
 

 Can quantum decision theory explain 
the Ellsberg paradox? 

Mengxing Wei, University of Leicester 

Ali al-Nowaihi, University of Leicester 

Sanjit Dhami, University of Leicester 

 

 

 

 

Working Paper No. 17/07 

 

 

 

School of Business 
Economics Division 



Can quantum decision theory explain the
Ellsberg paradox?∗

Mengxing Wei† Ali al-Nowaihi‡ Sanjit Dhami§

27 February 2017

Abstract

We report the results of an experiment we performed to test the
matching probabilities for the Ellsberg paradox predicted by the quan-
tum decision model of al-Nowaihi and Dhami (2016). We find that the
theoretical predictions of that model are in conformity with our ex-
perimental results. This supports the thesis that violations of classical
(Kolmogorov) probability theory may not be due to irrational behav-
iour but, rather, due to inadequacy of classical probability theory for
the description of human behaviour. Unlike earlier quantum models
of the Ellsberg paradox, our model makes essential use of quantum
probability. It is also more parsimonious than earlier models.
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Highlights

• We test a simple quantum decision model of the Ellsberg paradox and
find its predictions in agreement with the evidence.

• We show that the Ellsberg paradox reemerges if we combine the behav-
ioral assumption of this paper with classical (non-quantum) probability
theory. Hence, this paper makes essential use of quantum probability.

• We suggest that, far from being paradoxical, the behaviour of subjects
in Ellsberg experiments is consistent with rational behaviour1. Rather,
we suggest that the Ellsberg paradox illustrates the inadequacy of clas-
sical (Kolmogorov) probability theory for describing human behaviour.

1 Introduction

Situations of ambiguity are pervasive in decision making. The most successful
approach is probably that of source dependence (Abdellaoui et al., 2011;
Kothiyal et al., 2014; Dimmock et al., 2015). In this paper, we investigate
the potential of quantum decision theory (QDT) to provide an alternative
explanation. We concentrate on the canonical example of ambiguity, namely,
the Ellsberg paradox (Keynes, 1921; Ellsberg 1961, 2001).2 The Ellsberg
paradox has proved to be a particularly useful vehicle for testing models of
ambiguity.
Consider the following version of the Ellsberg experiment due to Dimmock

et al. (2015). This involves two urns: The known urn (K) contains kn balls
of n different colors and k balls of each color. The unknown urn (U) also
contains kn balls of the same n colors as urn K but in unknown proportions.
The subject is presented with the following bet. Suppose l of the n colors are
chosen to be winning colors (hence, urn K contains kl balls of the winning
colors). The subject wins a prize if a randomly drawn ball from an urn is
of the winning color. Which of the two urns (K or U) should the subject
choose?

1In the sense that subjects are not committing logical errors. Of course, humans do
commit logical errors. However, our point is that this is not needed to explain the Ellsberg
paradox.

2See the Introduction of al-Nowaihi and Dhami (2016) for a review of quantum ap-
proaches to the Ellsberg paradox and section 3 of that paper for a review of classical
(non-quantum) approaches to ambiguity.
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By the heuristic of insuffi cient reason (or equal a-priori probabilities)3, the
probability of drawing a ball of a winning color out of urn K is p = kl

kn
= l

n
.

Although experimental subjects do not know the proportions of the different
colors in urn U , they have no reason to favour one proportion over another.
Hence, by the heuristic of insuffi cient reason, they should assign the same
probability, p = l

n
, to drawing a ball of a winning color from urn U . It

follows that they should have no reason to prefer K to U or U to K on
probabilistic grounds. They should be ambiguity neutral. However, what is
observed in Dimmock et al. (2015) is the following. Subjects prefer U for
low p but K for high p, i.e., they are ambiguity seeking for low probabilities
but ambiguity averse for high probabilities.4 We shall call this behavior the
Ellsberg paradox.5

