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Abstract

Despite an abundance of semiparametric estimators of the transformation model, no proce-

dure has been proposed yet to test the hypothesis that the transformation function belongs to

a finite-dimensional parametric family against a nonparametric alternative. In this paper we

introduce a bootstrap test based on integrated squared distance between a nonparametric esti-

mator and a parametric null. As a special case, our procedure can be used to test the parametric

specification of the integrated baseline hazard in a semiparametric mixed proportional hazard

(MPH) model. We investigate the finite sample performance of our test in a Monte Carlo study.

Finally, we apply the proposed test to Kennan’s strike durations data.
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1 Introduction

Consider a transformation model of the form:

Λ0(Y ) = X ′β0 + U (1)

where Y is a scalar dependent variable, X is a vector of q nondegenerate explanatory variables, β0

is a vector of coefficients belonging to a compact set Θβ ⊂ Rq, Λ0(·) is an increasing function and U

is an unobserved error term with cumulative distribution function F that is independent of X. For

the model to be identified, the following normalizations are used: Λ0(y0) = 0 for some finite y0 and

β0,1 = 1 (where β0,1 denotes the first element of β0). Note that the model belongs to the class of

single index models, therefore β0 can be estimated
√
n-consistently using, for example, maximum

rank correlation estimator (Han (1987)) or semiparametric least squares (Ichimura (1993)). We

assume that such estimator is available throughout our analysis.

Several nonparametric estimators have been proposed for the transformation function in this

model. Let Z ≡ X ′bn where bn is a consistent estimator of β0. Horowitz (1996) uses the fact that:

Ψ(y|z) ≡P (Y ≤ y|Z = z) = F (Λ(y)− z)

Ψy(y|z) ≡
∂Ψ(y|z)
∂y

=
dΛ(y)

dy
f(Λ(y)− z)

Ψz(y|z) ≡
∂Ψ(y|z)
∂z

= −f(Λ(y)− z)

and suggests to estimate Λ(·) by:

Λn(y) = −
∫ y

y0

∫
Sw

w(z)
Ψny(v|z)
Ψnz(v|z)

dzdv (HJ)

where Ψny,Ψnz are kernel-based estimators of Ψy,Ψz and w(·) is a non-negative differentiable

weight function, which integrates to one, with support Sw ⊂ R such that z ∈ Sw ⇒ Ψz(y|z) > 0.

Integration over z using the weight function has a smoothing effect on the kernel estimators and

allows obtaining n−1/2 rate of convergence. This estimator has been extended to the case of censored

Y ’s by Gørgens & Horowitz (1999).

Chen (2002) suggests a rank-based estimator. Define diy = 1{Yi ≥ y} and djy0 = 1{Yj ≥ y0}.

2



Using the normalization Λ0(y0) = 0, we have:

E[(diy − djy0)|Zi, Zj ] = F [−Zj ]− F [Λ0(y)− Zi] ≥ 0 ⇔ Zi − Zj ≥ Λ0(y),

which suggests estimating Λ0(y) by a version of the maximum rank correlation estimator:

Λn(y) = arg max
Λ

1

n(n− 1)

∑
i 6=j

(diy − djy0)1{Zi − Zj ≥ Λ}, (CS)

Chen (2002) proves consistency and derives asymptotic law for this estimator using much weaker

conditions than Horowitz (1996). In particular, Λ0 may be discontinuous and the pdf of U is required

to have only two derivatives, compared to the requirement of at least nine derivatives in the latter

paper. The estimator can be easily modified to accommodate random censoring.

Another estimator was proposed by Ye & Duan (1997). They impose a different normalization

than the previous two approaches. Instead of fixing Λ0 at a point they assume that median of U is

equal to zero. Let Me(z) denote the median of Y conditional on Z = z. First, they use the fact

that:

Λ(Me(z)) = z;

Ψ(Me(Z + ∆)|z) = F (∆),

where Ψ and Z are defined as above, to estimate F and then they use F̂ to estimate Λ0.1 Yet

another estimator, using a similar idea was suggested by Klein & Sherman (2002), who focus on

the estimation of threshold points in an ordered response model. Their approach can also be used

to estimate the values of the transformation function at a finite number of points. Both estimators

can be extended to deal with censored values of Y .

Despite such an abundance of semiparametric estimation techniques, (to the best of our knowl-

edge) so far there has been no practically appealing procedure that would allow testing parametric

specification of the transformation model against an unrestricted one (cf. Horowitz (2009)). This
1Note that Λ−1

0 could be estimated in this model simply by running a nonparametric median regression of Y on Z
sinceM(Y |Z) = Λ−1

0 (Z). Thus, we could invert this estimator to obtain Λn (this may require imposing monotonicity
on Λ−1

n ) and then use it to estimate F . However, the resulting estimator of F will depend on the first-stage estimator
Λn. An advantage of the approach in Ye & Duan (1997) is that the estimator of F does not depend on Λn.
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paper aims at filling this gap. The main objective is to provide a test that would distinguish between

various parametric specifications of integrated baseline hazard function (e.g. Weibull hazard) and

a fully nonparametric one. However, the procedures developed below can be used in specification

testing in other context, e.g. testing the log-linear specification in wage regressions, testing the form

of the marginal utility (profit) function in hedonic models (see e.g. Ekeland et al. (2004)).

In a related article, Fernandes & Grammig (2005) propose a specification test for the hazard

function in the autoregressive conditional duration model (ACD) used in finance. Although their

model does not fall in the i.i.d. setup we consider, it should be possible to extend their approach

to our case. Nevertheless, their test is based on nonparametric estimates of the conditional density

of the duration which requires choosing smoothing parameters. Since there is no guidance on how

to choose these parameters in a finite sample and results of the test may be sensitive to this choice,

this approach may not be appealing to practitioners. Instead, our bootstrap test is free of tuning

parameters and therefore much easier to use in practice.

We propose a Cramer-von Mises type test for distinguishing between parametric and nonpara-

metric transformations. The test uses the nonparametric estimator of the transformation function

developed by Chen (2002) and compares it to the parametric specification using the L2 norm. We

chose to build our test on this estimator for three reasons. Firstly, CS estimator has a convenient

linear asymptotic representation whereas no such representation is available for Klein & Sherman

(2002) and Ye & Duan (1997), which makes the analysis of the test based on the latter estimators

more complicated. Secondly, CS is much easier to compute than HJ (and similarly Gørgens &

Horowitz (1999)) since using the latter would involve multiple computationally intensive numer-

ical integrations. Finally, as shown in Chen (2002) CS generally performs better than the other

estimators in terms of root mean-square error, especially in the tails of the data distribution.

In our model F is treated nonparametrically. As an alternative to our approach, one can

assume a parametric distribution for F . If the data on Y is recorded on a finite grid, e.g. Y is

unemployment duration and is recorded in weeks, then one can estimate Λ0 at the points in the

grid by maximum likelihood both with and without imposing parametric restriction on Λ0 and

run a likelihood ratio test to verify if the parametric model is valid.2 The disadvantage of this
2See Meyer (1990) for estimation of a MPH model with nonparametric hazard, parametric distribution of U and

discrete observations on Y .

4



approach is that misspecification of the parametric form of F may lead to invalid inference about

the specification of Λ0, whereas our approach will be robust to misspecifying F . Finally, our test can

also be applied if F is restricted to a parametric class provided that the nonparametric estimator

of Λ0 satisfies the assumptions below.

The article is organized as follows. Section 2 discusses specification testing in the general trans-

formation model given in (1). In this model the transformation function is identified only up to

scale so the inference boils down to checking if the shape of Λ0 is consistent with the parametric

assumption.

Section 2.1 considers a special case of a mixed proportional hazard model. Thanks to additional

structure, in this model both the shape and the scale of the transformation function are identified.

We show that in order to test if the parametric specification of the integrated baseline hazard is

correct it is enough to use the estimator up to scale. This has two advantages relative to simply

comparing the estimated parametric and non-parametric integrated baseline hazards. Firstly, the

scale of the integrated baseline hazard, whether in parametric or nonparametric model, can be

estimated only at a rate slower than the standard n−1/2 rate so by using estimates up to scale

we still obtain a test that has power against alternatives that are O(n−1/2) apart from the null

hypothesis. Second, the available estimators of the scale (see Honoré (1990), Horowitz (1999))

are difficult to use in practice. For example, consider a mixed proportional hazard model with

nonparametric Λ and F . Horowitz (1999) shows that the scale of Λ in this model can be estimated

by:

σn =
σn(tn1)− n−η1(1−η2)σn(tn2)

1− n−η1(1−η2)

where

σn(y) = −
∫

Ψnz(y|z)pn(z)2dz∫
Ψn(y|z)pn(z)2dz

and Ψnz,Ψn are estimators of Ψz,Ψ (defined above), pn is a kernel estimator of the density of Z

and tn1 → 0, tn2 → 0 at rates that depend on the tuning parameters η1 and η2. Thus, in order to

implement this estimator the researcher needs to pick not only bandwidths for the estimation of

5



Ψ and its derivatives but also the tuning constants η1 and η2, which is troublesome given lack of

prescriptions for how to pick these constants in a finite sample.

Our test statistic converges to a functional of a Gaussian process and we suggest using boot-

strap to obtain the critical values. We show that bootstrap consistently estimates the asymptotic

distribution of our statistic. As a by-product of our analysis we prove that nonparametric bootstrap

can be used to obtain (pointwise) standard errors for the CS estimator. This is an important result

by itself since previous approaches based on numerical derivatives or kernel smoothing proved to

be quite unstable and hard to implement in practice. In Section 3 we investigate the finite sample

performance of our test using a Monte Carlo study. Section 4 provides an application to Kennan’s

strike duration data.

