{∑
t

∑
s

cos(ωj [t− s])(yt − ȳ)(ys − ȳ)
}
.

On defining τ = t − s and using the definition of cτ from (37), we can reduce
the latter expression to

(2.41) I(ωj) = 2
T−1∑

τ=1−T
cos(ωjτ)cτ ,

which is a Fourier transform of the sequence of empirical autocovariances.
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Stationarity

If y(t) = {yt; t = 0,±1,±2, . . .} is weakly stationary process, then

(4.2)
E(yt) = µ,

C(yt+i, yt+j) = C(yi, yj)
= γ|i−j|.

The autocovariance matrix of a stationary process corresponding to the n
elements y0, y1, . . . , yn−1 is given by

(4.5) Γ =


γ0 γ1 γ2 . . . γn−1

γ1 γ0 γ1 . . . γn−2

γ2 γ1 γ0 . . . γn−3

...
...

...
. . .

...
γn−1 γn−2 γn−3 . . . γ0

 .

The Filtering of White Noise

A white-noise process is a sequence ε(t) of uncorrelated random variables
with mean zero and common variance σ2

ε . Thus

(4.6)
E(εt) = 0, for all t

E(εt+iεt+j) =
{
σ2
ε , if i = j;

0, if i 6= j.

By a process of linear filtering, a variety of time series may be constructed whose
elements display complex interdependencies. If µ(L) = µ0 + µ1L+ · · ·+ µqL

q,
Then

(4.7)

y(t) = µ(L)ε(t)
= µ0ε(t) + µ1ε(t− 1) + µ2ε(t− 2) + · · ·+ µqε(t− q)

=
q∑
i=0

µiε(t− i).

An operator µ(L) = {µ0 +µ1L+µ2L
2 + · · ·} with an indefinite number of terms

must obey the condition that

(4.8)
∑
i

|µi| <∞.
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The autocovariances of the filtered sequence y(t) = µ(L)ε(t) may be de-
termined by evaluating the expression

(4.9)

γτ = E(ytyt−τ )

= E

(∑
i

µiεt−i
∑
j

µjεt−τ−j

)
=
∑
i

∑
j

µiµjE(εt−iεt−τ−j).

From equation (6), it follows that

(4.10) γτ = σ2
ε

∑
j

µjµj+τ ;

and so the variance of the filtered sequence is

(4.11) γ0 = σ2
ε

∑
j

µ2
j .

The z-transform

The z-transform of the infinite sequence y(t) = {yt; t = 0,±1,±2, . . .} is
defined by

(4.12) y(z) =
∞∑

τ=−∞
ytz

t.

If y(t) = µ(L)ε(t) is a moving-average process, then the z-transform is
given by y(z) = µ(z)ε(z) where µ(z) = {µ0 + µ1z + µ2z

2 + · · ·} has the same
form as the operator µ(L), and where ε(z) is the z-transform of the white-noise
sequence.

The z-transform of a sequence of autocovariances is called the autocovari-
ance generating function. For the moving-average process, this is given by

(4.13)

γ(z) = σ2
εµ(z)µ(z−1)

= σ2
ε

∑
i

µiz
i
∑
j

µjz
−j

= σ2
ε

∑
i

∑
j

µiµjz
i−j

=
∑
τ

{
σ2
ε

∑
j

µjµj+τ

}
zτ ; τ = i− j

=
∞∑

τ=−∞
γτz

τ .

The final equality is by virtue of equation (10).
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The Spectral Representation of a Stationary Process

By writing αj = dA(ωj), βj = dB(ωj) where A(ω), B(ω) are step functions
with discontinuities at the points {ωj ; j = 0, . . . , n}, the expression for the
Fourier representation of a finite sequence can be written as

(4.19) yt =
∑
j

{
cos(ωjt)dA(ωj) + sin(ωjt)dB(ωj)

}
.

In the limit, as n → ∞, the summation is replaced by an integral to give the
expression

(4.20) y(t) =
∫ π

0

{
cos(ωt)dA(ω) + sin(ωt)dB(ω)

}
.

In order to derive a statistical theory for the process that generates y(t),
one must make some assumptions concerning the functions A(ω) and B(ω).