Consider subject i. Keep the contents of urn U fixed, but construct a new
known urn, Ki, with a known number,Mi, of balls of the winning colors such
that subject i is indifferent between urnsKi and U . Thenmi (p) =

Mi

kn
= Mi

k(l/p)

is thematching probability of p for subject i. Note that the definition ofmi (p)
is operational and does not depend on the particular decision theory assumed
for the subjects. Let there be N subjects and let m (p) = 1

N

∑N
i=1mi (p) be

the average of matching probabilities across all subjects. In their empiri-
cal exercise, Dimmock et al. (2015) report m (0.1) = 0.22, m (0.5) = 0.40,
m (0.9) = 0.69. Thus, on average, subjects are ambiguity seeking for low
probabilities (m (0.1) > 0.1) but ambiguity averse for medium and high prob-
abilities (m (0.5) < 0.5, m (0.9) < 0.9).
A simple quantum model of the Ellsberg paradox was introduced by al-

Nowaihi and Dhami (2016). Their predicted matching probabilities, based on
their quantum model, are m (0.1) = 0.171, m (0.5) = 0.417, m (0.9) = 0.695,
which are close to those empirically observed by Dimmock et al. (2015).
However, the mechanism used by Dimmock et al. (2015) is not incentive
compatible. Specifically, Dimmock et al. (2015) constructed urn Ki as fol-

3Insuffi cient reason or equal a-priori probabilities is now commonly referred to as in-
difference. However, indifference has a well-established alternative meaning in economics.
To avoid confusion, we shall use the older terminology.

4This terminology is in analogy to situations of risk, where a decision maker is risk
averse (risk neutral, risk loving) if the certainty equivalent of a lottery is less (equal to,
greater) than the expected value.

5Traditionally, the Ellsberg paradox is used to refer to ambiguity aversion only. Our
usage is in conformity with Ellsberg’s original usage (see Ellsberg, 2001) and recent schol-
arship (see Dimmock, et al., 2015).
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lows. The ratio of the colors (whatever they are) in U were kept fixed. How-
ever, the ratio in Ki was varied until subject i declared indifference between
Ki and U . It turns out that in this method of eliciting matching probabilities
subjects have the incentive to declare a preference for U over Ki, even when
the reverse is true. However, Dimmock et al. (2015) found no evidence in
their data that this occurred.6

In this paper, we report the results of an experiment we performed using
a new data set and the incentive compatible mechanism of Fox and Tversky
(1995, study 2).7 Our observed matching probabilities are in agreement with
those predicted by al-Nowaihi and Dhami (2016).
If subjects do behave in Ellsberg experiments as predicted by quantum

probability, then such behaviour is neither irrational nor paradoxical. Rather,
it shows that classical (non-quantum) probability theory may be inadequate.
In quantum decision theory (QDT), unlike all other decision theories,

events are not distributive, and this is the main difference between the two.
Thus, in QDT the event “X and (Y or Z )”need not be equivalent to the
event “(X and Y ) or (X and Z )”. On the other hand, in all other decision
theories, these two events are equivalent. This non-distributive nature of
QDT is the key to its success in explaining paradoxes of behaviour that
other decision theories find diffi cult to explain. For example, order effects,
the Linda paradox, the disjunction fallacy and the conjunction fallacy.8 As
a result of the non-distributive nature of QDT, the law of total probability
does not generally hold. Instead, we use the Feynman rules and the law of
reciprocity.9

We refer the reader to al-Nowaihi and Dhami (2016, section 4) for an intro-
duction to the quantum concepts and tools needed for this paper. For an ex-
cellent book-length introduction to quantum decision theory, see Busemeyer
and Bruza (2012). For papers examining the limits of standard quantum
theory when applied to cognitive psychology, see Khrennikov et al. (2014)

6Dimmock et al. (2015, p26): “In chained questions, where answers to some questions
determine subsequent questions, subjects may answer strategically (Harrison, 1986). In
our experiment, this is unlikely. First, our subjects are less sophisticated than students.
Second, it would primarily have happened in the end (only after discovery), at the 0.9
probability event, where it would increase ambiguity seeking. However, here we found
strong ambiguity aversion”.