2 General transformation model

We want to test:

H0 : Λ0(·) ∈ {Λ(·, γ); γ ∈ Θγ} over [y1, y2]

where Θγ is an open subset of a d-dimensional Euclidean space. One needs to restrict oneself

to a compact interval [y1, y2] because Λ0(y) may not be bounded on the whole real line.3 From

now on we will refer to the model with parametric Λ(·, γ) as a ‘parametric model’ in contrast to

a ‘nonparametric model’ in which Λ0 is not restricted to lie in a parametric class, although both

models leave the distribution of U unrestricted.

A natural way to construct a test is to take the L2 distance between one of the estimators

Λn(·) and the parametric estimator, e.g. the estimator of Box-Cox regression model proposed

by Foster et al. (2001). However, as mentioned in the Introduction, the transformation function

is only identified up to scale and location normalizations. We have two cases. Firstly, the same

normalization may be imposed on both nonparametric and parametric model, i.e. Λ0(y0) = Λ(y0, γ)

for some y0 ∈ R, and β1 = 1. Secondly, often a parametric model for the transformation imposes a

scale normalization by itself so we cannot restrict β1 = 1 (for example, if the parametric specification
3One could expand the support of Λ with the sample size and as a result obtain a test over the whole support R.

We leave this extension for further research.
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has a log-linear form: log Y = X ′β + U). Therefore, we have to normalize the nonparametric

estimator so that the two transformation functions are comparable. This can be done by multiplying

the nonparametric estimator by the estimator of the scale from the parametric model.4

Let β̂ denote an estimator of the coefficient vector β in the parametric model and let β̂1 be its

first element. Note that β̂1Λn(y) is equal to the estimator of the transformation function when the

normalization β0,1 = β̂1 is imposed instead of β0,1 = 1. Thus, our test statistic is given by:

Tn = n

∫ y2

y1

[(anΛn(y)− Λ(y, γ̂))w(y)]2 dy. (2)

where γ̂ is an estimator of γ, an = D + (1−D)β̂1 and

D =


1 if both transformations are normalized at the same point

0 otherwise

The weight function w(y) may be used to redirect the power of the test over y. For example, an

application may dictate that some region of y’s is of particular interest.

In principle, instead of using a Cramer-von-Mises type test, a Kolmogorov-Smirnov type test

can be used. However, using the L2 norm will be more convenient computationally than using a

sup norm. Our preferred estimator Λn is non-smooth and h(y) = (Λn(y) − Λ(y, γ̂))2 may have

multiple local maxima with respect to y. Thus, calculating the sup statistic would require using

global optimization methods for discontinuous problems, which are usually very slow. It is much

easier to integrate over the differences (Λn(y)− Λ(y, γ̂))2. If the integrand h(y) is non-smooth, the

numerical integration procedures may have trouble approximating the integral precisely. Still the

Monte Carlo simulations reported in Section 3 show that they work pretty well in practice.

Frequently, especially in the context of duration models, the observations on Yi are right-

censored. Let Ci denote a random censoring threshold with cumulative distribution function G0 and

survival function Ḡ0, let Ỹi denote a latent (not censored) value of the dependent variable generated

from (1) and let Yi be a censored observation on Ỹi, i.e. Yi = min{Ỹi, Ci}. Additionally, define the

censoring indicator δi = 1{Ỹi ≤ Ci}.
4Throughout the article we will use hats to denote the estimators obtained using the parametric model and

subscript n to denote estimators corresponding to the nonparametric model.
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From now on, we will focus on the case in which Y ’s are censored. The case without censoring

can be seen as a special case with Ci = ∞ for all i (i.e. Ḡ0(y) = 1 for all y in [y1, y2]) so all the

arguments below will apply to this special case.

Define the Euclidean class of functions as in Pakes & Pollard (1989) and let L2(Y) denote a

space of square integrable functions on Y. We make the following assumptions:

Assumption 1. (DGP) {Xi, Yi, δi : i = 1, . . . , n} is a random sample, U is independent of X, C

is independent of (X,U) and Ḡ0 is bounded away from zero on [y1, y2].

Assumption 2. (Asymptotic linearity)

(a) There is a function J : [y1, y2] × Rq × [y1, y2] × Θβ → R such that E[J(Y,X; y, β0)] = 0,

E[J(Y,X; y, β0)J(Y,X; y′, β0)] is finite for every y, y′ ∈ [y1, y2], J(Yi, Xi; ·, β0) ∈ L2([y1, y2])

and, as n→∞:

√
n(Λn(y)− Λ0(y)) =

1√
n

n∑
i=1

J(Yi, Xi; y, β0) + op(1)

uniformly over y ∈ [y1, y2]. Moreover, the class of functions J = {J(·, ·; y, β0), y ∈ [y1, y2]} is

Euclidean.

(b) Let γ be a probability limit of γ̂. There exists a vector-valued function Ωγ(Yi, Xi; γ, β) with mean

zero and finite covariance matrix such that, as n→∞:

√
n(γ̂ − γ) =

1√
n

n∑
i=1

Ωγ(Yi, Xi, δi; γ, β) + op(1).

(c) Λ(y, γ) is twice differentiable in γ and the derivatives are bounded uniformly over y ∈ [y1, y2].

(d) Let β1 be a probability limit of β̂1. There exists a function Ω1(Yi, Xi, δi; γ, β) with mean zero

and finite variance such that, as n→∞:

√
n(β̂1 − β1) =

1√
n

n∑
i=1

Ω1(Yi, Xi, δi; γ, β) + op(1).
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Assumption 3. (Weight function) The weight function w(y) satisfies:

∫ y2

y1

w(y)2dy = 1.

Assumption 2(a) is satisfied by the CS and by the HJ estimator.5 This assumption implies

that
√
n(Λn(y)− Λ0(y)) converges to a mean zero Gaussian process. Assumptions 2(b),(c) are not

relevant if Λ(y, γ) does not depend on γ as in our leading example of testing a log-linear model

versus a nonparametric alternative, i.e. Λ(y, γ) = log(y). Assumption 2(b) is satisfied by GMM

estimators and estimator proposed by Foster et al. (2001). Assumption 2(c) is satisfied by a Box-

Cox transformation (with y1 > 0) and most hedonic pricing models if the utility (profit) function is

sufficiently smooth (e.g. Cobb-Douglas). The asymptotic linear representation in Assumption 2(d)

is clearly available for the OLS estimator in the loglinear model but also for the estimator developed

by Foster et al. (2001) for the Box-Cox model.

Example 1. (log-linear model) We test if the wage regression has a log-linear form. For simplicity

assume that there is only one regressor and no censoring. We estimate the model by ordinary least

squares. In this case we have Λ(y, γ) = log(y), ∂Λ(y,γ)
∂γ = 0 and Ω1(Yi, Xi; γ, β) = (Xi − X̄)(log Yi −

βXi)/V ar(Xi).

Define:

Bn(y) =
1√
n

n∑
i=1

[(D + (1−D)β1)J(Yi, Xi; y, β0)−∂Λ(y, γ)

∂γ

′
Ωγ(Yi, Xi; γ, β)

+ (1−D)Λ(y, γ)Ω1(Yi, Xi; γ, β)]w(y). (3)

The following theorem establishes the asymptotic approximation to the distribution of the test

statistics.

Theorem 1. Under H0 and Assumptions 1-3:

Tn →d

∫ y2

y1

B2(y)dy (4)

5Klein & Sherman (2002) only show point-wise convergence of their estimator to a normal variable. They do not
provide a uniform linear representation as in Assumption 2(a). Also the estimator developed by Ye & Duan (1997)
does not have a linear representation.
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where B is a mean zero Gaussian process with covariance function:

R(y, y′) = E[Bn(y)Bn(y′)].

Alternatively, we can write:

Tn →d
∞∑
j=1

ωjχ
2
j1, (5)

where χ2
j1’s are independent chi-square random variables with one degree of freedom and ωj’s are

eigenvalues of the linear integral operator:

(Rg)(y) =

∫ y2

y1

R(y, z)g(z)dz; g(·) ∈ L2([y1, y2]). (6)

We can obtain the critical value by simulating the process B and calculating the integral in

(4).6 However, this would require estimating the covariance function R which both for CS and HJ

estimators involves kernel smoothing. Since there are no procedures to choose a bandwidth for these

estimators in the finite sample and, as evidenced by our simulation studies (available upon request),

the results of the test are very sensitive to this choice, we do not pursue this approach. Instead, we

suggest using bootstrap critical value.

2.1 MPH duration model

Before we turn to the bootstrap procedure, we briefly discuss how our test can be used to test the

parametric specification of the (integrated) baseline hazard in duration models.

A duration model can be seen as a special case of the transformation model. We consider the

single-spell mixed proportional hazard (MPH) model:

α log Λ̃(Y ) = X ′β + V − ξ (7)

6As an alternative, one can use the characterization in (5) and employ the simulation procedure in Horowitz
(2006) and Blundell & Horowitz (2007). This would involve truncating the sum in (5) and estimating the remaining
eigenvalues ωj . This is straightforward in the setting analyzed by Horowitz (2006) and Blundell & Horowitz (2007)
because the Fourier representation of the covariance kernel can be calculated analytically without numerical integra-
tion. This is not the case here since the covariance function includes an at least three dimensional non-separable
function J(·, ·; ·, β0), which entails the need to perform a triple numerical integration in order to obtain the Fourier
coefficients. This makes this method unattractive in our setting.
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where Λ̃(Y )α is the integrated baseline hazard, ξ has the standard Gumbel distribution and (ξ, V,X)

are mutually independent. For simplicity, there is no censoring. We intentionally factored out the

scale of the log of integrated hazard, α, to facilitate discussion below. The difference between this

model and the general transformation model discussed before is that here β and α are separately

identified and we do not need the normalization β1 = 1.

