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Abstract
We show that the widely used Boston Mechanism (BM) fosters ability and socioe-

conomic segregation across otherwise identical public schools, even when schools do
not have priorities over local students. Our model includes an endogenous component
of school quality �determined by the peer group�and an exogenous one. If there is
an exogenously worse public school, BM generates sorting of types between a priori
equally good public schools: an elitist public school emerges. A richer model with
some preference for closer schools and �exible residential choice does not eliminate
this e¤ect. It rather worsens the peer quality of the nonelitist school. The existence
of private schools makes the best public school more elitist, while reducing the peer
quality of the worst school. The main alternative assignment mechanism, Deferred
Acceptance, is resilient to such sorting e¤ects.
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1 Introduction

School choice has expanded in many countries in recent decades. In particular, public school
choice systems with centralized assignment of children to schools are currently used in a
large fraction of OECD countries (Musset, 2012). Yet, we still have a limited understanding
about how such systems impact schools and neighborhoods more broadly.
Advocates defend that expanding school choice could be a tide that lifts all boats,

allowing equal access to higher quality schooling for all. Two important arguments in
favor of this view are that choice introduces competition, pushing schools to be more
productive,1 and that a uent families always had choice �as they could a¤ord private
schooling or housing in expensive areas� so that expanding choice improves equity by
allowing poor households to choose as well (e.g. Friedman, 1955; Hoxby, 2003).2 In sharp
contrast, critics argue that expanding choice could exacerbate educational inequality and
harm vulnerable students, increasing segregation across schools, and leaving them behind
in lower quality schools. Arguments in this side of the debate include that schools usually
prefer students from better-o¤ socioeconomic backgrounds, that better-o¤ parents exercise
choice more often, make better informed choices, and that low income households have
their e¤ective choice sets restricted, as they may not a¤ord transport and other indirect
costs (e.g. Smith and Meier, 1995; Musset, 2012; OECD, 2012; Hastings, Kane and Staiger,
2010).3

This paper connects two important literatures in economics that study the impact of
school choice on the educational landscape. On the one hand, the literature on multi-
community models of local public good provision inspired by Tiebout (1956). On the
other, the mechanism design literature that studies the implications of using alternative
mechanisms to assign children to schools initiated by Abdulkadiroglu and Sonmez (2003),
where schools are objects of exogenously given characteristics and with �xed capacities.
We embed the mechanism design problem in a multi-community model with peer e¤ects

to show that the speci�c mechanism used to assign children to schools can have a large
impact on sorting across neighborhoods and schools.4 We construct a model of centralized

1While several theoretical contributions explain why school competition may harm school productivity
in the presence of reputation e¤ects or asymmetric information (De Fraja and Landeras, 2004; MacMillan,
2004, MacLeod and Urquiola, 2015, but see also Hoxby, 1999), recent empirical evidence supports the
existence of positive productivity e¤ects of school competition (see Hoxby, 2000, 2003, 2007; Rothstein,
2007; Gibbons et al., 2010, OECD, 2014).

2Indeed, it has been shown that, under certain stylized conditions, speci�c forms of school choice could
be the solution to school and neighborhood segregation (see Epple and Romano, 2003, 2008).

3Theoretical work has also underpinnded some of these concerns (e.g. Epple and Romano, 2003).
4Note that our communities do not provide their schools with di¤erent levels of spending per pupil and

so that we abstract away from this determinant of quality. This kind of model has been referred to by
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public school choice with partly endogenous school quality,5 with private schools and where
families choose where to live. There is a continuum of agents that are characterized by
their type (socioeconomic background or ability), with preferences for school quality, money
and nearby schools.6 We show that otherwise identical schools become unequal under the
widely used Boston mechanism if a third school is exogenously worse. That is, we �nd that
the Boston mechanism facilitates the creation of elite schools within the public system,
where only su¢ ciently high types self-select into. The introduction of private schools in
the model exacerbates this e¤ect. Preference for residence location close to school does not
qualitatively a¤ect these results. It rather worsens the quality of nonelitist public schools.
Sorting across public schools occurs both according to children�s abilities and to family
income. Note that in our model families who can a¤ord or value private schools have
increased chances to get into the best public schools. It is remarkable that the assignment
to public, tuition-free schools, is a¤ected by families�di¤erences in willingness to pay for a
private school.
Our objective in this paper is to enhance our understanding of the impact of the as-

signment procedure on sorting in neighborhoods and schools by building a bridge between
two largely disconnected literatures. Let us expand on this. The �rst literature is that of
multi-community models of local public goods, which endogenizes school quality through
the peer group e¤ect, but simpli�es the assignment problem by assigning children to their
local school.7 The choice of where to live embeds the choice of school and, since better-o¤
households are willing to pay more for school quality, socioeconomic sorting into communi-
ties and their schools ensues.8 In that setting, frictionless school choice (with no transport

some as a neighborhood model (e.g. Epple and Romano, 2003).
5The endogenous component of quality is determined by the peer group. In line with Epple and Romano

(2011), we de�ne peer e¤ects as any in�uence that a student has on the learning of her class or school
mates. There is a large and growing body of literature studying the empirical relevance of peer e¤ects and
the mechanisms through which they a¤ect the educational process. A consensus exists that they matter,
and that a �better�peer group enhances performance (Epple and Romano, 2011; Sacerdote, 2011). We also
introduce observable exogenous quality di¤erences that vertically di¤erentiate the public school system.

6The robustness analysis presented in the Appendix proves that our results hold with a di¤erent charac-
terization of exogenous quality di¤erences and with an arbitrary number of districts and schools. Moreover,
it contains an extension of the model in which households di¤er along two dimensions: parental income
and child ability. Qualitative results do not change.

7Tiebout (1956) is written as a response to the result of Musgrave (1939) and Samuelson (1954) that,
due to the preference revelation problem, �no "market-type" solution exists to determine the level of
expenditures on public goods.�Tiebout suggested that a solution could exist for local public goods, at
least in large and decentralized multi-community systems. The idea is that in such settings households
e¤ectively "shop" for local public goods by choosing which community to live in, and so where to pay local
taxes and consume local public goods (See for instance Wooders, 1999).

8Early contributions explain how decentralized school �nance can lead to income segregation across
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costs or capacity constraints) indeed prevents segregation within the public sector (Epple
and Romano, 1998, 2003).9 Epple and Romano (2003) conjecture that their results would
extend to a model where public schools had limited capacity and overdemands were re-
solved through lotteries, but do not provide relevant details of the school choice mechanism
used (e.g. what happens with children excluded from their �rst choice).10 The second lit-
erature is that of market design, which takes school quality and residence as given and
focuses on how the details of the algorithms used determine families�behavior and �nal
school assignments. Started by Abdulkadiroglu and Sönmez (2003), that literature reveals
the importance of the rules applied to resolve overdemands when limited school capacities
preclude the immediate satisfaction of parents��rst choices. It formally analyzes the game
generated by a centralized system where families submit a ranking of schools and a set of
rules determines who gets accepted in an overdemanded school and what options are left for
rejected applicants. These rules de�ne the so-called school choice mechanisms, which often
include priorities for applicants living in the neighborhood of the school or having a sibling
in the school. Abdulkadiroglu and Sönmez (2003), and a fruitful literature derived from
it, de�ne several properties that these mechanisms should satisfy and establish a trade-o¤
between e¢ ciency (satisfying parents preferences) and stability (respecting priorities).11

We show that under Deferred Acceptance no such elitization nor sorting occurs. There
is a wide literature on the good properties of this mechanism: strategy-proofness, stability-
constrained e¢ ciency under strict priorities, and protection of nonstrategic families (see
among others Gale and Shapley 1962, Roth 1985, Erdil and Sönmez 2006, and Pathak and
Sönmez 2010.) Our paper adds another property to the list: resilience to sorting across a
priori identically good public schools.
We cite two recent pieces of related theoretical work. An ongoing research by Cantillon

(2014) suggests that group admission quotas can avoid the emergence of segregation when

the school districts of a metropolitan area (e.g. Epple et al., 1984, 1993). More recent ones explain
that the peer group e¤ect and other neighbourhood externalities can be su¢ cient to trigger segregation
across the schools or neighbourhoods of a single district, and explore di¤erent equity, e¢ ciency and policy
implications of that observation (e.g. De Bartolome, 1990; Bénabou, 1996; Epple and Romano, 2003; De
Fraja and Martinez-Mora, 2014).

9Epple and Romano (2003) also study the e¤ects of transport costs and �nd them to be su¢ cient to
generate residential and school segregation by income.
10Other important contributions to this literature include Bénabou (1993), which illustrates how socioe-

conomic segregation may create poverty traps and ghettos; Durlauf (1996), which explains how socioeco-
nomic segregation can perpetuate income inequality across generations; or Nechyba (2000), which shows
how the existence of private schools may reduce socioeconomic segregation by severing the link between a
household place of residence and the school the child attends.
11This tradeo¤ has been argued to be small �Chen and Sönmez (2006) question its relevance through

lab experiments.
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preferences are endogenously determined by peer quality. Avery and Pathak (2015) com-
pares heterogeneity in the schools of a city when there is neighborhood-based assignment
and when �exible choice is implemented, in a setting with a residential choice between the
city and an adjacent one.
Recent empirical results make it plausible that self selection by parents of di¤erent

types outweighs the incentives for schools to compete for students through improving their
quality. Calsamiglia and Güell (2014) provides empirical evidence showing that priorities
play a large role in the �nal allocation of students to schools when residential priorities
exist.12 Moreover they show that a substantial fraction of families taking risks in the city
of Barcelona opt for a private school if they do not get the desired school, empirically
validating the channel that private schools play when BM is used. Although they do not
consider peer e¤ects or residential choices explicitly, the sorting e¤ects that we identify in
BM with outside options seem empirically plausible in light of their results.
The rest of the paper is organized as follows. Section 2 studies the base model with no

private schools nor preference for nearby schools. Section 3 includes the presence of private
schools into the base model. Section 4 includes preference for geographical proximity into
the base model. Section 5 contains a discussion about an alternative mechanism that
mostly avoids sorting issues: Deferred Acceptance. Section 6 concludes. An Appendix
includes long proofs as well as extended models, including an arbitrary number of schools
and bidimensional types (income and ability.)

2 The baseline model

The model represents a single school district with three equally sized public schools that
provide tuition-free education.13 Schools are indexed with j = 1; 2; 3. Total school capacity
is identical to the number of children residing in the city, and so each school has capacity
for 1=3 of the students. A population of households (indistinctly called families, agents,
children or students) with mass normalized to 1 lives in the city. Every household consists
of a parent, who takes decisions, and a school-aged child. Household type is denoted with
t 2 D �

�
t; t
�
, and is distributed in the population according to a continuous and strictly

increasing distribution function � (t) with full supportD. We denote with t� the � quantile
of �, i.e. �(t�) = �. Types can be interpreted as parental human capital or wealth, which
determines both household income and its ability to bene�t from school quality (Bénabou,
1996).

12That is the case in most OECD countries (OECD, 2012).
13This is only for expositional simplicity. Our results can be generalized to an economy with an arbitrary

number of schools (see Appendix B).
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Schools di¤er along two dimensions: peer quality qj and an exogenous school component,
denoted �j. Let �j be the (nonatomic) distribution of students�types conditional on being
assigned to school j. Denote the peer quality as:14

qj = q(�j)

where q(�) is continuous and monotonic in the �rst-order stochastic dominance sense: �j
FOSD �i implies qj > qi:15 This functional form encompasses a rich family of peer e¤ects,
from the standard setup where quality equals the average type in the distribution of stu-
dents, to much richer setups. It accommodates, for example, a setting where a smaller
proportion of children with ability below a certain threshold and a larger proportion of
children with ability above a larger threshold enhance quality, as in Summers and Wolfe
(1977). The quality function is �exible in the way we rank two schools that are not ranked
according to �rst-order domination. Then this function may extend as well to a setting
where quality is a¤ected by the degree of heterogeneity in abilities at the school, as in
Bénabou (1996).