7However, the Fox and Tversky (1995) method requires the elicitation of the subjects’
utility functions (this is not required by the Dimmock et al., 2015, mechanism).

8See Busemeyer and Bruza (2012). In particular, sections 1.2, 4.1-4.3, 5.2 and 10.2.3.
9See Busemeyer and Bruza (2012), pp. 5, 13, 39.
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and Basieva and Khrennikov (2015).
The rest of the paper is organized as follows. Section 2 gives the main styl-

ized facts from Ellsberg experiments. Section 3 gives the main behavioral as-
sumption of al-Nowaihi and Dhami (2016).10 Proposition 1 of Section 4 shows
that the Ellsberg paradox reemerges when this behavioral assumption is com-
bined with classical (Kolmogorov) probability theory. Hence al-Nowaihi and
Dhami (2016) makes essential use of quantum probability theory. Proposi-
tion 2 of Section 4 gives the main theoretical predictions of al-Nowaihi and
Dhami (2016). Section 5 gives our experimental design. Sections 6 and 7 give
our experimental results. Section 8 summarizes and concludes. Appendix A
gives our experimental Instructions. Appendix B gives our post-experimental
questionnaire. The proofs of our main theoretical result, Propositions 1 and
2, are given in Appendix C.

2 Stylized facts

The following are the main stylized facts of Ellsberg experiments.

1. Insensitivity: Subjects are ambiguity averse for medium and high prob-
abilities but ambiguity seeking for low probabilities; see Dimmock et
al. (2015) for a recent survey of the literature as well as their own
experimental results.

2. Exchangeability: Subjects are indifferent between colors. Subjects are
indifferent between being asked to choose a color first or an urn first
(Abdellaoui et al., 2011).11

10This is important. No mathematical structure on its own will yield empirically testable
predictions. For example, in Newtonian mechanics we need Newton’s second law of motion
and law of gravity, initial conditions and simplifying assumptions. Calculus on its own will
not yield empirically testable predictions. In quantum mechanics we need, for example,
the momentum operator to be px = −i h2π

∂
∂x and we need to specify a Hamiltonian for the

system. Hilbert space on its own is insuffi cient.
11As an example, suppose that there are 100 balls each in urn K and urn U . There are

two colors in Urn K, black and white (so 50 balls of each color). In contrast, in Urn U ,
the two colors (black and white) are in unknown proportion. The subject is told that if
a ball of the color of his choice is drawn from an urn of his choice, then he wins a prize
$z. We may now proceed in one of two alternative ways. (1) First ask the subject to
choose a color, then an urn. (2) First ask the subject to choose an urn, then a color.
Exchangeability requires the answers in the two methods to be identical.
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3. No error : Suppose that a subject prefers one urn (K or U) over the
other. It is then explained to the subject that, according to classical
probability theory, she should have been indifferent. She is offered the
chance to revise her assessment. Subjects usually decline to change
their assessment (Curley et al., 1986).

4. Salience: Ambiguity aversion is stronger when the two urns are pre-
sented together than when they are presented separately (Fox and Tver-
sky, 1995; Chow and Sarin, 2001, 2002).12

5. Anonymity (or fear of negative evaluation): Ambiguity aversion does
not occur if subjects are assured that their choice between urn U and
urn K is anonymous (Curley et al., 1986; Trautmann et al., 2008).

In this paper, we show that the model of al-Nowaihi and Dhami (2016)
is in accord with stylized fact 1, insensitivity, both qualitatively and quanti-
tatively. It is also in accord with stylized facts 2 (exchangeability) and 3 (No
error).
It may also be in accord with stylized facts 4 (salience) and 5 (anonymity).