Now observe that, if Λ̃ is known, equation (7) pins down the scale α because the scale of ξ is

fixed (and ξ is independent of X and V ). In other words, if there are two MPH models:

α(1) log Λ̃(1)(Y ) = Xβ(1) + V (1) − ξ

α(2) log Λ̃(2)(Y ) = Xβ(2) + V (2) − ξ

with Λ̃(1) = Λ̃(2), then they can generate the same population distribution of Y given X only if

α(1) = α(2) (excluding a knife-edge case when V (1)/α(1) and V (2)/α(2) have the same distribution

as −ξ). As a result, if we want to test if the integrated baseline hazard α log Λ̃(·) belongs to some

parametric class, it is enough to test that the estimate up to scale, log Λ̃(·), belongs to a conjectured

parametric family.

Therefore, the following procedure can be used:

1. Estimate the transformation model in (1) imposing the necessary normalizations.

2. Estimate the null parametric transformation Λ(y, γ) = log Λ̃(y, γ) with (this would correspond

to D = 0 above) or without (D = 1) imposing the normalization β1 = 1, for example by using

GMM (see Horowitz (2009), Ch. 6.1) or Foster et al. (2001).

3. Run our bootstrap test (see next section for details). If the test statistic is greater than the

critical value, conclude that the integrated baseline hazard is misspecified.

This is convenient since the estimators of α do not converge at the n−1/2 rate either in parametric

or nonparametric model. For the Weibull MPH model Honoré (1990) shows that under the assump-

tion E[e−V ] < ∞ his estimator converges at a rate that can be made arbitrarily close to n−1/3

and establishes its asymptotic normality. The estimator proposed by Ishwaran (1996b) achieves

this rate under the same assumption. Moreover, Horowitz’s estimator for the nonparametric model

(Horowitz (1999)) converges at, at most, n−2/5 rate under the assumption that E[e−3V ] is finite.
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As shown by Ishwaran (1996a), the highest rate at which the estimator α converges to the true

value under the assumption E[e−V ] < ∞ is n−1/3, and n−2/5 under the assumption E[e−3V ] < ∞

(cf. Horowitz (2009)). On the other hand, the estimators of log Λ̃(·) converge at the usual n−1/2

rate. Thus, by avoiding the need to estimate the scale α in our test we sustain this fast rate of

convergence.

Example 2. (Weibull MPH model) We test if the integrated baseline hazard has a Weibull shape,

i.e. if log Λ̃(y) = log(y). Now the MPH model becomes:

log(Y ) = X ′
β

α
+
V − ξ
α

and β̃1 = β1/α can be estimated
√
n-consistently by OLS. We can use ˆ̃

β1 as the scaling factor.

Since the transformation function does not depend on unknown parameters, the second term in the

expression for Bn (equation (3)) vanishes.

2.2 Bootstrap critical value

The theory developed so far applies both to HJ and CS estimator. Nevertheless, CS is preferred from

the computational point of view. Using HJ to compute the test statistic involves double numerical

integration to compute Λn on top of the integration involved in computing the L2 distance. Doing

that repetitively to obtain the bootstrap critical value would entail a very large computational cost.

It is much easier to bootstrap the CS estimator. Thus, from now on we will assume that Λn is the

CS estimator. In the case of censored observations this estimator is defined as:

Λn(y) = arg max
Λ

1

n(n− 1)

∑
i 6=j

(
diy

Ḡn(y)
− djy0

Ḡn(y0)

)
1{Zi − Zj ≥ Λ} (8)

where Ḡn(y) is the Kaplan-Meier estimator of the survival function of the censoring threshold C

and diy, djy0 , Zi are the same as in the definition of the original CS estimator.

Let w1 = (x1, y1) and w2 = (x2, y2). Define:

r(w1, w2, y,G,Λ, b) =

(
1{y1 ≥ y}
Ḡ(y)

− 1{y2 ≥ y0}
Ḡ(y0)

)
(1{x1b− x2b ≥ Λ} − 1{x1b− x2b ≥ Λ0})
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and:

τ(w, y,Λ) = E[r(w,W, y,G0,Λ, β0) + r(W,w, y,G0,Λ, β0)]

for W = (X,Y ). Let:

V (y) = E

[
−∂

2τ(W, y,Λ)

∂Λ2

∣∣∣∣
Λ=Λ0

]
.

Finally, let X1 be the first component of X and X−1 denote the remaining (q − 1) components.

Our bootstrap procedure will be valid under assumptions similar to those introduced in Chen

(2002) and Jochmans (2012):

Assumption 4. (Chen (2002))

(a) The normalization β1 = 1 is imposed on the nonparametric estimator Λn.

(b) The distribution of X1 conditional on X−1 = x−1 is absolutely continuous with respect to the

Lesbegue measure.

(c) The support of X is not contained in any proper linear subspace of Rq.

(d) Λ0(·) is strictly increasing, Λ0(y0) = 0, [Λ0(y1−ε),Λ0(y2 +ε)] ⊂ ΘΛ for a small positive number

ε, where ΘΛ is a compact interval.

(e) The conditional density of X1 given X−1 = x−1 and the density of U are bounded and twice

continuously differentiable, the derivatives are uniformly bounded and X−1 has finite third-order

moments.

(f) V (y) is positive for each y ∈ [y1, y2] and uniformly bounded away from zero.

(g) The first step estimator of β0 from the nonparametric model, bn, has the following asymptotic

representation:7

√
n(bn − β0) =

1√
n

n∑
i=1

ΩNP (Yi, Xi, δi;β0) + op(1).

7Recall that the estimator obtained from the model with parametric Λ is denoted by β̂. We can have β̂1 6= 1
whereas bn1 = 1 by assumption.
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where ΩNP is a mean zero vector valued function with finite variance-covariance matrix.

We will employ the following bootstrap procedure to obtain a critical value for our test:

1. Draw a random sample {(Y ∗i , X∗i , δ∗i ) : i = 1, . . . , n} with replacement from {(Yi, Xi, δi) : i =

1, . . . , n} or use a parametric bootstrap:

• Estimate (β̂, γ̂) using {(Yi, Xi, δi) : i = 1, . . . , n}.

• Generate Ûi = Λ(Yi, γ̂)−X ′iβ̂.

• Draw a random sample {U∗i : i = 1, . . . , n} with replacement from {Ûi : i = 1, . . . , n}

and calculate Y ∗i = Λ−1(X ′iβ̂ + U∗i , γ̂).

2. Using the bootstrap sample calculate (β̂1, γ̂) from the parametric model and (Λn, bn) from the

nonparametric model. Let the resulting estimates be denoted by (β̂∗1 , γ̂
∗) and (Λ∗n, b

∗
n).

3. Calculate the bootstrap statistic:

T ∗n = n

∫ y2

y1

[(a∗nΛ∗n(y)− anΛn(y)− (Λ(y, γ̂∗)− Λ(y, γ̂)))w(y)]2 dy.

if nonparametric bootstrap has been used, or:

T ∗n = n

∫ y2

y1

[(a∗nΛ∗n(y)− Λ(y, γ̂∗))w(y)]2 dy.

for parametric bootstrap, where a∗n = D + (1−D)β̂∗1 .

4. Obtain the empirical distribution of T ∗n by repeating steps 1-3 many times. Calculate the 1−κ

quantile of this empirical distribution. Denote it by c∗κ.

If data is not censored, then we recommend to use the parametric bootstrap as it usually leads

to more precise results. On the other hand, applying parametric bootstrap is complicated with

censored data so we prefer nonparametric bootstrap in this case. Finally, note that the statistic

corresponding to parametric bootstrap does not require recentering as the parametric bootstrap

imposes the null hypothesis contrary to nonparametric resampling.

On top of the assumptions above we will need an asymptotic linear approximation in the boot-

strap sample:
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Assumption 5. (Bootstrap asymptotic linearity) We have:

E

∣∣∣∣∣γ̂∗ − γ − 1

n

n∑
i=1

Ωγ(Y ∗i , X
∗
i , δ
∗
i ; γ, β)

∣∣∣∣∣ = o(n−1/2) (9)

E

∣∣∣∣∣β̂∗1 − β1 −
1

n

n∑
i=1

Ω1(Y ∗i , X
∗
i , δ
∗
i ; γ, β)

∣∣∣∣∣ = o(n−1/2) (10)

E

∣∣∣∣∣b∗n − β0 −
1

n

n∑
i=1

ΩNP (Y ∗i , X
∗
i , δ
∗
i ;β0)

∣∣∣∣∣ = o(n−1/2) (11)

where Ωγ ,Ω1,Ω
NP have mean zero and finite variance-covariance matrix.

In the leading case when the parametric model in the null hypothesis does not depend on any

free parameters (e.g. testing the Weibull model in duration analysis), condition (9) is redundant.

In the next section, using arguments in Subbotin (2007), we show that this condition is satisfied

for the estimator in Foster et al. (2001). Condition (10) will be satisfied for the OLS estimator.