Preferences. In the base model, a parent cares about her child�s (future) human capital,
which depends on the peer quality, qj, and the exogenous characteristics, �j, of the school
she attends. A household of type t assigned to school j obtains a utility V (qj;�j; t) =
h(qj; t) + �j. In the presence of uncertainty about the �nal allocation, household�s payo¤
is simply the expected value of V: The exogenous quality element enters linearly into
the utility function, and it a¤ects all households equally.16 We assume that h is strictly
increasing, continuous, bounded above and strictly supermodular (i.e. if q0 > q, then
h(q0; t)� h(q; t) is increasing in t.)

For expositional simplicity, we assume that there is a bad school and two equally good
schools: �1 = �2 = � > 0 = �3: The purpose of this assumption is to illustrate how
the presence of a bad school can generate segregation even across schools that are a priori
equally good. Furthermore, we either assume that the di¤erence in exogenous quality is
large enough (Assumption 1) or that complementarity between quality and type is bounded
from above (Assumption 2). In detail, we assume one of the following.

Assumption 1 Ghetto School: � > h(q(�t�t1=3); �t) � h(q(�t�t1=3); �t)where �t�t� is the
truncated distribution of students�types above t� and �t�t� denotes the truncated distribu-
tion of students�types below t�.
14When �j collapses to a degenerate distribution with a single value t; we use the notation q(t):
15It is continuous according to the distance d(�;�0) =

R �t
t
j�(t) � �0(t)jdt: Also, �j FOSD �i if for all

t 2 D we have �i(t) � �j(t); and the inquality is strict for some t:
16We consider an alternative speci�cation of preferences for � in Appendix E. In the alternative mod-

elling, school 3 quality is discounted by a factor � < 1. Results are qualitatively identical.
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Assumption 2 Limited Complementarity: 8� � 1=3;

h(q(�t�t�); �t)� h(q(3��t�t� + (1� 3�)�t�t�); �t)
< 2 � [h(q(�t�t�); t�)� h(q(3��t�t� + (1� 3�)�t�t�); t�)]

where 3��t�t� + (1� 3�)�t�t� is a convex combination between the truncated distributions
�t�t� and �t�t� ; with respective weights 3� and 1� 3�:

No priorities. We consider setups where schools have no priorities over students in the
school assignment procedure. To study the impact of school priorities for neighborhood
residents, the model should encompass a housing market and residential choices prior to
the school choice assignment. It can be easily shown that in equilibrium of such a model,
individuals segregate between neighborhoods and schools, with housing prices capitalizing
cuto¤ types�valuation of the di¤erence in quality between adjacent (in quality) schools.
This does not add much to standard results under neighborhood school assignment (e.g.
Bénabou 1996, Epple and Romano 2003.) The point of this paper is to show that priorities
are not necessary for the Boston Mechanism to generate segregation.

Strategies and timing. Each family is asked to submit a ranking of the three schools.
We use "i � j � k" to denote the list where school i is ranked �rst, school j second and
school k last. Let R(t) be the (possibly mixed) ranking strategy of household t.
The base model has a single stage. Given an assignment mechanism M , households of

each type t submit a ranking of the three schools. The rules speci�ed in M determine an
assignment of children to schools. The allocation of children to schools in turn determines
the peer groups and the endogenous quality component of schools, q1; q2; q3. Finally, payo¤s
are realized.

Equilibrium. Given a mechanism M , an equilibrium is a tuple of beliefs about qualities
(q̂1; q̂2; q̂3) and a strategy pro�les R� such that

1. Rational choices: Given the beliefs (q̂1; q̂2; q̂3); no t�type household can increase
utility by submitting a di¤erent ranking of schools other than R�(t).

2. Consistent beliefs: Given the assignment provided by M and R�, induced qualities
coincide with believed qualities: q̂j = qj, 8j.

A stable equilibrium given a mechanismM is an equilibrium such that for each converg-
ing sequence of beliefs (qn1 ; q

n
2 ; q

n
3 )n2N ! (q̂1; q̂2; q̂3), there is a sequence of strategy pro�les

Rn such that
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1. For each type t, Rn(t) is best responding to R� given (qn1 ; q
n
2 ; q

n
3 ).

2. For almost every t 2 D; Rn(t)! R�(t) as n!1.

The notion of stability captures the idea that arbitrarily small trembles in individual
beliefs do not dramatically alter each agent�s best response with respect to her equilibrium
strategy. In most of the analysis we focus on pure ranking strategies. Schmeidler (1973)
guarantees the existence of an equilibrium in pure strategies in this game.

Sorting. Our de�nitions of sorting are based on comparisons of the distribution of types
between pairs of schools and neighborhoods. We say that there is full sorting between
schools i and j if sup(supp(�j)) � inf(supp(�i)). That is, the maximum type assigned
to school j lies weakly below the minimum type assigned to i. We say that there is partial
sorting between schools i and j if �iFOSD�j, implying qi > qj.17 There is sorting if
there is either full sorting or partial sorting. Finally, we that there is no sorting between
schools i and j if �i = �j.

The Boston (Immediate Acceptance) Mechanism. Before proceeding with the
analysis, we explain how the Boston Mechanism (BM) assigns students to schools. First
of all, parents are requested to report a complete ranking of the available schools to the
school authority. A multi-round algorithm is then used to assign children to schools round
by round. In the �rst round, each student is considered for the school her parents ranked
�rst. If the number of students considered for a school exceeds its capacity (i.e. the school
is overdemanded,) some students will be rejected, following the school priorities (if any)
and a tie-breaking lottery when necessary. Each rejected student goes to the next round
where she is considered for her highest-ranked school with free slots that has not rejected
her yet. Every accepted student keeps her slot at the school for which she was considered,
and both the student and the slot are removed from the assignment algorithm (de�nite
acceptance).
While the way BM proceeds is easier to understand for parents than other mechanisms

(e.g. Deferred Acceptance), it has an important drawback, as it is not strategy-proof. An
assignment mechanism is strategy-proof if providing truthful information about one�s own
preferences constitutes a weakly dominant strategy (i.e. it is always a best response to any
pro�le of the other agents�strategies). In school choice problems, this property provides
a valuable simpli�cation of the strategic choice parents face, since they cannot do better

17Other forms of sorting could also be explored. For instance, sorting coming from second-order sto-
chastic dominance, or from similarity to the unconditional distribution � (diversity). However, our results
concern the kinds of sorting just de�ned.
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than reporting their true ordinal preferences. This is not the case in BM. Given that slots
are de�nitely assigned round by round, there is an opportunity cost of truthfully reporting
preferences: the reduction of available slots in not-so-preferred schools in further rounds.
Thus, each parent needs to balance her preferences with her chances and may prefer to
rank a moderately good school with high acceptance probability in �rst position instead
of her most-preferred alternative.
In an environment with peer e¤ects, parents�preferences are a¤ected by peer e¤ects, an

endogenous outcome. Hence, strategy-proofness is not a guarantee of strategic simplicity,
since each parent needs to take other parents�strategies into account in order to construct
her own preferences. The value of strategy-proofness is then diminished. On the other
hand, BM, precisely because it is not strategy-proof, manages valuable information about
parents� preference intensities. In fact, parents with the same ordinal preferences may
report di¤erent rankings if their preference intensities are di¤erent. This feature yields
some e¢ ciency properties for BM (Miralles, 2008; Abdulkadiroglu et al. 2011).

The next proposition summarizes the results of our base model.

Proposition 1 Under the Boston Mechanism:
(a) There is no stable equilibrium with no sorting between schools 1 and 2.
(b) If either the bad school is a ghetto school or h shows limited complementarity, there

is a stable equilibrium with sorting between schools 1 and 2.
(c) Moreover, for � su¢ ciently high, all stable equilibria show full sorting between good

schools.

The proof is in Appendix A. For a generalization to an arbitrary number of good schools,
see Appendix B. We provide some intuition in these lines. As soon as beliefs about peer
qualities of the good schools di¤er, say q̂1 > q̂2; best responses to any strategy pro�le take
the form of a cuto¤ strategy: Types higher than some threshold t̂ rank school 1 �rst;
types below rank school 2 in �rst position.18 The implied single-crossing property of best
responses is due to the supermodularity of h. These best responses in turn reinforce the
original beliefs, eventually generating an equilibrium threshold ~t under which q1 > q2. The
equilibrium is stable because of its cuto¤ nature: when we tremble beliefs, best responses
change only around the equilibrium cuto¤ type ~t. Existence is illustrated in Figure 1. For
a cuto¤ t̂ =t, the cuto¤ type prefers to rank school 2 in �rst position (school 2 has identical
ex-post peer quality as school 1 and it is underdemanded.) For a cuto¤ t̂ = t1=2; the cuto¤
type prefers to rank school 1 on top (school 2 has as many applicants in the �rst round as

18We assume that everyone ranks school 3 in last position, which is consistent with best-responding ex
post. We note that this result holds even in cases in which school 3 is not the least-preferred by all types.
Hence proposition 1 is not an artifact of an arti�cially created alignment of ordinal preferences.
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Figure 1: Change in cuto¤ type�s expected payo¤ when ranking school 1 �rst instead of
school 2, if the strategy pro�le follows a cuto¤ rule (higher types rank school 1 �rst, lower
types rank school 2 �rst.)

school 1, and school 1 has higher peer quality.) A simple application of the intermediate
value theorem ensures the existence of an indi¤erent cuto¤ ~t:

Consider now equilibria with �1 = �2, and consequently q1 = q2, a natural prediction
since schools 1 and 2 are equally good a priori. We next explain that those equilibria are
not stable. Strategically, the game for families is simple: If they prefer school 3, they will
rank this school �rst; otherwise they will rank both schools 1 and 2 above school 3. About
the ranking of school 1 with respect to school 2, there are in�nitely many pro�les yielding
�1 = �2 ex post. For each household, the chances of being admitted at either school 1 or
school 2 are identical in equilibrium, no matter how school 1 was ranked with respect to
school 2. Now, consider any sequence of beliefs such that qn1 > q

n
2 (or q

n
1 < q

n
2 ) converging

to the equilibrium beliefs. Best responding along the sequence implies ranking school 1
above school 2 for all types (or doing the opposite if qn1 < qn2 ). One can always choose
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one of these sequences of beliefs such that the sequence of derived best responses does not
converge to the equilibrium strategy pro�le.
Interestingly, in a segregation equilibrium in BM, the bad school has better ex-post peer

quality than the second best public school (�3FOSD�2), since school 3 collects students
rejected from both schools 1 and 2. This partially compensates the e¤ect of �. Moreover,
the ex-post peer quality of school 3 under BM exceeds q(�). Both results easily fade away
if private schools are available.

3 School choice with an outside option

The objective of this section is to investigate the way outside options a¤ect parental choices,
the performance of the BM, and the resulting allocation of children across public schools,
when peer e¤ects matter. This is especially relevant for school assignment mechanisms,
since outside options are typically available in school markets. To the best of our knowledge,
this is the �rst paper to study the workings of speci�c school choice mechanisms in the
presence of both an outside option and peer e¤ects.
The extended model of this section di¤ers from the baseline model in several respects.