First, it is assumed that A(ω) and B(ω) represent a pair of stochastic
processes of zero mean which are indexed on the continuous parameter ω. Thus

(4.21) E
{
dA(ω)

}
= E

{
dB(ω)

}
= 0.

Next, it is assumed that A(ω) and B(ω) mutually uncorrelated and that
non-overlapping increments within each process are uncorrelated. Thus

(4.22)

E
{
dA(ω)dB(λ)

}
= 0 for all ω, λ,

E
{
dA(ω)dA(λ)

}
= 0 if ω 6= λ,

E
{
dB(ω)dB(λ)

}
= 0 if ω 6= λ.

The finally it is assumed that the variance of the increments is given by a

(4.23)
V
{
dA(ω)

}
= V

{
dB(ω)

}
= 2dF (ω)

= 2f(ω)dω.

We can see that, unlike A(ω) and B(ω), F (ω) is a continuous differentiable
function. The function F (ω) and its derivative f(ω) are the spectral distribu-
tion function and the spectral density function, respectively.
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The Complex Exponential Form of the Spectral Representation

In order to express equation (20) in terms of complex exponentials, we
may define a pair of conjugate complex stochastic processes:

(4.24)
dZ(ω) =

1
2
{
dA(ω)− idB(ω)

}
,

dZ∗(ω) =
1
2
{
dA(ω) + idB(ω)

}
.

Also, we may extend the domain of the functions A(ω), B(ω) from [0, π] to
[−π, π] by regarding A(ω) as an even function such that A(−ω) = A(ω) and by
regarding B(ω) as an odd function such that B(−ω) = −B(ω). Then we have

(4.25) dZ∗(ω) = dZ(−ω).

From conditions under (22), it follows that

(4.26)
E
{
dZ(ω)dZ∗(λ)

}
= 0 if ω 6= λ,

E{dZ(ω)dZ∗(ω)} = f(ω)dω.

These results may be used to reexpress equation (20) as

(4.27)

y(t) =
∫ π

0

{
(eiωt + e−iωt)

2
dA(ω)− i (e

iωt − e−iωt)
2

dB(ω)
}

=
∫ π

0

{
eiωt
{dA(ω)− idB(ω)}

2
+ e−iωt

{dA(ω) + idB(ω)}
2

}
=
∫ π

0

{
eiωtdZ(ω) + e−iωtdZ∗(ω)

}
.

When the integral is extended over the range [−π, π], this becomes

(4.28) y(t) =
∫ π

−π
eiωtdZy(ω).

This is commonly described as the spectral representation of the process y(t).
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The Autocovariances and the Spectral Density Function

The sequence of the autocovariances of the process y(t) may be expressed
in terms of the spectrum of the process. From equation (28), it follows that
the autocovariance yt at lag τ = t− k is given by

(4.29)

γτ = C(yt, yk) = E

{∫
ω

eiωtdZy(ω)
∫
λ

e−iλkdZy(−λ)
}

=
∫
ω

∫
λ

eiωte−iλkE{dZy(ω)dZ∗y (λ)}

=
∫
ω

eiωτE{dZy(ω)dZ∗y (ω)}

=
∫
ω

eiωτfy(ω)dω.

Here the final equalities are derived by using the results (25) and (26). This
equation indicates that the Fourier transform of the spectrum is the autoco-
variance function.

The inverse mapping from the autocovariances to the spectrum is given by

(4.30)

f(ω) =
1

2π

∞∑
τ=−∞

γτe
−iωτ

=
1

2π

{
γ0 + 2

∞∑
τ=1

γτ cos(ωτ)
}
.

This function is directly comparable to the periodogram of a data sequence
which is defined under (2.41).

To demonstrate the relationship which exists between equations (29) and
(30), we may substitute the latter into the former to give

(4.31)

γτ =
∫ π

−π
eiωτ

{ 1
2π

∞∑
τ=−∞

γτe
−iωτ

}
dω

=
1

2π

∞∑
κ=−∞

γκ

∫ π

−π
eiω(τ−κ)dω.

From the fact that

(4.32)
∫ π

−π
eiω(τ−κ)dω =

{ 2π, if κ = τ ;

0, if κ 6= τ ,

it can be seen that the RHS of the equation reduces to γτ . This serves to show
that equations (29) and (30) do indeed represent a Fourier transform and its
inverse.

8