An asymptotic bootstrap linear representation for the rank estimators bn introduced in Han (1987),

Cavanagh & Sherman (1998) and Abrevaya (2003) follows from Subbotin (2007).

The following theorem states that the bootstrap critical value gives the correct approximation

to the asymptotic critical value:

Theorem 2. Under H0 and Assumptions 1, 2(b)-(d),3-5:

lim
n→∞

P (Tn ≤ c∗κ) = 1− κ.

The proof of this theorem relies on the results in Subbotin (2007) who proves bootstrap validity

for rank estimators. A slight complication in the proof compared to his work comes from the fact

that the rank objective function in (8) contains estimators bn and Ḡn, which will contribute to the

asymptotic distribution of Λn and Λ∗n. The argument leading to Theorem 2 implies also a following

useful corollary:

Corollary 1. Nonparametric bootstrap approximates consistently the asymptotic distribution of the

CS estimator.

This result is important because it provides an operational method for obtaining standard errors

for the CS estimator. Previous approaches based on numerical derivatives or kernel smoothing relied
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on arbitrary choices of the approximation step or bandwidth with the results being very sensitive

to inappropriate choices of these tuning parameters.

2.3 Bootstrap asymptotic linear approximation for semiparametric Box-Cox

model

We will verify that Assumption 5 holds for the estimators of γ and β in the Box-Cox transformation

model proposed by Foster et al. (2001). The Box-Cox transformation is given by:

Λ(y, γ) =


yγ−1
γ if γ 6= 0

log y otherwise

Foster et al. (2001) suggest to estimate (γ0, β0) by minimizing: 8

Sn(γ, β) =

∫ ∞

0

1

n(n− 1)(n− 2)

∑
i, j, k distinct

(
1{Yi ≤ y} − 1{Λ(Yj , γ)−X ′

jβ ≤ Λ(y, γ)−X ′
iβ}
)

× (1{Yi ≤ y} − 1{Λ(Yk, γ)−X ′
kβ ≤ Λ(y, γ)−X ′

iβ}) dΨ(y)

where Ψ(y) is a differentiable, strictly increasing, deterministic and bounded weight function, subject

to the constraint:

1

n

n∑
i=1

Xi

(
Λ(Yi, γ)−X ′iβ

)
= 0

This problem is equivalent to minimizing:

Ln(θ) = Sn(γ, β) + µ′
1

n

n∑
i=1

Xi

(
Λ(Yi, γ)−X ′iβ

)
over θ = (γ, β, µ) ∈ Θ where µ is the Lagrange multiplier. Let θ∗ be the corresponding estimators

calculated on the bootstrap sample.
8In fact, Foster et al. (2001) state Sn in a form of V-statistic. However, throughout their proofs they use the

U-statistic formulation given here. It follows from Lemma 5.7.3 in Serfling (1980) (p.206) that these two formulations
are asymptotically equivalent.
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Let wl = (xl, yl), l = 1, 2, 3. Define:

hBCθ,y (w1, w2, w3) =
(
1{y1 ≤ y} − 1{Λ(y2, γ)− x2′β ≤ Λ(y, γ)− x1′β}

)
×
(
1{y1 ≤ y} − 1{Λ(y3, γ)− x3′β ≤ Λ(y, γ)− x1′β}

)
and:

τBC(w, y, θ) = E
[
hBCθ,y (w,W1,W2) + hBCθ,y (W1, w,W2) + hBCθ,y (W1,W2, w)

]
where the expectation is taken with respect to W1 = (X1, Y1) and W2 = (X2, Y2). It will be

convenient to define R(Wi, θ) = µ′Xi (Λ(Yi, γ)−X ′iβ). Now:

VBC = E

[∫ ∞
0

∂2τBC(W, y, θ0)dΨ(y)− ∂2R(W, θ0)

]
.

with ∂2τBC(W, y, θ) and ∂2R(W, θ) denoting the matrices of second derivatives of τBC(w, y, θ) and

R(W, θ) with respect to θ.

Theorem 3. Let Assumptions 4(b),(c),(e) hold. Furthermore, assume:

(a) Ψ(y) is supported on a compact interval Y ⊂ (0,∞), Θ = Θγ ×Θβ ×Θµ is compact,

(b) E
[
supγ∈Θγ

∣∣∣Y γ log Y−Λ(Y,γ)
γ

∣∣∣]2
<∞,

(c) the elements of the matrix ∂2R(W, θ0) have finite variance,

(d) VBC is non-singular,

then Assumption 5 is satisfied for the estimators of (γ, β1) introduced in Foster et al. (2001).

The proof follows lines similar to the proof of Theorem 2 and is given in the Appendix. The

requirement that the support of the weight function is compact and does not contain zero is of

technical nature and implies that the derivatives of the Box-Cox transformation are bounded. In

practice, if the weight function has full support on [0,∞], it can always be truncated above and

below such that the value of the objective function Sn is not affected. Similarly, Assumption

(b) ensures that the derivatives needed for a Taylor expansion have bounded moments. Further,
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although ∂2τBC(W, y, θ) is singular for every y, E[∂2R(W, θ)] is non-singular in most of the cases,

which implies invertibility of VBC . For example, when X is one-dimensional and γ 6= 0:

E[∂2R(W, θ)] =


µ
γ2E[2(Λ(Y, γ)− Y γ log Y ) + Y γ log2 Y ] 0 1

γE[X(Y γ log Y − Λ(Y, γ))]

0 0 −E[X2]

1
γE[X(Y γ log Y − Λ(Y, γ))] −E[X2] 0


2.4 Consistency and behaviour under local alternatives

We conclude this section with an analysis of power and local behaviour of our bootstrap test. Assume

that the null hypothesis is false, i.e. there is no γ ∈ Θγ such that Λ0(·) = Λ(·, γ) a.e. Define:

q(y) = Λ0(y)− Λ(y, γ)

where γ is a probability limit of γ̂. The following theorem establishes consistency of the test under

a fixed alternative:

Theorem 4. Let Assumptions 1, 2(b)-(d),3-5 hold. Additionally, let H0 be false and

∫ y2

y1

[q(y)w(y)]2dy > 0.

Then, for κ ∈ (0, 1) we have:

lim
n→∞

P (Tn > c∗κ) = 1.

Here and in the next theorem the values γ and β1 (from the parametric model) described

in Assumptions 2(b),(d) are interpreted as pseudo true values because the parametric model is

misspecified.

Now consider local alternatives of the form:

Λ(y) = Λ(y, γ) +
1√
n

Λloc(y), (12)

where Λ(y, γ) = Λ0(y) and Λloc(·) ∈ L2([y1, y2]). Let the sequence of functions {φj}∞j=0 form an
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orthonormal basis of L2([y1, y2]). The following theorem provides local asymptotics:

Theorem 5. Let Assumptions 1, 2(b)-(d),3-5 hold. Under the sequence of local alternatives de-

scribed in (12):

Tn →d
∞∑
j=1

ωjχ
2
j1

(
ϑ2
j

ωj

)
,

where:

ϑj =

∫ y2

y1

Λloc(y)w(y)φj(y)dy

and χ2
j1

(
ϑ2
j

ωj

)
denotes a noncentral chi-square random variable with 1 degree of freedom and non-

centrality parameter
ϑ2
j

ωj
.

Theorem 5 implies that the test has local power against local alternatives that are n−1/2 away

from the null hypothesis. In principle, different choices of the nonparametric estimator Λn will yield

different eigenvalues ωj and thus different local power. However, it is difficult to compare them

theoretically since the kernels of the operator R in (6) for different estimators (HJ, CS and Ye &

Duan (1997)) are complicated functions of y. The eigenvalues are usually computed as solutions

to differential equations that involve derivatives of the kernels. Hence, the general expressions are

hard to get.

3 Monte Carlo simulations

We investigate finite sample performance of the aforementioned testing procedures using several

simple designs. We consider both the case when the model in the null hypothesis does not (linear

transformation) and does (Box-Cox transformation) depend on the unknown parameter.
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Figure 1: Monte Carlo design I
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Λ (y) = y
Λ (y) = log(y+2.12)−log(2.12)
Λ (y) = 1/13 sinh(y)

3.1 Linear transformation

The data is generated from the following three models:

Y = X + U (Null)

log(Y + 2.12)− log(2.12) = X + U (Alternative 1)

1

13
sinh(2Y ) = X + U (Alternative 2)

where X is drawn from the standard normal distribution and U is drawn either from the standard

normal, the standard Gumbel or from the logistic distribution. We shifted the logarithmic function

by 2.12 in order to minimize L2 distance of the logarithmic transformation in Alternative 1 to the

linear function in the null. We set [y1, y2] = [−2, 2]. The transformation functions under the null

and under the alternatives are normalized at the same point y0 = 0 (though, we do not use this

information for running our test i.e. D = 0). This design is similar to the one used in Horowitz

(1996). Figure 1 shows the shape of the transformation functions.

The model with logistic U can be interpreted as a MPH model with V having the standard

Gumbel distribution. Under this interpretation the null model assumes an increasing baseline hazard

λ(y) = ey, Alternative 1 implies that this hazard is constant and in Alternative 2 the baseline hazard
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equals 2
13 cosh(2y)e

1
13

sinh(2y) and is non-monotonic.

We consider both the case when Y is fully observed as well as the case when Y is randomly

censored. In the former case we use parametric bootstrap. In the latter case the censoring threshold

C is drawn from N(µ, 1) and µ is chosen such that the probability of being censored is roughly equal

to 20%. The coefficient vector β is either estimated by OLS or RCLAD estimator of Honoré et al.