First, the game with an outside option has one more stage in which parents choose between
the public school the child is assigned to and a private alternative. This choice is therefore
made after the school assignment algorithm is completed. We assume that there is a
single private school for simplicity, and we index it with p. This label also denotes its
price or tuition. The school has endogenous peer quality qp = q(�p), small capacity �p,

19

and exogenous quality �p. We assume that it sets the maximum price p that allows it
to attract enough students to �ll its capacity �p, a reasonable assumption for a capacity-
constrained school that is maximizing tuition revenues.20 When a private alternative to
the public schools is available, the question naturally arises of what happens to the public
slots freed by those opting for the private option. This is not problematic however: since
high types assigned to the least-preferred public school have the highest willingness to pay
for the private alternative, in equilibrium, only students assigned to school 3 will enroll in

19Private elementary schools not subject to the public school allocation system typically serve a very
small percentage of the total student body (see for instance Calsamiglia and Güell, 2014, for the case of
Barcelona, Spain.) More generally, the percentage of children attending private schools is typically small
(e.g. 10% in the US, 7% in the UK). On the other hand, K-12 private schools are signi�cantly smaller than
public schools on average. For instance, in the US, the average enrollment of schools was 509 students per
public school and 160 students per private school in 2013 (National Center for Education Statistics, 2014).
20That assumption is also compatible with pro�t-maximizing behavior, given the exogenous size �p,

provided the school�s variable costs are not too large.
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the private school. But because that is the least preferred public school, no other student
would like to get any of the freed slots ex-post.
Second, the utility function for a t�type household whose child enters a school with

tuition fee p (recall that public schools are tuition-free), peer quality q and exogenous
quality � is extended to capture the loss of utility induced by the payment of tuition fees

V (q;�; p; t) = h(q; t) + �� p:

Third, the notion of equilibrium of the extended model is based on the previous def-
inition, adding that: 1) equilibrium beliefs extend to the private school, q̂p; 2) the ranking
decision pro�le R�(t); t 2 D; is accompanied by a pro�le of decisions on whether to join the
private school or not, contingent on the assigned public school, P �(t) 2 fpublic; privateg3;
t 2 D; and 3) the equilibrium private school price p is the maximum price for which the
demand for the private school equals its capacity.
Fourth, we impose a consistency condition on equilibrium beliefs: these are con-

�rmed not only ex post but they are also ordinally interim con�rmed when the assignment
is done and before families decide whether to join the private school. That is, if qi � qj
just after the public school assignment takes place, it cannot be that qi < qj after families
decide whether to enroll at the private school. This avoids unnatural cases of self-con�rmed
beliefs that have nothing to do with the outcome of the public school assignment. Thus,
the presence of a private school just shrinks or enlarges an existing peer quality di¤erence
between schools, yet it cannot reverse the quality ranking of public schools that result from
the assignment mechanism.
Finally, an equilibrium of the model in this section is stable if for each converging

sequence of beliefs (qn1 ; q
n
2 ; q

n
3 ; q

n
p )n2N ! (q̂1; q̂2; q̂3; q̂p) there is a sequence of strategy pro-

�les Rn; P n such that 1) for each type t, Rn(t); P n(t) is best responding to R�; P � given
(qn1 ; q

n
2 ; q

n
3 ; q

n
p ) and p,

21 and 2) for almost every t 2 D; Rn(t); P n(t) ! R�(t); P �(t) as
n!1.
The availability of a private school a¤ects the outcome of the BM in two important ways.

On the one hand, if school quality and the child�s type are complements in the production
of human capital, it leads to an equilibrium with a more elitist best public school. This
gives rise to a new source of unfairness: top types have higher chances of admission at the
best public school when a private school is present. On the other hand, the complementarity
between school quality and type is no longer necessary for the emergence of segregation
when agents have an outside option: an equilibrium displaying segregation exists if the

21This de�nition admits excess demands for the private school along the sequence.
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marginal utility of private consumption is decreasing.22

Proposition 2 Assume either that the bad school is a ghetto school or that h shows limited
complementarity. Let ~tmax denote the maximum equilibrium cut-o¤ in the BM game without
private schools. With a private school with su¢ ciently low capacity �p there exists a stable
equilibrium characterized by a cuto¤ ranking pro�le with threshold ~tp > ~tmax.

Corollary 1 In a (maximum cuto¤ ) equilibrium in BM with a private school, top-type
students have a higher probability of accessing the best school than when a private school
does not exist. Furthermore, the ex-post quality of the ex-post best public school increases
with respect to the case without private school.

The key here is that households whose child is allocated to the bad school are worse-o¤
than in the equilibrium of the base model. The reason is that high types refuse to enroll at
the bad school and instead pay for private schooling, which lowers the quality of the bad
school. Therefore ranking the best school (school 1) in �rst position becomes riskier than
in the base model: rejection imposes a higher cost and less households play that strategy
(see Figure 2.)23

Remark 1 We could have considered a "direct" model in which only high types (with t
above some threshold t3 close to �t) had an outside option that is better than the bad school
yet worse than any good public school. An example of this could be the case of a selective
private school. Conclusions would be identical.

22This is shown in Appendix C. There the utility function is

V (q;�; p; t) = u(t� p) + h1(q) + h2(t) + �

where u is strictly increasing and strictly concave and h = h1 + h2 is not supermodular. That result
demonstrates that supermodularity is not necessary for BM to generate sorting across public schools when
an outside option is available, provided higher types have lower marginal utility of private consumption.
Appendix D presents an extension of the analysis to a bidimensional types space t (interpreted there as
ability) and y (interpreted as income).
23The proof of the proposition shows that equilibrium private tuition p is high enough so that all

households prefer school 2 (and hence school 1) to the private school. This is possible for a su¢ ciently
small capacity �p. Notice as well that the revenue maximizing private school sets p low enough so that
high types prefer it over school 3, since otherwise it would not attract any students.
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Figure 2: The di¤erence in expected payo¤s of �gure 1 swifts down when we introduce a
private school (orange dashed line.)
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4 Preference for nearby schools and endogenous loca-
tion

This section studies another natural extension of our base model. The goal is to show that
that the tendency of BM to generate segregation across schools remains in a richer setting
with transport costs, housing markets and residential location choices. Our extended model
encompasses the notion that those choices are endogenous and so a¤ected by equilibrium
residential prices.
Our extended model in this section departs from the base model in several ways.

First, the school district consists of three equally sized neighborhoods indexed with
j 2 f1; 2; 3g, so that 1) each school j is located in neighborhood j, and 2) each neighbor-
hood has capacity to house 1=3 of the population of households. Hence, a strategy is a
pair formed by a location choice over neighborhoods and a ranking of schools.24

Second, preferences di¤er from the base model in two ways: 1) if the child gets enrolled
at a school located in a di¤erent neighborhood from where the family lives, utility is reduced
by a small positive amount c,25 and 2) a family that chooses to live in a neighborhood
j su¤ers a utility loss equivalent to the residential price in the area, �j:
Third, here an equilibrium is a pair of pro�les L�(t); R�(t); t 2 D of respectively

location and ranking decisions, a vector of beliefs over peer qualities (q̂1; q̂2; q̂3) and a vector
of residential prices (�1; �2; �3) such that 1) L�(t); R�(t) is best-responding to L�; R� given
the beliefs and the prices, for almost every t 2 D; 2) beliefs are con�rmed ex-post, 3)
residential markets clear.
Fourth, we apply the following extended stability requirement, analogous to the one

we use in the base model: for each converging sequence of beliefs (qn1 ; q
n
2 ; q

n
3 ; q

n
p )n2N !

(q̂1; q̂2; q̂3; q̂p) there is a sequence of strategy pro�les Rn; Ln such that 1) for each type t,
Rn(t); Ln(t) is best responding to R�; L� given (qn1 ; q

n
2 ; q

n
3 ) and (�1; �2; �3),

26 and 2) for
almost every t 2 D; Rn(t); Ln(t)! R�(t); L�(t) as n!1.

Proposition 3 Assume that either the bad school is a ghetto school, or that h shows limited
complementarity.
24A natural timing in this model would require households to take location decisions �rst and then play

the school choice game. We make this double decision pro�le simultaneous for the sake of simplicity. We
do not lose generality because each equilibrium in our simpli�ed model represents an equilibrium path in
the extended game.
25Thus, c represents transport costs. When c is very large, we have the same (not surprising) outcome

as with the presence of neighborhood priorities, that is, full sorting across schools, again as in Bénabou
(1996) and Epple and Romano (2003.) In this paper we rather assume that geographical preferences play
a secondary role as compared to the concern for o¤spring�s human capital.
26This de�nition admits disequilibria in the residential market along the sequence.
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(a) If the base model contains a stable cuto¤ equilibrium with cuto¤ ~t < t1=3, then for
c low enough the extended model has a stable equilibrium with cuto¤ ~tc 2 (~t; t1=3] .
(b) If on the contrary the base model contains only stable cuto¤ equilibria with thresholds

~t � t1=3, then for any c < � and for every such equilibrium threshold ~t there is a stable
equilibrium with cuto¤ ~tc 2 [t1=3; ~t) (when ~t = t1=3 we instead have ~tc = t1=3:)

Corollary 2 Consequently, school 2 has lower peer quality than in the base model, and
school 1 has higher quality than in the base model if ~t < t1=3.

When the cut-o¤ is below t1=3; all students who rank school 1 �rst must be located along
all neighborhoods. Then they must be indi¤erent among locations, making residential
prices in neighborhood 2 (whose school they are least likely to attend) cheapest. This
gives an advantage to top-ranking school 2 (and living in neighborhood 2) with respect to
an equilibrium of the base model, as it is shown in Figure 3.
When the cut-o¤ is above t1=3; no neighborhood j = 1; 2 can be the cheapest one. Oth-

erwise all students ranking school j would choose to live there, leading to excess demand.
Thus neighborhood 3 must be the cheapest one, which gives an advantage to ranking
school 1 �rst, since with such strategy it is more likely to end up in the bad school. This
is re�ected in Figure 3.
A cuto¤equal to t1=3 is an intermediate case in which any convex combination of the two

aforementioned e¤ects may arise. This creates this tendency towards the worst equilibrium
for school 2.

The corollary holds because the peer quality of school 2 decreases as the cuto¤ type
approaches t1=3 (this is the lowest cuto¤ such that all types assigned to school 2 are below
the cuto¤.) The presence of preferences for nearby schools creates a discontinuity in the
cut-o¤type�s evaluation of ranking strategies (namely, ranking the popular good school 1 in
�rst position versus ranking school 2 �rst.) To understand this, recall that location choices
are not exogenous but rather depend on prices and on the intended ranking strategy.27

5 Deferred Acceptance

In light of these results, a natural step forward in the analysis is to explore alternatives
to the Boston Mechanism. In the school choice debate, Deferred Acceptance has been

27Interestingly, introducing endogenous location decision simpli�es the problem. When household lo-
cation is exogenously given, we would have to calculate a cut-o¤ for each neighborhood. Here, since the
ranking decision is optimally linked to the location decision, only one cuto¤ is relevant.
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Figure 3: Changes in �gure 1 when we introduce a preference for nearby schools (dashed
orange line.)
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suggested as an appealing alternative already in Abdulkadiroglu and Sönmez (2003). In
this section, we show that Deferred Acceptance has an additional attractive property: being
more resilient to inter-school segregation than the Boston Mechanism.
As a mechanism, Deferred Acceptance works almost identically as the Boston Mecha-

nism. The only di¤erence is that acceptance is only tentative as opposed to de�nitive in
the Deferred Acceptance algorithm. In other words, a student accepted at some school at
some round only gains the right to continue being considered at the same school in the
next round. It is perfectly possible that she gets rejected in further rounds, since in each
round the school selects among a di¤erent set of students.
Such feature of Deferred Acceptance, while di¢ cult to understand for parents, has

an important consequence: strategy-proofness. Parents have no incentives to misrepresent
their preferences, no matter what other parents do. We will see that strategy-proofness has
relevant implications for school segregation.28 We summarize our results in the following
proposition.