Suppose l of the n colors are winning colors. If a subject is presented with the
two urns separately, or if the choice is made anonymously, then, maybe, that
subject simply uses the heuristic of insuffi cient reason to conclude that the
probability of drawing a winning ball is l

n
, whether the subject is choosing

from urn K or urn U . However, if the subject is presented with urns K and
U together, and the choice is not under anonymity, then the subject may
feel compelled to reason it through. However, the detailed development and
testing of this is beyond the scope of this paper.

12Even more strikingly, Fox and Tversky (1995) found that for probability 1
2 , subjects

exhibited ambiguity aversion with the value of urn U remaining approximately the same
but urn K revalued upwards. Chow and Sarin (2001, 2002) did not find this result, but
did find that ambiguity aversion is more pronounced when subjects are presented with K
and U together.
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3 Behavioral assumption: Construction of urn
U in the mind of a subject

The framing of information is vital in choices. Subjects often simplify com-
plex problems before solving them (Dhami, 2016)13. For Ellsberg experi-
ments, subjects are typically told that urn U contains the same number of
balls of the same colors as urn K, but in unknown proportions. However,
the term “unknown proportions”is not defined any further, which begs the
question of how subjects perceive this term. Pulford and Colman (2008)
provide strong evidence that this is too cognitively challenging for subjects
and that subjects do not consider all possible distributions of balls in urn U .
Recall, from the Introduction, that the known urn (K) contains kn balls

of n different colors and k balls of each color. The unknown urn (U) also
contains kn balls of the same n colors as urn K but in unknown proportions.
The subject is asked to select one of the urns (K or U). A ball is drawn at
random from the urn chosen by the subject. Suppose that l of the n colors
are the winning colors (hence, urn K contains kl balls of the winning colors).
al-Nowaihi and Dhami (2016) conjecture that subjects model “unknown

proportions”in a simple way, as described below.

1. We replace colors by numerals (this is justified by stylized fact 2).
Furthermore, we consider only two numerals: 1 and 2. The known urn
K contains kn balls, kl of which are labeled “1”and kn−kl are labeled
“2”. We shall adopt the heuristic of insuffi cient reason. Thus, ball 1 is
drawn from K with probability p = kl

kn
= l

n
and ball 2 is drawn from

K with probability 1− p = kn−kl
kn

= n−l
n
.14

2. Point 1 allows us to consider urn K as simply having two balls—one of
the balls, the winning ball labeled “1”, is drawn with probability p = l

n
.

The only other remaining ball, labeled “2”, is drawn with probability
1 − p = n−l

n
. To compare with the evidence reported in Dimmock et

al. (2015), we are interested in p = 0.1, 0.5 and 0.9. Likewise urn U
will also have two balls labeled 1 and 2 but the proportions will be
unknown, as the following construction shows.

13Examples and analysis are provided throughout Dhami (2016); see, for instance, Part
7.
14This transformation is only for analytic convenience. In our experiments subjects are

always presented with colored balls whose ratios match the probabilities.
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3. A subject is presented with two urns, K and U . Urn K has two balls,
labeled 1 and 2, while urn U is initially empty. We conjecture that in
the mind of a subject urn U is constructed as follows. In two successive
and independent rounds, a ball is drawn at random from urn K and
placed in urn U without revealing the labels, 1 or 2, to the subject. At
the end of each of the two rounds, the ball that was drawn from urn
K is replaced with an identically labeled ball. At the end of the two
rounds, urn U contains two balls. The possibilities are that both could
be labeled 1, both could be labeled 2, or one could be labeled 1 and
the other labeled 2.

4. A ball is drawn at random from whichever urn the subject chooses (K
or U). The subject wins a monetary prize v > 0 if ball 1 is drawn but
wins nothing if ball 2 is drawn.