(2002).

We run 2000 Monte Carlo replications. We calculate the integral in the test statistic using

Halton sequences of size 100. Optimization needed to compute the nonparametric estimator Λn

was performed using MATLAB’s fminsearch function with default parameter values. The starting

values for the optimization were taken from the null model whether the data was generated by this

model or the alternative. The number of bootstrap replications used to calculate the critical value

is 500. One Monte Carlo replication in the case with no censoring takes 2.1, 3.2 and 6.2 minutes

on average for n = 100, 500 and 1000 respectively. For the censored case the respective computing

times are 2.1, 8.3 and 12.6 minutes.

Table 1: Rejection probabilities, no censoring

U ∼ Normal U ∼ Gumbel U ∼ Logistic
n = 100

10% 5% 1% 10% 5% 1% 10% 5% 1%
Null 7.6 3.7 0.6 6.1 3.6 1.2 5.9 2.3 0.2

Alternative 1 99.8 99.6 98.7 98.7 97.0 89.6 90.5 88.6 82.9
Alternative 2 98.7 94.4 69.0 95.8 87.2 44.3 71.5 45.6 10.6

n = 500
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 10.6 5.7 1.0 9.0 4.4 1.0 8.5 4.3 0.7
Alternative 1 100.0 100.0 100.0 100.0 100.0 100.0 96.5 96.1 95.7
Alternative 2 100.0 100.0 100.0 100.0 100.0 100.0 99.8 97.3 74.7

n = 1000
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 9.7 4.5 0.9 10.4 5.0 1.1 9.4 4.9 1.1
Alternative 1 100.0 100.0 100.0 100.0 100.0 100.0 97.4 97.2 96.4
Alternative 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.1

Note: 2000 Monte Carlo simulations, 500 bootstrap replications (parametric bootstrap).

The results for the model without censoring (Table 1) show that our bootstrap test performs

very well when n ≥ 500 with some underrejection for smaller sample size. The test is consistent

against both alternatives. Already with a sample size of 500 the test rejects the log-linear and
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hyperbolic sin model almost with certainty.

Table 2: Rejection probabilities, random censoring

U ∼ Normal U ∼ Gumbel U ∼ Logistic
n = 100

Null 5.2 3.1 0.9 4.3 2.3 0.5 1.9 0.4 0.0
Alternative 1 57.7 36.0 8.5 56.5 35.6 8.8 27.8 12.8 1.5
Alternative 2 26.9 11.5 1.2 16.8 7.7 0.9 7.7 2.6 0.6

n = 500
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 3.4 0.9 0.0 4.4 1.5 0.4 3.3 1.1 0.0
Alternative 1 100.0 99.9 98.7 99.6 97.9 89.1 98.6 96.1 81.0
Alternative 2 99.9 99.9 99.3 99.9 99.7 97.1 98.9 96.2 82.1

n = 1000
10% 5% 1% 10% 5% 1% 10% 5% 1%

Null 5.8 2.5 0.4 5.6 2.2 0.1 5.3 2.1 0.4
Alternative 1 100.0 100.0 99.9 99.9 99.7 98.6 99.9 99.8 97.9
Alternative 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.1

Note: 2000 Monte Carlo simulations, 500 bootstrap replications (nonparametric bootstrap).

As we can see from Table 2 the finite sample performance of our bootstrap test deteriorates when

the dependent variable Y is censored. This is expected because compared to the model with no

censoring the rank estimation in the censored model involves additional estimation of the survival

function of the censoring threshold C. For example, with a sample of size 100 and censoring rate of

20% we have only about 20 censored observations to estimate this function so the resulting estimator

will be quite imprecise. This manifests itself with low power of the test (especially for Alternative

2). However, the power increases fast with the sample size and already with n = 500 we reject

the alternative models with probability close to one. When it comes to controlling size, even for

n = 1000 the null rejection probabilities are significantly below the nominal levels which suggests

that our test may be conservative in small to medium sized samples. Similar finding was obtained

by Subbotin (2007) in his Monte Carlo simulations for the maximum rank correlation estimator of

the β coefficients in the transformation model.

Overall, our bootstrap test performs reasonably well in small to moderate samples with a ten-

dency to be on the conservative side.
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3.2 Box-Cox transformation

Due to the high computational burden of implementing the test for the Box-Cox model (note that

the estimator in Foster et al. (2001) requires minimizing a third order U statistic), we only run a

small scale simulation study. We generate data from the log-linear and hyperbolic sin model:

log Y = X + U (Null)

1

13
sinh(2 log(Y )) = X + U (Alternative)

where both X and U are drawn from the standard normal distribution (see Figure 2).

Figure 2: Monte Carlo design II
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Λ (y) = log(y)
Λ (y) = 1/13 sinh(2*log(y))

Following the recommendation in Foster et al. (2001) we use standard normal distribution with

mean and variance equal to sample mean and variance of Y as a weighting function Ψ. We set

[y1, y2] = [0.1, 3.1]. Note that both functions are normalized at y0 = 1. We consider only the case

without censoring (modifying the semiparametric estimator of the Box-Cox model to accommodate

censoring is still an open question).

The results in Table 3 confirm the conclusions from the previous section. The test performs well

even in small samples with a tendency to be slightly conservative. Moreover, the results suggest

that the test is consistent.
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Table 3: Box-Cox model, rejection probabilities

U ∼ Normal
n = 100

10% 5% 1%
Null 8.2 3.5 1.0

Alternative 98.2 94.6 73.3
n = 200

10% 5% 1%
Null 9.2 4.7 0.8

Alternative 100 100 100
n = 300

10% 5% 1%
Null 9.2 4.5 0.3

Alternative 100 100 100

Note: 1000 Monte Carlo simulations, 500 bootstrap replications (parametric bootstrap).

4 Application to Kennan’s strike duration data

In this section we apply our testing procedure in the study of the relation between strike durations

and the level of economic activity. Kennan (1985) was the first to empirically investigate this relation

using data on strikes involving 1000 or more workers in US manufacturing during 1968-1976. He

measured the level of economic activity by an index of industrial production in manufacturing

(INDP). Table 4 presents summary statistics.

Table 4: Summary statistics, n = 566

Mean Std. Dev. Min Max
strike duration 43.624 44.666 1 235

INDP .00604 .04991 -.13996 .08554

Note: Strike durations are recorded in days.

Horowitz (2009) re-investigates this question using three models that differ with the parametric

assumptions on the transformation function and the distribution F :

1. proportional hazards model (nonparametric Λ, parametric F )

2. loglinear model (parametric Λ, nonparametric F )

3. nonparametric model (both Λ and F nonparametric)

The results of estimating these three models are summarized in Figure 3, which shows estimates
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Figure 3: Results of estimating three models of strike duration
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Note: This figure comes from Horowitz (2009), Section 6.5. Higher values of the index correspond to lower levels of
economic activity.

of the conditional first quartile, median, and third quartile of the distribution of strike durations

given INDP obtained from each of these models.

For our purpose, it is interesting to compare the loglinear and nonparametric model. These two

models differ only with respect to the assumptions on the transformation function, which is exactly

the setting that we analyzed above. We notice that the loglinear model and the nonparametric

model deliver quite similar predictions for the median strike duration but the results diverge for

the first and the third quartile, especially for high values of INDP (i.e. periods of low economic

activity). In particular, nonparametric estimates suggest that the distribution of strike durations is

more highly skewed to the right than the distribution resulting from the estimation of the loglinear

model.

The differences in the estimated parametric and nonparametric transformations are also evident

from Figure 4. In particular, the nonparametric curve agrees with log specification around the center

of the data (median duration is equal to 28) but diverges further from the median. It is interesting to
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Figure 4: Nonparametric and parametric estimates of the transformation function
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Note: Solid line corresponds to the log transformation and dashed line to the nonparametric estimator obtained using
the MRC estimator in Chen (2002).

formally verify if this discrepancies are due merely to the imprecision of the nonparametric estimate

in the tails of the data or they signify misspecification of the loglinear model.

For the purpose of our test we set y1 = 2 and y2 = 125 (around 90% of observations on strike

durations fall in this range) and use Halton sequence of length 100 to evaluate the integral in (2).

We run 500 bootstrap replications to obtain the critical value. The test statistic is equal to 43.24

with the bootstrap critical value of 20.35 at the 1% level. We also run a test for y1 = 2 and y2 = 61

(75% of the sample falls in this range) and obtained Tn = 11.63 and c∗0.01 = 5.87. Thus, we reject the

loglinear specification and conclude that the differences between the nonparametric and parametric

functions in Figure 4 are caused by misspecification of the transformation function rather than being

merely a consequence of the estimation error.
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5 Discussion

Our test can be embedded into a formalized specification search procedure using ideas in Romano &

Wolf (2005). In other words, one can consider multiple parametric null models and run a stepwise

multiple testing procedure to chose the correct specification, controlling family-wise error rate at

the desired level.

Similarly to testing the form of Λ, one may test the form of the distribution of U using the

estimator for F proposed in Ye & Duan (1997) or Horowitz (1996). One can also apply a procedure

used in Horowitz (1996) to derive an estimator for F based on CS. Since the estimators of F usually

satisfy conditions equivalent to Assumptions 1-5, the same reasoning may be used to derive a CvM

test. Such test may be used to test the form of unobserved heterogeneity (i.e. distribution of

V in (7), FV ) in the MPH model. As pointed out by Heckman & Singer (1984), the estimates

of the parameters of the MPH model can be very sensitive to the choice of the parametric form

of FV . Therefore, it may be interesting to see if some parametric specifications are at odds with

the nonparametric estimate. Specifically, one may want to test for the presence of unobserved

heterogeneity, i.e. if V = 0 in (7). The tests available so far require X to be discrete (usually X

distinguishes separate samples), whereas the procedure applied here allows continuously distributed

explanatory variables.