Proposition 4 Under Deferred Acceptance:
(a) There is no sorting of students between schools in equilibrium of the base model.
(b) For � su¢ ciently large, there is no sorting of students between goods schools in

equilibrium of the extended model with private schools.
(c) There is an equilibrium with sorting between good schools in the extended model with

preference for nearby schools and su¢ ciently low c. This is characterized by a cuto¤ ~tD

such that types above prefer school 1 to school 2 and types below prefer school 2 over school
1. As c approaches zero, ~tD tends to t.

The resilience of Deferred Acceptance with respect to segregation is a consequence of
strategy-proofness and can be explained as follows. Suppose that parents expect that two
a priori identical schools will have di¤erent peer qualities. Now strategy-proofness is key:
everyone would rank these two schools according to those expectations. But this leads to
contradiction: there is no di¤erence between the distribution of those students applying for
the higher-quality school and those who are rejected and hence apply to the lower-quality
one.
As for part (c) of the proposition above, the presence of some preference for nearby

schools gives rise to segregation. The reason is simple. Low types may care less about peer
quality than about geographical proximity. However, part (c) also states that even in that
case, segregation vanishes as c tends to zero. This does not happen under BM.
28If there was a contraint in the number of schools to be listed, then the mechanism would not be

strategy proof anymore and hence the results here presented would not hold true. See Haeringer and Klijn
(2010) or Calsamiglia, Haernger and Klijn (2010) for details.
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6 Concluding remarks

This paper has introduced a theory of sorting into public schools with centralized school
choice. It is, to the best of our knowledge, the �rst study on school choice mechanisms that
endogenizes preferences and which considers the role of outside options. We showed that
the choice of the assignment mechanism, along with the details of the institutional context
in which it is applied, are crucial for the resulting distribution of children across public
schools and for the degree of equality of opportunities o¤ered by the education system. We
thus provided a theoretical underpinning for the equity concerns expressed by the OECD
(2012) and others, even when there are no informational asymmetries. Our analysis also
o¤ers guidance about how to guarantee equality of opportunities in a context with public
sector school choice. The welfare implications of segregating or mixing students are well
known (Arnott and Rowse, 1987; Bénabou, 1996) and so we did not study them.
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Appendix A: Proofs

Proof. Proposition 1.

(1) No stable equilibria with no sorting between schools 1 and 2. Suppose on the contrary
that an equilibrium with no sorting between these schools exists (�1 = �2.) In such a case,
q̂1 = q̂2 and both schools are de facto identical for all students. Best responses involve either
ranking school 3 on top or at the bottom, depending on whether school 3 is preferred to
the other two or not (since students are choosing among two types of schools, there is no
risk in revealing the true position of school 3.) If there are types that prefer school 3 to
the other schools, it must be that q̂3 > q̂1 = q̂2 in order to compensate for the exogenous
quality advantage �: Therefore, by supermodularity of h; there is a cuto¤ t0 2 D such that
types above prefer school 3 to the others, and the opposite happens when the type lies
below the cuto¤. (In case q̂3 � q̂1 is low enough or negative, we obtain t0 = �t.)
It is not possible that t0 =t. In such a case we obtain �3 = �; and since by no sorting

we have �1 = �2 we must have �1 = �2 = � = �3 and hence q1 = q2 = q3 contradicting
the fact that everyone prefers school 3 to the other schools. Thus t0 >t. We focus on types
below t0. Those types rank school 3 at the bottom, and they choose whether to rank school
1 or school 2 in �rst position. Let pij be the equilibrium probability of entering school
i = 1; 2 if school j = 1; 2 is ranked in �rst position.
Since q̂1 = q̂2; an equilibrium condition is p11 + p21 = p12 + p22: (Suppose p1j + p2j >

p1;3�j + p2;3�j. Consequently all student types below t0 would optimally rank school j in
�rst position. But then school 3� j is underdemanded in the �rst round of the assignment
procedure, implying p3�j;3�j = 1 � p1j + p2j; a contradiction.) We argue that a necessary
condition for stability is p11 = p12 and p22 = p21: Suppose on the contrary that pij > pi;3�j:
By the equilibrium condition this implies that p3�i;j < p3�i;3�j: Construct a sequence of
beliefs satisfying qni > qn3�i; n 2 N; converging to the equilibrium beliefs. For all types
below t0; the best response given the equilibrium probabilities implies ranking school i in
�rst position, along the whole sequence. Construct another sequence of beliefs satisfying
qni < qn3�i; n 2 N; converging to the equilibrium beliefs. The best response for all types
t < t0 given the equilibrium probabilities involves ranking school 3 � i in �rst position,
along the whole sequence. Obviously these two sequences of beliefs induce two sequences
of best response pro�les that do not converge to the same pro�le, a violation of stability.
However, the Boston Mechanism precludes the accomplishment of the condition p11 =

p12 and p22 = p21: Suppose t0 > t2=3: Then a positive mass of students with types below
t0 must end up in school 3, implying p11 + p21 = p12 + p22 < 1: This implies for instance
p11 < 1; thus school 1 is overdemanded in the �rst round, and p12 = 0 < p11: Now suppose
t0 � t2=3: In such a case, there must be a school i = 1; 2 that is not overdemanded in the
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�rst round of the assignment procedure, that is, pii = 1: Since p3�i;3�i > 0 we must have
pi;3�i < 1 = pii: This completes the proof.
(2) Existence of stable equilibrium with sorting between schools 1 and 2. Assume that

agents play either one of the following strategies: ranking 1 above 2 and 2 above 3 ("1 �
2 � 3" from now on,) and ranking 2 above 1 and 1 above 3 ("2 � 1 � 3" hereafter.)
Furthermore, assume that equilibrium beliefs are such that q̂1 � q̂3 > q̂2: (We later check
that these assumptions are accomplished in equilibrium.)
Let pij denote the probability of enrolling into school i if the student ranks school

j = 1; 2 in �rst position. We claim that pi1 > pi2 for i = 1; 3 and that p22 > p21 in
equilibrium. That pjj > pj(3�j); j = 1; 2 is just a consequence of the mechanism: one
obtains higher chances at school j if she ranks it above rather than below. p31 > p32 is an
equilibrium condition. Suppose otherwise that p31 � p32; implying p11 � p12 + p22 � p21:
Now, for a.a. t 2 D

p11(h(q̂1; t) + �) + p21(h(q̂2; t) + �) + p31h(q̂3; t)

�p12(h(q̂1; t) + �)� p22(h(q̂2; t) + �)� p32h(q̂3; t)
= p11(h(q̂1; t)� h(q̂3; t) + �) + p21(h(q̂2; t)� h(q̂3; t) + �)

�p12(h(q̂1; t)� h(q̂3; t) + �)� p22(h(q̂2; t)� h(q̂3; t) + �)
� (p12 + p22 � p21)(h(q̂1; t)� h(q̂3; t) + �) + p21(h(q̂2; t)� h(q̂3; t) + �)

�p12(h(q̂1; t)� h(q̂3; t) + �)� p22(h(q̂2; t)� h(q̂3; t) + �)
= (p22 � p21)(h(q̂1; t)� h(q̂2; t)) > 0

where the �rst equality comes from p3j = 1� p1j � p2j; the �rst inequality comes from
p11 � p12+p22�p21 and h(q̂1; t) � h(q̂3; t); and the last inequality comes from p22 > p21 and
h(q̂1; t) > h(q̂2; t): But then, almost all students best respond with strategy "1 � 2 � 3":
This would contradict the assumption q̂1 > q̂2 since the distribution of student types would
be identical across schools ex post (an hence q1 = q2.) This proves the claim.
A �rst consequence is that, under any strategy pro�le such that the beliefs q̂1 � q̂3 > q̂2

are con�rmed ex post, the di¤erence

p11(h(q̂1; t) + �) + p21(h(q̂2; t) + �) + p31h(q̂3; t)

�p12(h(q̂1; t) + �)� p22(h(q̂2; t) + �)� p32h(q̂3; t)
= (p11 � p12)(h(q̂1; t)� h(q̂2; t)) + (p31 � p32)(h(q̂3; t)� h(q̂2; t)��)

is increasing in t; due to the supermodularity of h. Therefore, any equilibrium ranking
pro�le R must be characterized by a cut-o¤ t̂ such that types above t̂ use strategy "1 �
2 � 3" and types below t̂ use strategy "2 � 1 � 3". We focus attention on cut-o¤ ranking
pro�les.
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Using pij(t̂) for the probability of ending enrolled in school i when ranking school
j = 1; 2 in �rst position given a cut-o¤ ranking pro�le with threshold t̂; and qi(t̂) for the ex
post peer quality of school i under a cut-o¤ ranking pro�le with threshold t̂; we construct
the function

G(t̂) = (p11(t̂)� p12(t̂))(h(q1(t̂); t̂)� h(q2(t̂); t̂))
+(p31(t̂)� p32(t̂))(h(q3(t̂); t̂)� h(q2(t̂); t̂)��)

which measures the di¤erence in expected payo¤s for the cut-o¤ type between playing
strategy "1 � 2 � 3" and playing strategy "1 � 2 � 3".
Both assignment probabilities and peer qualities evolve continuously with t̂: Therefore,

G is a continuous function. Notice that G(t) < 0 since qi(t) = q(�) for all i = 1; 2; 3 and
p31(t) = 1=3 > p32(t) = 0: Note as well that G(t1=2) > 0 since p31(t1=2) = 1=3 = p32(t1=2),
p11(t1=2) = 2=3 > p12(t1=2) = 0 and q1(t1=2) = q(�t�t1=2) > q2(t1=2) = q(�t�t1=2): The
intermediate value theorem allows us to state that there exists ~t 2 (t; t1=2) such that
G(~t) = 0. That is, there is an equilibrium cut-o¤ ranking pro�le with threshold ~t.
We check that the assumptions we took are correct in equilibrium. We �rst check that

q1 � q3 > q2: In e¤ect, if ~t � t1=3 we have q1 = q(�t�~t) > q3 = q
�
2=3��(~t)
1=3

�t�~t +
�(~t)�1=3
1=3

�t�~t

�
>

q2 = q(�t�~t):And if ~t � t1=3 we obtain q1 = q(�t�~t) = q3 > q2 = q
�
1=3��(~t)
1=3

�t�~t +
�(~t)
1=3
�t�~t

�
.