5. Since we have two balls and two states, we work in a 4-dimensional
space.

Our behavioral assumption about how a subject mentally constructs urn
U , outlined above (in particular, point 3), will play an essential role in ex-
plaining the Ellsberg paradox. The question then arises whether this behav-
ioral assumption can also explain the Ellsberg paradox when combined with
classical (Kolmogorov) probability theory. Proposition 1, below, establishes
that this is not the case (see section 9.3 for the proof).

Proposition 1 : If the probability of drawing ball 1 from the known urn K
is p, then the classical probability of drawing ball 1 from the unknown urn U
is also p.

Thus, even with our behavioral assumption, the classical treatment gives
the same probability, p, of winning whether a subject chooses urn K or urn
U . Hence, if a subject strictly prefers K to U (or U to K), then this subject
is violating classical theory.
This is in contrast to other quantum explanations of the Ellsberg paradox

(see the Introduction of al-Nowaihi and Dhami, 2016, for a review). These
other explanations introduce auxiliary assumptions15 that when combined
with classical (non-quantum) probability theory can also explain the Ellsberg
paradox.16

15All theories need auxiliary assumptions to produce empirically testable predictions.
16Busemeyer and Bruza (2012, section 9.1.2) conclude “In short, quantum models of
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4 A quantum decision model of the Ellsberg
paradox

We now give the result of the quantum model of al-Nowaihi and Dhami
(2016), section 5.

Proposition 2 (al-Nowaihi and Dhami, 2016): If the probability of drawing
ball 1 from the known urn K is p, then the quantum probability of drawing
ball 1 from the unknown urn U is

Q (p) =
5p3 − 8p2 + 4p

2− p . (1)

For the proof, see section 9.3, below. Suppose the contents of the unknown
urn U are kept fixed but a new known urn, Ki, is constructed so that the
probability of drawing ball 1 from urn Ki is now Q (p). In section 4.1, below,
we shall prove that subject i should be indifferent between U and Ki, i.e.,
Q (p) is the matching probability of p.
From (1), we get

Q (0.1) = 0.17105, Q (0.5) = 0.41667, Q (0.9) = 0.69545, (2)

in close agreement with the evidence given by Dimmock et al. (2015) and
our own evidence given later in this paper.
The following results are easily established.

Q (0) = 0, Q (1) = 1.

Q (p) +Q (1− p) < 1 for all 0 < p < 1.

lim
p→0

Q (p) = 0, lim
p→0

Q (p)

p
= 2, lim

p→1

Q (p)

p
= 1.

decision making can accommodate the Allais and Ellsberg paradoxes. But so can non-
additive weighted utility models, and so these paradoxes do not point to any unique
advantage for the quantum model”. Furthermore, there is considerable arbitrariness in the
choice of weights in weighted utility models. Hence they introduce flexibility at the cost of
lower predictive power. In our model, we replace weights with quantum probabilities which
are parameter-free. Thus, our explanation of the Ellsberg paradox is more parsimonious
than all the other explanations.
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p < 0.4⇒ Q (p) > p, p = 0.4⇒ Q (p) = p, p > 0.4⇒ Q (p) < p. (3)

Note that (1) is parameter free. By contrast, the probably most successful
approach to ambiguity, source dependent theory (Abdellaoui et al., 2011;
Kothiyal et al., 2014; Dimmock et al., 2015), requires the specification of
two probability weighting functions, wK (p) and wU (p), one for urn K and
one for urn U . These require the estimation of at least two parameters.
For example, using Prelec (1998) probability weighting functions, wK (p) =
e−βK(− ln p)

αK and wU (p) = e−βU (− ln p)
αU , requires estimating two parameters:

α = lnβU−lnβK
αK

, β = αU
αK
.17

4.1 Quantum probabilities are matching probabilities

If p is the probability of drawing ball 1 from the known urn K, then Q (p),
given by (1), is the quantum probability of drawing ball 1 from the unknown
urn U . Let ui be the utility function of a subject, i, participating in the
Ellsberg experiment as perceived by the subject (recall section 3). Normalize
ui so that ui (0) = 0. The subject wins the sum of money, v > 0, if ball 1 is
drawn from the unknown urn U , but zero if ball 2 is drawn from that same
urn. Hence, her projective expected utility (in the sense of La Mura, 2009)
is