In the context of specification testing for F , the nonparametric estimator in Ye & Duan (1997)

seems especially attractive since it does not involve estimation of the transformation function in the

first step in order to obtain the estimator of F . Also, it does not require numerical optimization

(as CS) or multiple numerical integration (as HJ), which makes bootstrap an attractive route for

obtaining the critical value (plug-in asymptotic approach would not be practical in this case since

it would rely on arbitrarily chosen smoothing parameters). However, given a different nature of the

estimator in Ye & Duan (1997) proving bootstrap validity would require a separate treatment from

the one employed above. We plan to investigate this topic in our future research.
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A Proofs

Let:

H = {hθ,y(w1, w2, . . . , wm) : θ ∈ Θ ⊂ Rd, y ∈ Y ⊂ R+}

be a family of real-valued functions defined onWm. We will use the operator notation common in the

U-statistics literature. For example, for the case ofm = 2 we will have P 0h = h, P 2h = Eh(W1,W2),

Pnh(w1) = 1/n
∑n

i=1 h(w1,Wi) and P ∗nh(w1) = 1/n
∑n

i=1 h(w1,W
∗
i ) etc. Additionally, let:

h
[m−2]
θ,y (w1, w2, . . . , wm−2) =

∫
hθ,y(w1, w2, . . . wm−2,W,W )dP (W )

Define an U -process:

U (m)
n hθ,y =

(n−m)!

n!

∑
i1, i2, . . . , im distinct

hθ,y(W1,W2, . . . ,Wm)

and denote the same process evaluated on a bootstrap sample as U∗(m)
n hθ,y.

We will only discuss the model with censoring (i.e. we focus on nonparametric bootstrap) so Y

is the censored observation on the dependent variable. Define π(y) = P (Y ≥ y) and:

M(y) = 1{Y ≤ y, δ = 0} −
∫ y

0
1{Y ≥ u}dΛC(u)

where ΛC is the integrated hazard of the censoring variable C. Proofs for the uncensored case (in-

cluding proofs for parametric bootstrap) follow similar and, in fact, simpler arguments and therefore

are omitted.

We will frequently use the following stochastic order arithmetic, for a sequence an:

o∗p(an) + op(an) = op(an), O∗p(an) +Op(an) = Op(an)

which follows from Law of Iterated Expectations.9

9Cheng & Huang (2010) derive such arithmetic for convergence in outer probability.
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A.1 Useful lemmas

Lemma 1. (Lo & Singh (1986)) Let Ḡ0 be a continuous survival function of the censoring

variable and Ḡn and Ḡ∗n be Kaplan-Meier estimators of Ḡ0 on the original and the bootstrap sample,

respectively. Then:

Ḡ0(y)− Ḡn(y)

Ḡ0(y)
= Pn

∫ y

0

1

π(s)
dM(s) + op(n

−1/2)

Ḡ0(y)− Ḡ∗n(y)

Ḡ0(y)
= P ∗n

∫ y

0

1

π(s)
dM(s) + op(n

−1/2)

uniformly over {y : π(y) > c} for some c > 0.

Proof. This lemma follows from Theorem 1 in Lo & Singh (1986). They show that uniformly over

{y : π(y) > c}:

Gn(y)−G0(y)

Ḡ0(y)
= Pnξ(y) + op(n

−1/2)

G∗n(y)−Gn(y)

Ḡ0(y)
= (P ∗n − Pn)ξ(y) + o∗p(n

−1/2)

where:

ξ(y) =
1

π(Y )
1{Y ≤ y, δ = 0}+

∫ min{Y,y}

0

1

π(s)2
dπ1(s)

and

π1(s) = 1− P (Y ≤ s, δ = 0).

But we have dπ1(s)
π(s) = d log Ḡ0(s) (see equation (7) in Lo & Singh (1986)). Now using the fact

that the integrated hazard can be expressed as ΛC(s) = − log Ḡ0(s) and 1
π(Y )1{Y ≤ y, δ = 0} =∫ y

0
1

π(s)d1{Y ≤ y, δ = 0} we obtain ξ(y) =
∫ y

0
1

π(s)dM(y). Finally:

Ḡ0(y)− Ḡ∗n(y)

Ḡ0(y)
=
Ḡ0(y)− Ḡn(y)

Ḡ0(y)
+
Ḡn(y)− Ḡ∗n(y)

Ḡ0(y)
= P ∗n

∫ y

0

1

π(s)
dM(s) + op(n

−1/2)
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Lemma 2. (Subbotin (2007)) Define τθ,y(w) = Pm−1hθ,y(w) and let hθ0,y ≡ 0. If |hθ,y(w1, . . . , wm)| <

H for some 0 < H <∞ and:

(a) Θ and Y are compact sets, Pmhθ,y is continuous on Θ for every y ∈ Y,

(b) H is an Euclidean class of symmetric functions,

(c) there is an open neighborhood N ⊂ Θ of θ0 such that:

(i) all mixed partial derivatives of τθ,y(w) with respect to θ of orders 1 and 2 exist on N for

all y ∈ Y,

(ii) there is a square P-integrable function K(w) such that for all w, y, y′ ∈ Y and all θ in N :

||vec(∂2τθ,y(w))− vec(∂2τθ0,y′(w))|| ≤ K(w)
√
||θ − θ0||2 + (y − y′)2

where ∂2τ is the Hessian matrix of τ with respect to θ,

(iii) the gradient of τθ,y with respect to θ at θ0, ∂τθ0,y(w), has finite variance relative to P for

all y ∈ Y and P∂τθ0,y = 0,

(iv) the elements of the matrix A(y) = −P [∂2τθ0,y] are finite for all y ∈ Y

(d) as θ → θ0, P 2
[
Pm−2hθ,y − Pm−2hθ0,y

]2 → 0 for all y ∈ Y,

(e) as θ → θ0, Pm−2h
[m−2]
θ,y − Pm−2h

[m−2]
θ0,y

→ 0 for all y ∈ Y,

then

P sup
θ∈Θ,y∈Y

|U∗(m)
n hθ,y − Pmhθ,y| → 0 (13)

and uniformly over y ∈ Y:

U (m)
n hθ,y = (θ − θ0)′mPn∂τθ0,y −

1

2
(θ − θ0)′A(y)(θ − θ0) + op(‖θ − θ0‖2) + op(n

−1) (14)

U∗(m)
n hθ,y = (θ − θ0)′mP ∗n∂τθ0,y −

1

2
(θ − θ0)′A(y)(θ − θ0) + op(‖θ − θ0‖2) + op(n

−1) (15)

as θ → θ0.
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Proof. This result follows from Lemma 8 and arguments leading to Theorem 2 in Subbotin (2007).

The only difference is that the function h is indexed by y in addition to θ. Also note that we do not

need invertibility of A here (his Assumption 3(iv)). For completeness we give details of the proof

of (15) ((14) follows by similar arguments).

Use the following Hoeffding decomposition for the bootstrapped U-statistic (see Subbotin (2007)

for details):

U∗(m)
n hθ,y = (θ − θ0)′mP ∗n∂τθ0,y −

1

2
(θ − θ0)′A(y)(θ − θ0) + ζ̂θ,y

where

ζ̂θ,y = P ∗nRθ,y +
m∑
k=2

(
m

k

)
U∗(k)
n ((δw1 − P ) . . . (δwk − P )Pm−khθ,y)

δwkhθ,y(·) = hθ,y(·, wk, ·)

Rθ,y(w) = [Pmhθ,y +m(δw1 − P )τθ,y](w)−m(θ − θ0)′∂τθ0,y(w) +
1

2
(θ − θ0)′A(y)(θ − θ0).

Condition (c) and second order Taylor expansion around θ0 imply:

|P ∗nRθ,y| ≤ m‖(P ∗n − P )∂2τθ0,y‖‖θ − θ0‖2 +m(PK + P ∗nK)‖θ − θ0‖3

in the neighborhood of θ0.

First we will show that

sup
y,‖θ−θ0‖≤δn

|P ∗nRθ,y|
‖θ − θ0‖2

= op(1) (16)

for δn → 0. Note that condition (c) implies that PK + P ∗nK = Op(1) (by Theorem 2.1 in Bickel &

Freedman (1981)) and that ∂2T0 = {vec(∂2τθ0,y(w)) : y ∈ Y ⊂ R+} is an Euclidean class of functions

(by Lemma 2.13 in Pakes & Pollard (1989)). Thus, by uniform law of large numbers and bootstrap

uniform law of large numbers (Theorem 3.5 in Gine & Zinn (1990)) we have ‖(Pn−P )∂2τθ0,y‖ = op(1)

and ‖(P ∗n −Pn)∂2τθ0,y‖ = o∗p(1) uniformly over y, which implies supy ‖(P ∗n −P )∂2τθ0,y‖ = op(1) and

(16) follows.
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Using conditions (b), (d), (e) and Lemma 8 in Subbotin (2007) we get:

P sup
y,‖θ−θ0‖≤δn

∣∣∣∣∣
m∑
k=2

(
m

k

)
U∗(k)
n ((δw1 − P ) . . . (δwk − P )Pm−khθ,y)

∣∣∣∣∣ = o(n−1)

which, together with (16), implies

sup
y,‖θ−θ0‖≤δn

|ζ̂θ,y| = op(‖θ − θ0‖2) + op(n
−1).