Then we check that only strategies "1 � 2 � 3" and "2 � 1 � 3" are played in
equilibrium.
Consider ~t � t1=3: Since both schools 1 and 2 are overdemanded in the �rst assignment

round, the only part of the submitted ranking is the school ranked in �rst position. So
the only relevant alternative to "1 � 2 � 3" and "2 � 1 � 3" is ranking school 3 �rst
("3 � :::".) Since q̂1 � q̂3 and � > 0; all families prefer school 1 to school 3. No student
would rank school 3 above school 1 in equilibrium. Therefore "1 � 2 � 3" is better than
any of the alternative strategies for all types. Since those who play "2 � 1 � 3" prefer it
to "1 � 2 � 3"; all alternative strategies are discarded.
We consider further the case t̂ < t1=3: Now submitting an alternative ranking message

"1 � 3 � 2" is better than "3 � :::" for all types, since all families prefer school 1 to
school 3 and acceptance at school 3 is guaranteed at all rounds of the assignment process.
As for the comparison between schools 2 and 3, we �rst consider the case in which school
3 is a ghetto school. If t̂ � t1=3; q2(t̂) = q

�
1=3��(~t)
1=3

�t�t̂ +
�(~t)
1=3
�t�t̂

�
is decreasing in t̂

and q3(t̂) = q(�t�t̂) is increasing in t̂: If t̂ � t1=3; q2(t̂) = q
�
�t�t̂

�
is increasing in t̂ and

q3(t̂) = q(2=3��(
~t)

1=3
�t�~t +

�(~t)�1=3
1=3

�t�~t) is decreasing in t̂: Then t̂ = t1=3 minimizes q2(t̂)

and maximizes q3(t̂): Thus 8t 2 D; h(q3(~t); t) � h(q2(~t); t) � h(q3(~t); �t) � h(q2(~t); �t) �
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h(q3(t1=3); �t)�h(q2(t1=3); �t) < � (the �rst and second inequalities by supermodularity of h;
the last inequality by the ghetto school assumption.) Everyone prefers school 2 to school
3 in equilibrium. No student would rank school 3 above school 2 in equilibrium. Overall,
only the assumed strategies are played in equilibrium.
In a second scenario, we consider the limited complementarity assumption. Notice

that G(~t) = 0 implies h(q3; ~t) � h(q2; ~t) < � thus the equilibrium cuto¤ type (and all
types below) prefers school 2 to school 3. Consequently, no household using the ranking
"2 � 1 � 3" has incentive to rank school 3 other than last. As for those households
declaring "1 � 2 � 3". If ~t � t1=3; then school 2 gives all its slots in the �rst round,
so ranking school 3 over school 2 (instead of 2 over 3) has no e¤ect. If ~t � t1=3 we have
p11(~t) = p31(~t) =

1=3

1��(~t) and p12(~t) = p22(~t) = 0. Together with q1 = q3 this makes

G(~t) = p11(~t)(2h(q3; ~t) � 2h(q2; ~t) ��) = 0: Then, for all t 2 D; h(q3; t) � h(q2; t) �� �
h(q3; �t) � h(q2; �t) � � = h(q3; �t) � h(q2; �t) � 2(h(q3; ~t) � h(q2; ~t)) < 0: The �rst inequality
comes from supermodularity of h knowing that q3 > q2: The last inequality comes from
limited complementarity. We conclude that all types prefer school 2 to school 3, thus they
have no incentive to rank school 3 above school 2. With this we have checked that only
strategies "1 � 2 � 3" and "2 � 1 � 3" are played in equilibrium.
This equilibrium is stable. A best response pro�le to R given qualities qn1 ; q

n
2 ; q

n
3 ar-

bitrarily close to equilibrium beliefs is characterized by a threshold t̂n arbitrarily close to
~t:
Moreover, this equilibrium entails sorting between schools 1 and 2, since in equilibrium

�1 �rst-order stochastically dominates �2.
(c) Only full sorting if � big enough. For cuto¤s t̂ � t1=3 we know (from previous

paragraphs) that G(t̂) = p11(t̂)(2h(q3(t̂); t̂) � 2h(q2(t̂); t̂) � �): We also know that in this
interval q3(t̂) is increasing and q2(t̂) is decreasing. By supermodularity of h; there is an
equilibrium cuto¤ ~t � t1=3 if and only if 2h(q3(t1=3); t1=3)� 2h(q2(t1=3); t1=3) � �: If instead
� is higher than the former left-hand side of the inequality, no such equilibrium exists.
Therefore only equilibria with ~t > t1=3 exist in such a case, where �1 = �t�~t and �2 = �t�~t
(full sorting.)
Proof. Proposition 2.
As in the proof of proposition 1 (b), we assume that agents play either one of the

following ranking decisions: ranking 1 above 2 and 2 above 3 ("1 � 2 � 3") and ranking 2
above 1 and 1 above 3 ("2 � 1 � 3") Furthermore, assume that equilibrium beliefs are such
that q̂p > q̂1 � q̂3 > q̂2: We also assume that the price p is low enough to allow the private
school to attract some students who were assigned to school 3. Yet it is high enough to
deter students assigned to either school 1 or 2 from enrolling in the private school. (We
later check that these assumptions are accomplished in equilibrium.)
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Under these assumptions, we know from the proof of proposition 1 that best ranking
response pro�les are characterized by a threshold t̂ such that types above the threshold
play the ranking decision "1 � 2 � 3" whereas types below play "2 � 1 � 3":
Due to supermodularity of h; we can set a cuto¤ t3 < �t (the tuition fee p will later be

calculated so as to make this type indi¤erent between school 3 and the private school) such
that all types above t3 prefer the private school over school 3 while all types below prefer
school 3 to the private school. We select t3 close to �t; thus for any cut-o¤ type t̂ < 1=2
we have t3 > t̂: The cut-o¤ type never uses the private school option in the event she is
assigned to school 3. The function

~G(t̂; t3) = (p11(t̂)� p12(t̂))(h(q1(t̂); t̂)� h(q2(t̂); t̂))
+(p31(t̂)� p32(t̂))(h(~q3(t̂; t3); t̂)� h(q2(t̂); t̂)��)

has analogous meaning to G(t̂) in the proof of proposition 1 (indeed, G(t̂) = ~G(t̂; �t).)
However, the new explanatory variable t3 lowers the quality of school 3. The distribution
of student types at school 3 is a truncation below t3 of the distribution of student types
at school 3 if no private school existed. That is, ~q3(t̂; t3) < q3(t̂) = ~q3(t̂; �t): Consequently,
~G(t̂; t3) < G(t̂) for all t̂ 2 (t; t1=2):
Now, take the maximum equilibrium cuto¤ in the base model, ~tmax 2 (t; t1=2): Since

G(~tmax) = 0 we have ~G(~tmax; t3) < 0: On the other hand ~G(t1=2; t3) = G(t1=2) > 0 (since
p31(t1=2) = p32(t1=2) = 1=3:) Given that ~G is a continuous function, there must exist
~tp 2 (~tmax; t1=2) such that ~G(~tp; t3) = 0: This is our candidate to equilibrium cuto¤.
We know check that the assumptions are correct in equilibrium. Given that q3(~tp) >

q2(~t
p) (as we checked in the proof of proposition 1), and provided that ~q3 is continuous in

t3; we can set t3 close enough to �t so that ~q3(~tp; t3) > q2(~t
p): This is not even necessary

if ~tmax � t1=3; since in that case ~q3(~tp; t3) > q2(~tp) for every selected t3. q1(~tp) � ~q3(~t
p; t3)

follows from q1(~t
p) � q3(~tp) = ~q3(~t

p; �t) where the latter inequality was shown in the proof
of proposition 1.
That only ranking decisions "1 � 2 � 3" and "2 � 1 � 3" are used in equilibrium is

an immediate consequence of the analogous result we check in proposition 1. In the model
with private school, school 3 has lower peer quality than in the base model with the same
cuto¤ (~q3(t̂; t3) < q3(t̂) for every cuto¤ t̂.)
That the cuto¤ strategy pro�le constitutes a stable equilibrium stems from its cuto¤

nature, as we showed in the proof of proposition 1.
We show that there are prices p that accomplish with the initial assumptions. Fix t3;

which determines ~tp, then

p = h(q(�t�t3); t3) + �p � h(~q3(~tp; t3); t3)
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where q(�t�t3) is the quality of the private school in equilibrium.
We show that p is high enough to deter students who are assigned to either school 1

or 2 from enrolling at the private school. This is immediate both under the ghetto school
assumption and under the limited complementarity assumption with ~tp � t1=3 because
school 2 is strictly preferred to school 3 for all students in these setups. Therefore

h(q(�t�t3); �t) + �p � h(q2(~tp); �t)��
< h(q(�t�t3); �t) + �p � h(~q3(~tp; t3); �t)

and for t3 su¢ ciently close to �t; we have h(q(�t�t3); �t)+�p�h(q2(~tp); �t)�� < p: As for the
remaining case (limited complementarity with ~tp � t1=3;) we �rst notice that no student
�nally assigned to school 2 has a type above ~tp: Then

p = h(q(�t�t3); t3) + �p � h(~q3(~tp; t3); t3)
> h(q(�t�t3); ~t

p) + �p � h(~q3(~tp; t3); ~tp)
> h(q(�t�t3); ~t

p) + �p � h(q2(~tp); �t)��

where the �rst inequality comes from supermodularity of h and the second inequality is
due to ~G(~tp; t3) = 0; which implies h(~q3(~tp; t3); ~tp)� h(q2(~tp); ~tp)�� < 0: Consequently no
student assigned to school 2 chooses to enroll at the private school (by supermodularity of
h; the inequality holds for all t � ~tp:)
Only types above ~tp are assigned to school 1. We check that the highest type �t prefers

school 1 to the private school (that would su¢ ce because 1) the peer quality of the higher
school is higher than that of school 1, and 2) h is supermodular.) Indeed, since q1(~tp) �
~q3(~t

p; t3); we have

h(q(�t�t3); �t) + �p � h(q1(~tp); �t)��
< h(q(�t�t3); �t) + �p � h(~q3(~tp; t3); �t)

and for t3 su¢ ciently close to �t; we have h(q(�t�t3); �t) + �p � h(q1(~tp); �t)�� < p:
We have seen that there is an interval of values t3 2 (t�3; �t) for which all the initial

assumptions hold. We complete the proof by de�ning ��p = 1=3[1 � �3(t�3)]; where �3 is
the distribution of student types at school 3 under the equilibrium where t3 = t�3. For any
capacity �p < �

�
p the result in proposition 2 holds true.

Proof. Proposition 3.
As in the proof of proposition 1 (b), assume that agents play either one of the following

ranking decisions: ranking 1 above 2 and 2 above 3 ("1 � 2 � 3" from now on,) and
ranking 2 above 1 and 1 above 3 ("2 � 1 � 3" hereafter.) Furthermore, assume that
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equilibrium beliefs are such that q̂1 � q̂3 > q̂2: (We later check that these assumptions are
accomplished in equilibrium.)
Let pij denote the probability of enrolling into school i if the student ranks school

j = 1; 2 in �rst position. We know from that preceding proof that pi1 > pi2 for i = 1; 3
and that p22 > p21 in equilibrium. Since the utility loss due to residential misallocation
of families does not depend on their ability types, the di¤erence in expected payo¤s for
the cut-o¤ type between playing a ranking decision "1 � 2 � 3" and playing "1 � 2 � 3"
is increasing in the type t; again as in the aforementioned proof. We can then restrict
attention to cut-o¤ ranking pro�les.
The analysis hereafter assumes that, conditional on a ranking decision, the location

decision is optimal, and prices accommodate so as to preclude excess residential demands.
Consider a case in which the mass of families ranking school 1 �rst exceeds 2/3 and

needs to be located in all three neighborhoods. Residential prices should then make these
individuals indi¤erent among the three neighborhoods, thus neighborhood 2 must be the
cheapest one, since p21 =

1=3��(t̂)
1��(t̂) < p11 = p31 =

1=3

1��(t̂) . Consequently, all those families

who rank school 2 �rst optimally choose to live in neighborhood 2. The cut-o¤ type t̂
without loss of generality lives in neighborhood 2 as well. Then the expected payo¤ of
the cut-o¤ type in case of ranking school 1 �rst minus the expected payo¤ of the cut-
o¤ type in case of ranking school 2 �rst is reduced by an amount (1 � p21)c = 2=3

1��(t̂)c,
linked to the probability of not being assigned to school 2. Residential prices would be
�1 = �3 = (p31 � p21)c = �(t̂)