Q (p)ui (v) . (4)

Now construct a new known urn Ki from which ball 1 is drawn with proba-
bility Q (p). Her projective expected utility is

Q (p)ui (v) . (5)

Hence, from (4) and (5), Q (p) is the matching probability for p. Thus,
subject i is ambiguity averse, neutral or seeking according to Q (p) being
less than, equal to or greater than p.
From (3), it then follows that:

p < 0.4⇒ Q (p) > p : ambiguity seeking,

p = 0.4⇒ Q (p) = p : ambiguity neutral,

p > 0.4⇒ Q (p) < p : ambiguity averse.

17Let ui (v) be the utility of subject i, normalized so that ui (0) = 0. From the de-
finition of matching probabilities, we have wK (m (p))ui (v) = wU (p)ui (v). This gives
ln (− lnm (p)) = α+ β ln (− ln p).
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Thus, our model is in agreement with stylized fact 1 (insensitivity).

5 Experimental design

Our subjects were 295 undergraduate students from Qingdao Agricultural
University in China. They attended 8 sessions; no one participated in more
than one session. The experimental instructions are given in the Appendix
A.
Our treatment was a paper-based classroom experiment. There were

three tasks, Task 1, Task 2 and Task 3, that were, respectively, designed
to implement the three cases p = 0.5, p = 0.1, p = 0.9 (see (2)). Each
task required two tables to be completed. The materials for each task were
handed out at the beginning of that task and collected before the next task
started.
In each task, there is one known urn (Box K) and one unknown urn (Box

U). The composition of the 100 colored balls of k different colors in Box
K is known; varying this composition gives us the three cases p = 0.5, 0.1,
0.9. Box U contains 100 colored balls of the same colors as in Box K, but in
unknown proportions. The composition of Box U is randomly decided at the
end of the experiment in the following way. Each ball is equally likely to be
drawn. The random draw follows the uniform distribution. For example, in
Task 2, there are in total 10 different colors. A priori, each color is equally
likely to be drawn. Thus, at each stage of the construction of Box U , each
color has a probability 0.1 of being the color of the next ball to be placed in
Box U . There can be from 0 to 100 balls of any particular color but subject
to the restriction that the total number of balls in Box U is 100 balls. The
prize for drawing a winning-color ball is 10 Yuan whether it is drawn from
Box K or Box U . We now explain the three tasks.

1. In Task 1, there are 50 purple balls and 50 yellow balls in Box K, and
purple is the winning color (p = 0.5).18 The decision maker is shown
two tables. In Table 1, the choices are to express a preference to receive
a monetary amount x for sure, express indifference between x or betting
that a purple ball will be drawn from Box K, or express a preference
for betting that a purple ball will be drawn from BoxK. The monetary
amount is varied from x = 0 to x = 10 and subjects have to state a

18These are the same colors as chosen by Dimmock et al. (2015).
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choice in each case.19 Box U has 100 balls that are either purple or
yellow but the proportions are unknown; as explained above. Table 2
replaces Box K in Table 1 with Box U but it is otherwise identical. At
the end of the experiment, one of the choices from Task 1 is picked at
random to be played for real.

2. In Task 2, there are 10 different colors (including purple) in Box K,
and purple is the winning color (p = 0.1). Box U has 100 balls of the
same 10 colors but in unknown proportions. The remaining procedure
is as described in Task 1.

3. In Task 3, there are 10 different colors (including purple) in Box K,
and the winning color is any ball that is not purple (p = 0.9). Box U
has 100 balls of the same 10 colors but in unknown proportions. The
remaining procedure is as described in Task 1.