This concludes the proof of (15).

A.2 Proof of Theorem 1

Assumptions 1-2 imply that γ̂−γ = Op(n
−1/2), β̂1−β1 = Op(n

−1/2) and Λn(y)−Λ0(y) = Op(n
−1/2)

uniformly over y ∈ Y = [y1, y2]. Thus:

Tn =

∫ y2

y1

[Sn1(y) + Sn2(y) + Sn3(y) + Sn4(y)]2dy + op(1)

uniformly over y, where:

Sn1(y) =
√
nβ1(Λn(y)− Λ0(y))w(y)

Sn2(y) = −
√
n(Λ(y, γ̂)− Λ(y, γ))w(y)

Sn3(y) =
√
nΛ0(y)(β̂1 − β1)w(y)

Sn4(y) =
√
n(β1Λ0(y)− Λ(y, γ))w(y).

Under the null we have Sn4(y) = 0 and by Assumption 2(c):

√
n(Λ(y, γ̂)− Λ(y, γ)) = −

√
n
∂Λ(y, γ)

∂γ

′
PnΩγ + op(1)

uniformly over y. Hence, using Assumptions 1-3 we get:

Tn =

∫ y2

y1

Bn(y)2dy + op(1)
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and the statement of the theorem follows from extended continuous mapping theorem (Theorem

1.11.1 in Van der Vaart & Wellner (1996)) and the results in Durbin & Knott (1972), Durbin et al.

(1975).

A.3 Proof of Theorem 2

We have:

T ∗n =

∫ y2

y1

[S∗n1(y) + S∗n2(y) + S∗n3(y)]2dy

uniformly over y, where:

S∗n1(y) =
√
nβ̂1(Λ∗n(y)− Λn(y))w(y)

S∗n2(y) = −
√
n(Λ(y, γ̂∗)− Λ(y, γ̂))w(y)

S∗n3(y) =
√
nΛ∗n(y)(β̂∗1 − β̂1)w(y).

We need to obtain a bootstrap linear approximation to
√
n(Λ∗n(y)−Λn(y)). Let θ = (b,Λ) where

b ∈ Θβ and Λ ∈ ΘΛ. Let Γ∗(y,G,Λ, b) = U∗n[r(w1, w2, G, y,Λ, b) + r(w2, w1, G, y,Λ, b)] denote the

symmetrized bootstrap rank objective function recentered at the true value Λ0 and note that Λ∗n is

its arg max. Similarly, let Γ(y,G,Λ, b) = P 2[r(W1,W2, G, y,Λ, b) + r(W2,W1, G, y,Λ, b)]. Define:

h1
θ,y(w1, w2) = 1{y1 ≥ y}(1{x1b− x2b ≥ Λ} − 1{x1b− x2b ≥ Λ0})

+ 1{y2 ≥ y}(1{x2b− x1b ≥ Λ} − 1{x2b− x1b ≥ Λ0})

h2
θ,y(w1, w2) = 1{y1 ≥ y0}(1{x1b− x2b ≥ Λ} − 1{x1b− x2b ≥ Λ0})

+ 1{y2 ≥ y0}(1{x2b− x1b ≥ Λ} − 1{x2b− x1b ≥ Λ0}).

We have:

Γ∗(y,G∗,Λ, b) = Γ∗(y,G0,Λ, b) + Γ∗(y,G∗,Λ, b)− Γ∗(y,G0,Λ, b)

=
1

Ḡ0(y)
U∗nh

1
θ,y −

1

Ḡ0(y0)
U∗nh

2
θ,y +

Ḡ0(y)− Ḡ∗(y)

Ḡ∗(y)Ḡ0(y)
U∗nh

1
θ,y −

Ḡ0(y0)− Ḡ∗(y0)

Ḡ∗(y0)Ḡ0(y0)
U∗nh

2
θ,y. (17)
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Define τ lθ,y(w) = Phlθ,y(w) and Al(y) = −P [∂2τ lθ,y] for l = 1, 2. We will use Lemma 2 to show that

P sup
θ∈Θ,y∈Y

|U∗nhlθ,y − P 2hlθ,y| → 0 (18)

and uniformly over y ∈ [y1, y2]:

Unh
l
θ,y = (θ − θ0)′2Pn∂τ

l
θ0,y −

1

2
(θ − θ0)′Al(y)(θ − θ0) + op(‖θ − θ0‖2) + op(n

−1) (19)

U∗nh
l
θ,y = (θ − θ0)′2P ∗n∂τ

l
θ0,y −

1

2
(θ − θ0)′Al(y)(θ − θ0) + op(‖θ − θ0‖2) + op(n

−1) (20)

for l = 1, 2 as θ → θ0.

Let us verify conditions of Lemma 2. Condition (a) is implied by Assumptions 4(b),(d),(e).

Chen (2002) showed that the classes of functions

Hl = {hlθ,y(w1, w2) : θ ∈ Θ ⊂ Rd, y ∈ Y ⊂ R+} l = 1, 2

are Euclidean for the envelope H = 2, thus condition (b) is satisfied. Condition (c) is implied

by Assumption 4(e). Finally, continuity of the distribution of U and X1 imply condition (d) and

condition (e) is satisfied vacuously since hl[m−2]
θ0,y

≡ 0.

Now note that Lemma 1 and Assumption 5 imply that Ḡ0(y)−Ḡ∗n(y)
Ḡ0(y)

= op(1) and b∗n →p β0.

Combining this, equation (17), the result in (18) and using Assumption 4(e) we obtain:

Γ∗(y,G∗,Λ, b∗n) = Γ(y,G0,Λ, β0) + op(1)

uniformly over y ∈ Y and Λ ∈ ΘΛ. Chen (2002) showed that Λ0 is the unique maximizer of the

expression on the right, which implies consistency of Λ∗n(y) for Λ0(y). Now monotonicity of Λ∗n(y)

implies uniform consistency, i.e. supy |Λ∗n(y)−Λ0(y)| = op(1), by the same argument as in the proof

of Theorem 1 in Chen (2002).

Note that
∂τ lθ,y
∂b

∣∣
Λ=Λ0

= 0 and P
∂2τ lθ,y
∂b2

∣∣
Λ=Λ0

= 0. Let V l
Λb(y) = −P ∂2τ lθ,y

∂Λ∂b

∣∣
θ=θ0

and V l(y) =
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−P ∂2τ lθ,y
∂Λ2

∣∣
θ=θ0

. Then (20) becomes:

U∗nh
l
θ,y = (Λ− Λ0)2P ∗n

∂τ lθ0,y
∂Λ

− (Λ− Λ0)V l
Λb(y)′(b− β0)− 1

2
(Λ− Λ0)2V l(y) + op((Λ− Λ0)2) + op(n

−1)

(21)

as Λ→ Λ0 and b→ β0.

Chen (2002) shows that under our assumptions the class of functions ∂T0 = {∂τθ0,y(w) : y ∈ Y ⊂

R+} is Euclidean with a square integrable envelope. Similar argument shows that the same property

holds for ∂2T0 = {vec(∂2τθ0,y(w)) : y ∈ Y ⊂ R+} (see also proof of Lemma 2). Thus, Theorem 3.5

in Gine & Zinn (1990) gives: supy ‖(P ∗n − Pn)∂τθ0,y‖ = O∗p(n
−1/2) and supy ‖(P ∗n − Pn)∂2τθ0,y‖ =

O∗p(n
−1/2) and similarly supy ‖(Pn−P )∂τθ0,y‖ = Op(n

−1/2) and supy ‖(Pn−P )∂2τθ0,y‖ = Op(n
−1/2).

This and Lemma 1 imply that the third and the fourth term in (17) can be written as:

(Λ− Λ0)

(
2

Ḡ0(y)
P
∂τ1

θ0,y

∂Λ
P ∗n

∫ y

0

1

π
dM − 2

Ḡ0(y0)
P
∂τ2

θ0,y

∂Λ
P ∗n

∫ y0

0

1

π
dM

)

+ op((Λ− Λ0)2) + op((Λ− Λ0)/
√
n) + op(n

−1) (22)

uniformly over y.