1��(t̂)c when �2 is normalized to zero.
Consider the case in which both schools 1 and 2 are overdemanded in the �rst round. In

such an event, neither neighborbood 1 nor neighborhood 2 could host the lowest residential
price. If neighborhood 1 were the cheapest, all the mass of types ranking school 1 �rst,
exceeding 1/3, would choose to live in neighborhood 1, leading to excess demand. Same
argument follows for neighborhood 2. Given that neighborhood 3 is the cheapest, no one
ranking school 1 (2) in �rst position would ever optimally reside in neighborhood 2 (1) (a
neighborhood whose school will never admit this student when both schools 1 and 2 are
overdemanded in the �rst round.) So it is without loss of generality that the cut-o¤ type
t̂ (who in equilibrium is indi¤erent between strategies) lives in neighborhood 3. Then the
expected di¤erences in payo¤s for the cut-o¤ type in case of ranking school 1 instead of
school 2 in �rst position is increased by an amount (p31 � p32) c = 1=3 1�2�(t̂)

�(t̂)(1��(t̂))c, linked to
the probabilities of being assigned to the school ranked �rst. Notice that in both cases the
residential prices do not determine the nature of the equilibrium cut-o¤. Residential prices
would be �1 = (p11 � p31)c = �(t̂)�1=3

1��(t̂) c and �2 = (p22 � p32)c =
2=3��(t̂)
�(t̂)

c; after normalizing
�3 to zero.
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Finally, consider the case in which t̂ equals t1=3: If the mass of families playing "1 � 2 �
3" spread locations among all neighborhoods, we have seen that in that case neighborhood
2 would hold the lowest residential prices. But then all those who use "2 � 1 � 3"; with
mass 1/3, would optimally choose to live in neighborhood 2, leading to excess residential
demand in such neighborhood. Suppose now that families playing "1 � 2 � 3" locate on
neighborhoods 1 and 2, so that families playing "2 � 1 � 3" have to occupy neighborhood
3. For that we need �2� �3 � c; to compensate for the misallocation of the latter players.
Moreover, since p11 = 1=2 > p21 = 0 we need �1 � �2 = c=2; to make the former families
indi¤erent between neighborhoods 1 and 2. But then �1 > �3 and since p11 = p31 = 1=2 no
student playing "1 � 2 � 3" would optimally live in neighborhood 1 (being neighborhood
3 a better option.) Using the same reasoning we can also discard that families playing
"1 � 2 � 3" locate on neighborhoods 3 and 2. The only remaining option is that families
playing "1 � 2 � 3" locate on neighborhoods 1 and 3, and hence �1 = �3; while families
who use "2 � 1 � 3" locate in neighborhood 2. For the former group ("1 � 2 � 3") to
avoid living in neighborhood 2 we require �1��2 � c=2: For the latter group ("2 � 1 � 3")
to optimally choose to live in neighborhood 2 we require �1 � �2 � �c:
Pick any �1 � �2 2 [�c; c=2]: If the cuto¤ type chooses to play "1 � 2 � 3" (and

hence to live in either neighborhood 1 or 3), her extra expected payo¤ as compared to
what she obtains when playing "2 � 1 � 3" (and living in neighborhood 2) is increased by
�(�1 � �2) � c=2 (the latter element being c times the probability of misallocation given
ranking decision "1 � 2 � 3"); which belongs to the interval [�c; c=2]. Any e¤ect in this
interval can be supported by market-clearing residential prices.
We construct a (possibly set-valued) function �G(t̂; c) that measures the di¤erence in ex-

pected payo¤s for the cut-o¤type between playing strategy "1 � 2 � 3" (and a correspond-
ing optimal location choice given market clearing prices) and playing strategy "1 � 2 � 3"
(and a corresponding optimal location choice given market clearing prices) as

�G(t̂; c) =

8><>:
G(t̂) + 1=3 1�2�(t̂)

�(t̂)(1��(t̂))c; t̂ 2 (t1=3; t1=2)
[G(t̂)� c;G(t̂) + c=2]; t̂ = t1=3
G(t̂)� 2=3

1��(t̂)c; t̂ 2 (t; t1=3)

where G(t̂) was de�ned in the proof or proposition 2 (b). Notice that �G(t̂; c) is upper-
hemicontinuous. An equilibrium cuto¤ ~tc accomplishes with 0 2 �G(~tc; c):
Consider an equilibrium cuto¤ ~t in the Boston Mechanism without preferences for

nearby schools.
Assume that ~t < t1=3: Then �G(~t; c) < 0: Notice as well that the sign of G(t̂) for t̂ < t1=3 is

the sign of 2(h(q3(t̂); t̂)�h(q2(t̂); t̂))��; which is increasing in t̂ < t1=3 (we know this from
the proof of proposition 1.) Hence G(t1=3) > 0 and we know that G(t1=3) 2 �G(t1=3; c): By
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upper-hemicontinuity of h there must be some ~tc 2 (~t; t1=3] such that 0 2 �G(~tc; c): Now
consider ~t = t1=3: Then 0 = G(t1=3) 2 �G(t1=3; c) thus we set ~tc = t1=3:
Consider the case in which every equilibrium threshold ~t satis�es ~t > t1=3. Since G(t) <

0 and 2(h(q3(t̂); t̂)� h(q2(t̂); t̂))�� is increasing in t̂ < t; we must have G(t1=3) < 0: Now,
since �G(~tc; c) > G(~t) = 0 and G(t1=3) 2 �G(t1=3; c); by upper-hemicontinuity of h there must
be some ~tc 2 [t1=3; ~t) such that 0 2 �G(~tc; c):
Stability of such equilibria is immediate as seen in previous proofs with cuto¤ ranking

pro�les.
We now show that the initial assumptions are correct in equilibrium. Clearly q1 � q3 >

q2 ex post. We skip the proof, for it mimics the analogous proof in proposition 1 (b).
As for alternative strategies: there are two main alternative ranking decisions, "1 � 3 �

2" and "3 � :::": The former is irrelevant when ~tc � t1=3 (it leads to the same assignment
as "1 � 2 � 3":) So in case ~tc � t1=3; we only consider "3 � :::"; leading to sure assignment
to school 3, which is optimally accompanied by living in neighborhood 3 (the cheapest
neighborhood when ~tc > t1=3, and the preferred choice in case ~tc = t1=3 even under the
worst price �3 = c=2:) Since q1 � q3; it is clear that "1 � 2 � 3" is better than "3 � :::"
for all t 2 D provided c < �: Those families who instead play "2 � 1 � 3" prefer it to
"1 � 2 � 3"; which is again preferred to "3 � :::":
We analyze the case ~tc < t1=3: Both "1 � 3 � 2" and "3 � :::" are optimally accom-

panied by living in neighborhood 3. To see that, we �rst discard neighborhood 1 as an
optimal residential choice, since �1 = �3 and being assigned to school 3 is more likely than
being assigned to school 1. Knowing that the probability of entering school 3 is at least
1�p11 = p21+p31 and that �3��2 = (p31�p21)c; living in neighborhood 2 is also discarded
(being assigned to school 2 is impossible under these alternative ranking decisions.) We
then observe that, conditional again on c < �; the ranking decision "1 � 3 � 2" is better
than "3 � :::" for all types. We then compare "1 � 3 � 2" against "1 � 2 � 3": Is such a
case we see that the latter is better option than the former for a t�type family if and only
if h(q3(~tc); t) < h(q2(~tc); t) + � � c: (The �c comes from the fact that under the decision
"1 � 2 � 3"; the individual is indi¤erent among residential locations, hence she chooses
neighborhood 3 for easiness in the comparison: being assigned to school 2 carries then a
misallocation utility loss c:)
Under the ghetto school assumption we have� > h(q3(~tc); �t)�h(q2(~tc); �t) � h(q3(~tc); t)�

h(q2(~t
c); t);8t 2 D (by supermodularity of h:) For c low enough we have h(q3(~tc); t) <

h(q2(~t
c); t) + �� c as desired.

Under the limited complementarity assumption we have h(q3(~tc); �t) � h(q2(~tc); �t) <
2(h(q3(~t

c); ~tc)� h(q2(~tc); ~tc)); and for c low enough we still have h(q3(~tc); �t)� h(q2(~tc); �t) +
c < 2(h(q3(~t

c); ~tc) � h(q2(~tc); ~tc) � c): Now, the equilibrium condition for ~tc < t1=3 is
2(h(q3(~t

c); ~tc) � h(q2(~tc); ~tc) � c) = �: With this an supermodularity of � we obtain

28



h(q3(~t
c); t) < h(q2(~t

c); t) + �� c 8t 2 D as desired.
Proof. Proposition 4.
(a) If sorting between schools 1 and 2 happens, we have q1 > q2 ex post. But under

the correct beliefs, every student prefers school 1 to school 2. Since Deferred Acceptance
is strategy-proof, every student optimally ranks school 1 above school 2. But then, the
distribution of students �nally assigned to school 1 is indistinguishable from that of school
2, contradicting q1 > q2: Same reasoning denies sorting between school 1 (or 2) and school
3.
(b) For � su¢ ciently large, school 3 is the least-preferred one for all students regardless

the peer qualities in all schools. The question is whether to rank school 1 in �rst position
or instead school 2. Again the same argument as in (a) leads to q1 = q2 just after the
assignment has taken place and before families take a decision on enrolling at the private
school. The consistency condition on beliefs imposed in the main text precludes the rise
of peer quality di¤erences between these two schools ex post.
(c) Select c small. There is a cuto¤ value ~tD >t close to t de�ned as h(q(�t�~tD); ~t

D)�
c = h(q

�
2�(~tD)�t�~tD + (1� 2�(~tD))�t�~tD

�
; ~tD): Suppose beliefs are q̂1 = q(�t�~tD) >

q̂3 = q(�) > q̂2 = q
�
2�(~tD)�t�~tD + (1� 2�(~tD))�t�~tD

�
. c is su¢ ciently small so that

h(q̂2; t) + � > h(q̂3; t) for all t 2 D: Assume that families with type t > ~tD report
"1 � 2 � 3", whereas families with type below ~tD report "2 � 1 � 3". The mass of families
reporting "1 � 2 � 3" exceeds 2=3; so they have to spread along all neighborhoods. We
set residential prices �1 = 2=3 �(~tD)

1��(~tD)c > �3 = 1=3 �(~tD)

1��(~tD)c > �2 = 0 so that all families
who report "1 � 2 � 3" are indi¤erent among all possible residential choices (notice that
p11 =

1=3

1��(~tD) ; p21 = 2=3�p11; p31 = 1=3:)Under these circumstances, all families who report
"2 � 1 � 3" optimally choose to leave in neighborhood 2 (p12 = 0; p22 = 2=3; p32 = 1=3
�note that Deferred Acceptance leads to all students having equal chances to end up in
the worst school, regardless the chosen ranking decision.) It is without loss of generality
that we assume a family lives in neighborhood 2. In such a case, type ~tD is indi¤erent
between schools 1 and 2, types above prefer school 1 and types below prefer school 2. By
strategy-proofness, the cuto¤ pro�le with threshold ~tD (types above report "1 � 2 � 3"
and types below report "2 � 1 � 3") constitutes an equilibrium ranking pro�le. It is easy
to see that beliefs are con�rmed ex post and that there is sorting between schools 1 and 2.
Also, it can be readily checked that ~tD converges to t as c converges to 0; leading to limit
equivalent distributions of student types (�) across schools.

Appendix B: The base model with more than 3 schools

Suppose that we have J > 3 equally sized schools and that school J is bad (being
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assigned there entails a utility loss equal to � > 0). Is there an equilibrium with (full)
sorting?

Proposition 5 In BM as in the base model yet with J > 3 equally sized schools and being
school J the only bad school, if � is su¢ ciently large, there only exist stable equilibria with
full sorting between every pair of good schools i; j such that i < j.