Note that V (y) = V 1(y)

G0(y)
− V 2(y)

G0(y0)
and ∂τ(W,y,Λ0)

∂Λ = 1
G0(y)

∂τ1
θ0,y

∂Λ − 1
G0(y0)

∂τ2
θ0,y

∂Λ . Define VΛb =

V 1
Λb

G0(y)
− V 2

Λb

G0(y0)
. Thus, substituting (21) and (22) into (17) and using Assumption 5 we obtain:

Γ∗(y,G∗,Λ, b∗n) = (Λ− Λ0)P ∗nΩΛ,y −
1

2
(Λ− Λ0)2V (y)

+ op((Λ− Λ0)2) + op((Λ− Λ0)/
√
n) + op(n

−1)

where

ΩΛ,y = 2
∂τ(W, y,Λ0)

∂Λ
+

2

Ḡ0(y)

∫ y

0

1

π
dM

(
P
∂τ1

θ0,y

∂Λ

)
− 2

Ḡ0(y0)

∫ y0

0

1

π
dM

(
P
∂τ2

θ0,y

∂Λ

)
− VΛb(y)′ΩNP

uniformly over y. Now using supy |Λ∗n(y) → Λ0(y)| → 0 one can proceed as in Sherman (1993) to
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show that:

√
n(Λ∗n(y)− Λ0(y)) = V (y)−1P ∗nΩΛ,y + op(1)

uniformly over y. From Chen (2002) and Jochmans (2012):

√
n(Λn(y)− Λ0(y)) = V (y)−1PnΩΛ,y + op(1)

and the class of functions J = {J(·, y) = V (y)−1ΩΛ,y(·)} is Euclidean with square integrable

envelope. Now:

√
n(Λ∗n(y)− Λn(y)) = V (y)−1(P ∗n − Pn)ΩΛ,y + op(1)

and by Theorem 3.5 in Gine & Zinn (1990) we have supy |Λ∗n(y) − Λn(y)| = Op(n
−1/2), which

together with Assumption 2(d) yields:

S∗n1(y) =
√
nβ1V (y)−1(P ∗n − Pn)ΩΛ,yw(y) + op(1).

uniformly over y. Further, Assumptions 2(b)-(d), Assumption 5 and Theorem 2.2 in Bickel &

Freedman (1981) imply:

S∗n2(y) = −
√
n
∂Λ(y, γ)

∂γ

′
(P ∗n − Pn)Ωγw(y) + op(1)

S∗n3(y) =
√
nΛ0(y)(P ∗n − Pn)Ω1w(y) + op(1)

uniformly over y. Denote B∗n(y) =
√
n(P ∗n−Pn)[β1V (y)−1ΩΛ,y− ∂Λ(y,γ)

∂γ Ωγ+Λ0(y)Ω1]w(y). Now note

that functions Ωγ and Ω1 are not indexed by y and w(y), ∂Λ(y,γ)
∂γ w(y) and Λ0(y)w(y) are constant

for fixed y. Thus, by Lemma 2.14 in Pakes & Pollard (1989), Theorem 3.5 in Gine & Zinn (1990)

and the extended continuous mapping theorem (Theorem 1.11.1 in Van der Vaart & Wellner (1996))

we have that
∫ y2

y1
B∗2n (y)dy converges weakly to

∫ y2

y1
B2(y)dy in conditional probability. Additionally,
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by continuity of the distribution of
∫ y2

y1
B2(y)dy and monotonicity of CDFs this implies:

sup
t∈[0,1]

∣∣∣∣P ∗n1

{∫ y2

y1

B∗2n (y)dy ≤ t
}
− P1

{∫ y2

y1

B2(y)dy ≤ t
}∣∣∣∣ = op(1) (23)

By Theorem 1:

sup
t∈[0,1]

∣∣∣∣P1{Tn ≤ t} − P1

{∫ y2

y1

B2(y)dy ≤ t
}∣∣∣∣ = o(1) (24)

By our derivation above T ∗n =
∫ y2

y1
B∗2n (y)dy + op(1) which implies:

sup
t∈[0,1]

∣∣∣∣P1{T ∗n ≤ t} − P1

{∫ y2

y1

B∗2n (y)dy ≤ t
}∣∣∣∣ = o(1) (25)

Putting (23), (24) and (25) together and using Law of Iterated Expectations we obtain

sup
t∈[0,1]

|P1{T ∗n ≤ t} − P1{Tn ≤ t}| = op(1)

Now taking t = c∗κ concludes the proof.

A.4 Proof of Theorem 3

We can write

Ln(θ) =

∫ ∞
0

U (3)
n hBCθ,y dΨ(y) + PnR(W, θ)

and

L∗n(θ) =

∫ ∞
0

U∗(3)
n hBCθ,y dΨ(y) + P ∗nR(W, θ)

Note that minimizing Ln(θ) = Sn(γ, β) + PnR(W, θ) is the same as minimizing L̃n(θ) = Sn(γ, β)−

Sn(γ0, β0) +Pn[R(W, θ)−R(W, θ0)] and similarly for the bootstrap problem. Thus, without loss of

generality we take Sn(γ0, β0) = 0 and R(W, θ0) = 0.
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We can use Lemma 2 to show P supθ,y |U
∗(3)
n hBCθ,y − P 3hBCθ,y | → 0 and:

U (3)
n hBCθ,y = (θ − θ0)′3Pn∂τ

BC
θ0,y −

1

2
(θ − θ0)′A(y)(θ − θ0) + op(‖(θ − θ0)‖2) + op(n

−1)

U∗(3)
n hBCθ,y = (θ − θ0)′3P ∗n∂τ

BC
θ0,y −

1

2
(θ − θ0)′A(y)(θ − θ0) + op(‖(θ − θ0)‖2) + op(n

−1)

as θ → θ0, uniformly over y, where A(y) = −P∂2τBC(W, y, θ0).

Let us verify the conditions of Lemma 2. Clearly, hBCθ,y is uniformly bounded. Assumption (a) is

satisfied with Y = {y : dΨ(y)
dy > 0} and follows from Assumptions 4(b),(e). Part (b) has been shown

by Foster et al. (2001). Assumption 4(e), boundedness of Y and E
[
supg∈Θγ

∣∣∣Y g log Y−Λ(Y,g)
g

∣∣∣]2
<∞

imply condition (c). Now note that P 2[(PhBCθ,y − PhBCθ0,y)
2] ≤ 2P 2[PhBCθ,y − PhBCθ0,y] and condition

(d) follows from continuity of the distribution of U and X1. Condition (e) follows from a similar

argument.

Now using E
[
supg∈Θγ

∣∣∣Y g log Y−Λ(Y,g)
g

∣∣∣]2
< ∞ and Lemma 2.13 in Pakes & Pollard (1989) we

find that the class of functions R = {R(·, θ) : θ ∈ Θ} is Euclidean with square integrable envelope.

Hence, supθ |P ∗nR(W, θ) − PR(W, θ)| = op(1), which together with the previous derivation implies

that

L∗n(θ) =

∫ ∞
0

P 3hBCθ,y (W )dΨ(y) + PR(W, θ) + op(1)

holds uniformly over θ ∈ Θ. Foster et al. (2001) show that the expression on the right is uniquely

maximized at θ0. It follows that θ∗ is consistent for θ0.

Next, we have as θ → θ0:

P ∗nR(W, θ) = (θ − θ0)′P ∗n∂R(W, θ0) + (θ − θ0)′P ∗n∂
2R(W, θ0)(θ − θ0) + op(‖(θ − θ0)‖2)

where ∂R(W, θ) denotes the gradient of R with respect to θ.

Putting the above linear representations for U∗(3)
n hBCθ,y and P ∗nR(W, θ) together and noting that
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|P ∗n∂2R(W, θ0)−P∂2R(W, θ0)| = Op(n
−1/2) under condition (c) of the theorem we obtain, as θ → θ0:

L∗n(θ) = (θ − θ0)′P ∗n

[
3

∫ ∞
0

∂τBCθ0,ydΨ(y) + ∂R(W, θ0)

]
−1

2
(θ − θ0)′VBC(θ − θ0)

+ op(‖(θ − θ0)‖2) + op(n
−1)

Now using the fact that VBC is invertible and proceeding as in the proof of Theorem 2 we get:

θ∗ − θ0 = V −1
BCP

∗
n

[
3

∫ ∞
0

∂τBCθ0,ydΨ(y) + ∂R(W, θ0)

]
+ op(n

−1/2)

which implies:

P

∣∣∣∣θ∗ − θ0 − V −1
BCP

∗
n

[
3

∫ ∞
0

∂τBCθ0,ydΨ(y) + ∂R(W, θ0)

]∣∣∣∣ = o(n−1/2)

(see e.g. Theorem 1.4.C in Serfling (1980) where the uniform integrability follows from assumptions

of the theorem). Finally, P
[
3
∫∞

0 ∂τBCθ0,ydΨ(y) + ∂R(W, θ0)
]

= 0 by first order condition of the

population maximization problem and V ar
[
3
∫∞

0 ∂τBCθ0,ydΨ(y) + ∂R(W, θ0)
]
has finite elements by

Assumption 4(e) and condition (c) in the statement of the theorem.

A.5 Proof of Theorem 4

First, note that, due to centering at the sample estimators Λn and Λ(y, γ̂), bootstrap gives a valid

estimate of the asymptotic distribution of Tn under the null both when the data is generated

from the null model and the alternative model (in fact, the same argument as in the proof of

Theorem 2 applies with redefining γ and β1 as pseudo true values). Now, by Assumption 2 we have

Bn = Op(n
−1/2) which implies:

Tn
n

=

∫ y2

y1

[
1√
n
Bn(y) + q(y)w(y)

]2

dy + op(1) =

∫ y2

y1

[q(y)w(y)]2dy + op(1),

thus Tn →∞ and limn→∞ P (Tn > c∗κ) = 1.
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A.6 Proof of Theorem 5:

Using the spectral decomposition, under the sequence of local alternatives we get:

Tn =

∫ y2

y1

[Bn(y) + Λloc(y)w(y)]2dy + op(1) =

∫ y2

y1

 ∞∑
j=1

(bj + ϑj)φj(x)

2

dy + op(1) =

=
∞∑
j=1

(bj + ϑj)
2 + op(1),

where {φj : j = 1, 2, ...} form complete orthonormal basis of L2([y1, y2]) and bj ’s are asymptotically

N(0, ωj). Therefore, Tn →
∑∞

j=1 ωjχ1j(ϑ
2
j/ωj) (cf. Durbin & Knott (1972), Durbin et al. (1975)).
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