Proof. We assume that h is di¤erentiable (ht denotes its partial derivative with respect
to type). The �rst step is to show that with � su¢ ciently large, all schools apart from the
bad one give all their slots in the �rst round of the assignment algorithm in equilibrium.
Suppose not. If a strict subset S � f1; :::; J � 1g of good schools do not give all its slots
in the �rst round, then any student who ranks a school from S in �rst position avoids the
punishment� for sure. Conditional on ranking any school in the complement of S �rst, the
probability of being assigned to the worst school (hence su¤ering the utility loss �) is on
average at least 1

J�#S . Setting � > (J �#S)[h(q(�tjt�t(J�1)=J ); �t)� h(q(�tjt�t1=J ); �t)], some
types who were not ranking a school from S in �rst position would be strictly better-o¤ ex
ante by doing so. Hence we did not have a best-response pro�le, a contradiction.
In that context, strategies can be simpli�ed to "what good school to rank �rst": a

total of J � 1 relevant strategies. The second step is to show how, when the second round
assigns slots only to the worst school, an equilibrium with beliefs q̂1 > q̂2 > ::: > q̂J�1 is
characterized by cuto¤s in the ranking pro�le R. Let pi and pj denote the probabilities
of being accepted at schools i and j respectively, conditional on ranking respectively i or
j �rst. Let also qi > qj: Conditional on ranking i �rst, the expected payo¤ for a t-type
household is pih(qi; t) + (1 � pi)[h(qJ ; t) � �]. An analogous expected payo¤ form arises
when ranking j �rst. A t-type household prefers to rank i �rst over ranking j �rst if
h(qi;t)�h(qJ ;t)+�
h(qj ;t)�h(qJ ;t)+� >

pj
pi
. The left-hand side ratio is increasing in t if � is high enough: its �rst

derivative is positive when

ht(qi; t)� ht(qJ ; t) > [ht(qj; t)� ht(qJ ; t)]
h(qi; t)� h(qJ ; t) + �
h(qj; t)� h(qJ ; t) + �

The fraction on the right-hand side is arbitrarily close to 1 as � becomes su¢ ciently
large, and ht(qi; t) > ht(qj; t) by supermodularity of h. Then for � su¢ ciently large
the inequality above holds regardless the probabilities pi and pj. Since

h(qi;t)�h(qJ ;t)+�
h(qj ;t)�h(qJ ;t)+� is

increasing, there exists a threshold t̂ij such that types above it prefer to rank i �rst over
ranking j �rst while types below prefer the opposite. Moreover, for any triple of good
schools i; j; k such that qi > qj > qk, we have t̂ij > t̂jk (otherwise no student would rank
school j �rst, contradicting the fact that every good school gives all of its slots in the
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�rst round). Therefore we have proven that a series of thresholds �t � t̂01 > t̂12 > t̂23 >
::: > t̂J�2;J�1 > t̂J�1;J � t (where types in (t̂j;j+1; t̂j�1;j) rank school j �rst) characterize a
best-response pro�le that produces q1 > q2 > ::: > qJ�1 ex post.
Existence: Note that pj =

1=3

�(t̂j�1;j)��(t̂j;j+1)
when best responses are characterized by

cuto¤s as depicted above. As an equilibrium feature we must have pj < pj+1 for every
good school j (lower peer qualities must be compensated with higher admission chances.)
The suggested equilibrium would satisfy, for every j = 1; ::; J � 2; noting and using the
notation T � (t̂01; t̂12; t̂23; :::; t̂J�2;J�1; t̂J�1;J) :

0 = Gj;j+1(T )
� [�(t̂j;j+1)� �(t̂j+1;j+2)]h(qj(t̂j;j+1; t̂j�1;j); t̂j;j+1)

�[�(t̂j�1;j)� �(t̂j;j+1)]h(qj+1(t̂j;j+1; t̂j+1;j+2); t̂j;j+1)
+[�(t̂j�1;j)� 2�(t̂j;j+1) + �(t̂j+1;j+2)][h(qJ(T ); t̂j;j+1)��]

where qj(t̂j;j+1; t̂j�1;j) � q(�tjt̂j;j+1�t�t̂j�1;j) > qj+1(t̂j;j+1; t̂j+1;j+2) � q(�tjt̂j+1;j+2�t�t̂j;j+1),
and qJ(T ) � q(�J jT ), where �J jT is a convex combination of all preceding �tjt̂j;j+1�t�t̂j�1;j ;
j = 1; :::; J � 1:
Such an equilibrium exists because (1) lim

�(t̂j;j+1)!�(t̂j+1;j+2)+1=J
Gj;j+1(T ) < 0 for � high

enough and (2) lim
�(t̂j;j+1)!

�(t̂j�1;j)+�(t̂j+1;j+2)
2

Gj;j+1(T ) > 0. Since each function Gj;j+1(T ) is

continuous we can make use of the intermediate value theorem to show existence. Its cuto¤
nature guarantees stability.
Finally, we show that an equilibrium with no sorting between good schools i and j

(implying qi = qj) is not stable. Such an equilibrium belief cannot be con�rmed ex post
through a threshold-like strategy pro�le (where only types above some threshold t̂ij can
rank one of the schools �rst and only types below can rank the other school �rst.) Yet for
any sequence (qni ; q

n
j ) ! (qi; qj) with qni 6= qnj we have that the best-response pro�le Rn is

characterized by a threshold t̂nij such that only types above the threshold can rank one of
the schools �rst and only types below can rank the other school �rst. Then the limit of the
sequence Rn cannot converge to the initial equilibrium strategies supporting qi = qj.

Appendix C: The type-represents-income model

Assume that the marginal utility of current consumption is decreasing and that there is
no complementarity between school quality and type. Then, it is clear that no segregation
can arise in the absence of private schools. However, when private schools exist, segregation
arises due to the di¤ering willingness to pay for the outside option across types. Here we
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adopt the following utility function:

V (q;�; p; t) = u(t� p) + h1(q) + h2(t) + �

where u is strictly increasing and strictly concave and h = h1 + h2 is not supermodular,
and we prove the following result.

Proposition 6 Suppose that types represent incomes. Fix any cuto¤ t3 < t1=2 separating
those who do not make use of the private school from those who do in case they are assigned
to school 3. Then, for � su¢ ciently high, there is a capacity of the private school �p such
that there is a stable equilibrium and a ful�lling capacity price p (such that t3 is indi¤erent
between school 3 and the private school) in which there is full sorting between school 1 and
school 2, full sorting between school 1 and school 3, and partial sorting between school 2
and school 3.

Segregation emerges in this scenario if all households who rank school 1 �rst have the
back up of the private school, that is, if they have enough income to avoid ending up
in the ghetto school if rejected from school 1. Put di¤erently, segregation arises when
those who cannot a¤ord the private school misrepresent their preferences to play a safer
strategy. The single-crossing condition then holds: because higher income agents have
lower marginal utility of income, their utility cost of paying tuition fees p is smaller. Hence
their relative valuation of the private school (and so of strategy 1) is larger even if their
kids do not bene�t more from school quality than others.29

Proof. Fix a threshold t3 2 (t; t1=2) such that, by assumption, types below the threshold
optimally stay in school 3 in case they are assigned there, and types above choose instead
to pay the tuition fee p (that will be calculated later) for the private school. Conditional
on t3 for every t̂ 2 (t3; t1=2) we study the cuto¤ ranking strategy pro�le in which types
above the cuto¤ t̂ adopt the ranking decision "1 � 2 � 3" whereas families with lower type
declare "2 � 1 � 3" instead constitutes a (stable) equilibrium strategy pro�le.
We assume (we later �x parameter � to make this assumption correct) that none of the

students assigned to either school 1 or 2 enrolls at the private school. Then the two cuto¤s
t3 and t̂ drive all ex-post peer qualities: q1(t̂) = q(�t�t̂); q2(t̂) = q(�t�t̂); q3(t̂) = q(�t�t3);
and

qp(t̂) = q

0@ 2=3� �(t̂)
2=3� �(t̂) + [�(t̂)� �(t3)]�(t̂)�1=3�(t̂)

�t�t̂ +
[�(t̂)� �(t3)]�(t̂)�1=3�(t̂)

2=3� �(t̂) + [�(t̂)� �(t3)]�(t̂)�1=3�(t̂)

�t3�t�t̂

1A
29Otherwise, the relative valuation of strategies 1 and 2 does not change with type and the single-crossing

condition only holds weakly.
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: It can be readily checked that q1(t̂) > qp(t̂) > q2(t̂) > q3(t̂): Obviously beliefs will
correspond to ex post qualities in equilibrium. They also drive public school assignment
probabilities pij conditional on the school 1 that is ranked in �rst position (either school 1
or 2): p11(t̂) =

1=3

1��(t̂)
Cuto¤ strategy pro�le. Given the cuto¤ t̂, the tuition fee is determined by the equation

h1(qp(t̂))+�p�h1(q3(t̂)) = u(t3)�u(t3�p(t̂)): For types t > t3; being assigned to school 3
is followed by enrollment in the private school. Then the payo¤ from the ranking decision
"1 � 2 � 3" is p11(t̂)(h1(q1(t̂))+�+u(t))+(1�p11(t̂))(h1(qp(t̂))+�p+u(t�p(t̂))): The payo¤
from "2 � 1 � 3" is p22(t̂)(h1(q2(t̂))+�+u(t))+ (1� p22(t̂))(h1(qp(t̂))+�p+u(t� p(t̂))):
The di¤erence between payo¤s is increasing in t (recall that for cuto¤s in (t1=3; t1=2) we
have p22(t̂) > p11(t̂) and that u is concave,) and for the cuto¤ type this di¤erence is

Ĝ(t̂) = p11(t̂)(h1(q1(t̂)) + �� h1(qp(t̂))��p)

�p22(t̂)(h1(q2(t̂)) + �� h1(qp(t̂))��p)

�(p22(t̂)� p11(t̂))(u(t̂)� u(t̂� p(t̂)))

In the lower limit of the cuto¤ interval, we show that Ĝ(t3) < 0 for � large enough.
Provided that this type is indi¤erent between school 3 and the private school, we have
Ĝ(t3) = (h1(q1(t3))� h1(q2(t3))��)=2 (after noticing that p22(t3) = 1 and p11(t3) = 1=2,
and that q2(t3) = q3(t3)) Then there is �(t3) such that for all � > �(t3) we obtain the
desired result. We can also easily see that Ĝ(t1=2) > 0; based on p22(t1=2)�p11(t1=2) = 2=3:
By continuity of Ĝ and the intermediate value theorem, for each � > �(t3) there is at
least one cuto¤ ~t(�; t3) such that Ĝ(~t(�; t3)) = 0:
It is clear that provided � � �p all students prefer school 1 to the private school for

any tuition fee (school 1 is free and enjoys higher peer quality.) We check that all students
prefer school 2 to the private school, that is h1(qp(~t(�; t3)))� h1(q2(~t(�; t3))) +�p �� <
u(~t(�; t3)) � u(~t(�; t3) � p(~t(�; t3))); for � large enough. This comes from the fact that
all students prefer school 1 to the private school under � � �p and from Ĝ(~t(�; t3)) = 0:
Thus for our �xed t3; for any � > maxf�(t3);�pg; there is a cuto¤ ~t(�; t3) and a private
school tuition fee p = p(~t(�; t3)) so that our proposed cuto¤ strategy pro�le (types above
the cuto¤ declare "1 � 2 � 3"; types below decide "2 � 1 � 3" instead) constitutes
an equilibrium strategy pro�le under beliefs q1(~t(�; t3)) > qp(~t(�; t3)) > q2(~t(�; t3)) >
q3(~t(�; t3)): Capacity �p is set to accommodate all students who are assigned to school 3
with types above t3:
Stability is proven given the cuto¤ nature of the ranking decision pro�le. Sorting rela-

tions as depicted in the proposition are apparent from previous paragraphs (�1FOSD�pFOSD�2FOSD�3).
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Appendix D:Two-dimensional characteristics space

A two-dimensional type space is useful, since it allows us to simultaneously consider
ability di¤erences (denoted with t) and also income (denoted by y). This subsection extends
some results in considering a model with two income levels, H and L, where H > L.
Conditional on the income level y, the ability distribution is � (tjy). We assume that
there is positive correlation between income and ability in such a way that � (�jH) FOSD
� (�jL). A mass � 2 (0; 1=2) of households has income H and the rest have income L.
In order to talk about sorting of abilities across schools, we analyze each subpopulation
(high- and low-income households separately). The de�nitions in the paper can be used for
each subpopulation. �j (tjy) would denote the distribution of ability types among those
attending school j conditional on having income y. Accordingly, the ex-post school quality
is qj = q(� � �j (�jH) + (1� �) � �j (�jL)). Utility is now de�ned as V (q;�; p; t; y) = u(y �
p) + h(q; t) + �; where u is increasing and concave and h is increasing and supermodular.
We further assume that u(t) � u(t � p) tends to 0 as t grows large. We assume in this
subsection that h(q; t) is invariant in q (the lowest type does not bene�t from peer qualities.)
Finally, we assume that � > �p: We analyze cuto¤ equilibria characterized by thresholds
~tH and ~tL for rich and poor families respectively (ability types above the threshold declare
"1 � 2 > 3"; types below use the ranking "2 � 1 > 3".)
Private school and no priorities
We want to explore the interesting case where the private school is overly expensive for

poor families but a¤ordable for richer families. In an extreme illustrative case we could
assume tH3 = t: This could be done by properly increasing H so that u(H�p)+�p � u(H)
(recall that a t�type household does not care about school quality di¤erences, and that
u(H) � u(H � p) is decreasing in H:) But then, all rich households face less risk than
poorer households since not being admitted in a good public school has as a consequence
being enrolled in the private school, as compared to the bad school. Consequently, rich
households would tend to bet for school 1 rather than the safer option of school 2. In
equilibrium we would have ~tH < ~tL < tL3 .
Key here is that in such equilibrium the cuto¤ type among rich families makes use of

the private school in case the student gets assigned to school 3, an option that is not used by
the cuto¤ type among poor families. The baseline model predicted an "ability elitization"
of school 1 (top ability types get more chances at school 1), as compared to a scenario with
no private school. When we introduce income di¤erences and non quasilinear utilities,
there is also an "income elitization" e¤ect.

Proposition 7 Fix L and let � � h(q(�t); �t)� h(q(�tjt�t1=3); �t)]. If H is high enough, then
there is a capacity �p associated to such H under which there exists a stable equilibrium
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characterized by cuto¤s ~tpH < ~t
p
L such that households with income y 2 fL;Hg rank school

1 �rst if their ability types are above ~tpy, and they rank school 2 in �rst position otherwise.

Proof. We restrict attention to cuto¤ strategy pro�les as depicted in the proposition, and
we assume peer qualities satisfy minfqp; q1g � q3 > q2 ex post (a condition that will hold
in equilibrium.) Fix tL3 >

1=2��
1�� so that we make sure that the equilibrium cut-o¤ type

~tpL for income L does not choose the private school against school 3 (~t
p
L >

1=2��
1�� would

imply that more families are top-ranking school 2 than top-ranking school 1, impossible in
equilibrium.) Setting H high enough, we make sure that u(H � p) +�p � u(H) and then
tH3 = t: In both income types, it can be checked that single crossing conditions apply: if an
ability type chooses to rank school 1 �rst, so does a higher ability type; if an ability type
chooses to rank school 2 �rst, so does a lower ability type. This allows us to search for
income-dependent cut-o¤ types ~tpH and ~t

p
L meeting G

p
H(~t

p
H ; ~t

p
L) = G

p
L(~t

p
H ; ~t

p
L) = 0 where

Gpy(t̂H ; t̂L) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

h(q1(t̂H ; t̂L); t̂y)� 2h(q2(t̂H ; t̂L); t̂y)��
+Iy=Lh(q

p
3(t̂H ; t̂L); t̂y)

+Iy=L[h(qp(t̂H ; t̂L); t̂y) + u(H � p)� u(H) + �p]
if ��(t̂H jH) + (1� �)�(t̂LjL) < 1=3
��(t̂H jH)+(1��)�(t̂LjL)

1�2[��(t̂H jH)+(1��)�(t̂LjL)]
h(q1(t̂H ; t̂L); t̂y)�

1�[��(t̂H jH)+(1��)�(t̂LjL)]
1�2[��(t̂H jH)+(1��)�(t̂LjL)]

h(q2(t̂H ; t̂L); t̂y)��
+Iy=Lh(q3(t̂H ; t̂L); t̂y)

+Iy=L[h(qp(t̂H ; t̂L); t̂y) + u(H � p)� u(H) + �p]
if ��(t̂H jH) + (1� �)�(t̂LjL) � 1=3

where Iy=L is the usual indicator function (1 if true, 0 if false), and qj(t̂H ; t̂H)�s is j0s
school ex-post peer quality the cuto¤s are t̂H and t̂H . qp(t̂H ; t̂L) is the quality of the private
school with these cuto¤s. These qualities also depend on the �xed value tH3 .
In case there exists a cut-o¤ equilibrium, it cannot be the case that ~tpH � ~t

p
L since we

would have GpH(~t
p
H ; ~t

p
L) > G

p
L(~t

p
H ; ~t

p
L): (Since h(qp(~t

p
H ; ~t

p
L); ~t

p
H) + u(H � p) � u(H) + �p �

h(qp(~t
p
H ; ~t

p
L); ~t

p
H) > h(q3(~t

p
H ; ~t

p
L); ~t

p
H) � h(q3(~t

p
H ; ~t

p
L); ~t

p
L):) We then show that an equilibrium

with ~tpH < ~tpL exists. We �rst reduce our �eld of candidate cuto¤s to those satisfying
��
�
t̂H jH

�
+ (1 � �)�

�
t̂LjL

�
< 1=2 (this condition is a natural equilibrium condition

saying that the mass of applicants ranking school 2 �rst must be lower than the mass of
students ranking school 1 is �rst position). Conditional on that we obtain GpH(t; �) < 0 for
any ~tpL and G

p
L(�; t) < 0 for any t̂H (immediate from the fact that a t�type student does not

care about peer quality.) Also, notice that in the limit of the aforementioned condition,
i.e. ��(t̂H jH) + (1 � �)�(t̂LjL) = 1=2; if t̂H > t then GpH(t̂H ; t̂L) = GpL(t̂H ; t̂L) = 1.
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Select one such pair (t̂H ; t̂L) with ��(t̂H jH) + (1 � �)�(t̂LjL) = 1=2. Continuity of G�s
almost everywhere and the intermediate value theorem imply that in the open segment
with extremes (t; t) and (t̂H ; t̂L) there are two points (tH ; f(tH)) and (g(tL); tL) such that
GpL(tH ; f(tH)) = G

p
H(g(tL); tL) = 0. This de�nes two functions f and g which can be picked

to be continuous almost everywhere due to the continuity of G�s almost everywhere. We
show that f and g intersect at some point (~tpH ; ~t

p
L), a cut-o¤ equilibrium. There is only

one discontinuity of GpH around (t; t
m
L ) where (1 � �)�(tmL jL) = 1=2, thus lim

tL!tmL
g(tL) = t.

Notice that f(t) < tmL since G
p
L(t; t

m
L ) =1. So when t̂H ! t (hence we approach a �at line

from the origin (t; t)); g lies at the right from f . If we go to the 45 degree line, it is easy
to observe that g lies at the left from f on that line, since GpH(t̂; t̂) > G

p
L(t̂; t̂) 8t < t(1=2).

Continuity of f and g everywhere except for (t; tmL ) ensures the existence of an intersection
between f and g at some point (~tpH ; ~t

p
L). G

p
H(~t

p
H ; ~t

p
L) = G

p
L(~t

p
H ; ~t

p
L) = 0 by de�nitions of f

and g, therefore we have a cut-o¤ equilibrium below the 45 degree line (~tpH < ~t
p
L).

Appendix E: An alternative ghetto e¤ect
We consider a di¤erent modeling of the human capital loss produced by being assigned

to a bad school. In the main model, the human capital loss is constant over all types.
Here, we consider a reduction in quality: if the mean type across the students assigned to
school 3 is q3, then the school quality is �q3, where � 2 (0; 1) is a "degradation" factor that
applies only to school 3. So the bad school e¤ect a¤ects school peer quality.
We assume that t > 0 and that h(�; t) is de�ned on (0; �t] for every t, with lim

q!0
h(q; t) =

�1 and h(q(t); t) � 0: Going to a su¢ ciently degraded bad school produces an enormous
human capital loss. Under these assumptions, one can see that the single-crossing con-
ditions ensuring that the Boston Mechanism without priorities generates an equilibrium
with sorting hold here, if the degradation factor is low enough.

Proposition 8 If � is su¢ ciently small, there is a stable equilibrium with full sorting
between schools 1 and 2.

Proof. The proof arises immediately because h(�q3; t) becomes negative and big in ab-
solute terms. We assume beliefs q̂1 > q̂2 that will be con�rmed in equilibrium. For � low
enough every student has school 3 as its least-preferred option in spite of the beliefs about
q3. Thus we restrict attention to strategies "1 � 2 � 3" and "2 � 1 � 3". No equilib-
rium in which school 2 is underdemanded in the �rst round (i.e. the mass of households
submitting "2 � 1 � 3" is not higher than 1/3) can arise. For strategy "1 � 2 � 3"
gives negative expected payo¤ to everyone for � low enough whereas strategy "2 � 1 � 3"
ensures positive payo¤ to everyone (school 3 is avoided with certainty), regardless the type.
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The former strategy cannot be a best response. Hence we focus on strategy pro�les where
the mass of families playing "2 � 1 � 3" lies strictly between 1=3 and 1=2.
Strategy "1 � 2 � 3" is better than "2 � 1 � 3" for a t� type family if h(q̂1;t)�h(�q̂3;t)

h(q̂2;t)�h(�q̂3;t) >
p22
p11

(pjj is the probability of being accepted at school j if j is ranked in �rst position.)
The left-hand side of the inequality is increasing in t if ht(q̂1; t) � ht(�q̂3; t) > [ht(q̂2; t) �
ht(�q̂3; t)]

h(q̂1;t)�h(�q̂3;t)
h(q̂2;t)�h(�q̂3;t) : This inequality holds true provided � is low enough, which makes

h(q̂1;t)�h(�q̂3;t)
h(q̂2;t)�h(�q̂3;t) arbitrarily close to 1. Since the LHS is increasing, the best response pro�le is

characterized by a cuto¤ t̂ (types above the cuto¤ play "1 � 2 � 3" and types below play
"2 � 1 � 3":) Then we consider the function, for t̂ 2 [t1=3; t1=2]

�G(t̂) =
1=3

1� �(t̂)
(h(q1(t̂); t̂)� h(�q3(t̂); t̂))�

1=3

�(t̂)
(h(q2(t̂); t̂)� h(�q3(t̂); t̂))

where qj(t̂) is as de�ned in the proof of proposition 1. �G(t̂) measures the payo¤ di¤erence
for the cuto¤ type between playing "1 � 2 � 3" and playing "2 � 1 � 3": �G is continuous.
Moreover �G(t1=3) < 0 since �h(�q3(t̂); t̂) is very big, and �G(t1=2) < 0 since q1(t̂) > q2(t̂):
Therefore there is ~t� 2 (t1=3; t1=2) accomplishing with �G(~t�) < 0. This characterizes our
equilibrium strategy pro�le. The equilibrium is stable due to its cuto¤ nature. Moreover,
this equilibrium shows full sorting between schools 1 and 2 since only types below ~t� go to
school 2 whereas only types above attend school 1.
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