6 Experimental results

Consider a sample of N subjects. Choose a probability, p, for drawing a
winning ball from urn K. For each of these N subjects, we elicit their
matching probability. Find the matching probability,mi (p), for each subject,
i, i = 1, 2, ..., N , the sample average, m (p) = 1

N

∑N
i=1mi (p) and the sample

variance, s2 = 1
N

∑N
i=1 (mi (p)−m (p))2. The t-statistic is t = m(p)−Q(p)

s/
√
N

,

where Q (p) is the quantum prediction.
It might not be surprising to see much unsystematic variability in the

matching probabilities, mi (p), across the sample.20 However, if our quan-
tum model is correct, then, for large N , this unsystematic variability should
be largely cancelled out in aggregate. Hence, we would expect t to be ap-
proximately normally distributed with mean 0 and variance 1.21 For ease of
reference, we give the critical values for each of the conventional significance
levels (10%, 5%, 1%) for a two-tailed test for the standard normal distribu-
tion in Table 1, below.

19The experiments were conducted in China, so the monetary amount is in units of
Chinese Yuan.
20Suffi cient conditions for this are that mi (p) = m (p) + εi, where E (εi) = 0, i =

1, 2, ..., N and εi and εj are identically and independently for i 6= j.
21See, for example, Chapter 5 of Wooldridge (2015).
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Table 1: Significance levels and the corresponding critical values.
Significance level Critical value

10% ±1.64
5% ±1.96
1% ±2.58

We collected in total 19470 (= 11 × 2 × 3 × 295) data points.22 There
were 259, 262 and 263 consistent decision makers for the p = 0.1, p = 0.5
and p = 0.9 cases, respectively23. We estimated the cash equivalents for the
decisions in the two tables in Appendix A in the following way. If there
is one unique tick in the “Indifference”column in the table, then the cash
equivalent is the corresponding amount of money s/he receives for sure (x);
On the other hand, if there is no tick in the “Indifference” column, then
the cash equivalent is estimated by the midpoint between the lowest amount
of money that is preferred to the uncertain bet, and the highest amount of
money for which the bet was preferred; we are following the methodology in
study 2 of Fox and Tversky (1995).
To find the matching probability with the cash equivalents that we ob-

tained, it is necessary to assume a form for the utility function.24 We use the
power function25 for the utility of player i,

ui(x) = xσi , x ≥ 0, σi > 0. (6)

Let v be the monetary payment to a subject if a winning ball is drawn.
Let p be the probability of selecting a winning ball from the known urn (K).

22This indicates 11 data points (for the 11 rows of Tables 1 and 2; see Appendix A); 2
Tables corresponding to the known and unknown urns (Tables 1 and 2 in Appendix A); 3
tasks (Task 1, Task 2, and Task 3); and 295 subjects in the experiment.
23We discarded the inconsistent decision makers from the analysis as follows. We dis-

carded data with the following two patterns: firstly, choosing more than once in the
“Indifference”column in the table; secondly, choosing back and forth in any two or three
columns. For the first case, we cannot identify the unique cash equivalent; while, it seems
that the subjects with the second behavioral pattern don’t show a clear ambiguity attitude.
This left us with over 250 subjects.
24This is necessary in the methodology in study 2 of Fox and Tversky (1995); which is

incentive compatible. It is not necessary in the methodology of Dimmock et al. (2015).
However, the latter is not incentive compatible.
25The power form of the utility function is a popular choice (Kahneman and Tversky,

2000). For an axiomatization, see al-Nowaihi et al. (2008).
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Let mi (p) be the matching probability, for subject i, of selecting a winning
ball from the unknown urn (U). Additionally, the monetary valuation of the
known urn (K) to subject i is denoted by viK , while the monetary valuation
of the unknown urn (U) to subject i is denoted by viU . viK and viU are
respectively the cash equivalents in the corresponding tables (recall the cash
equivalents explained above).
Firstly, for the known urn (K), we have

(viK)
σi = p(v)σi . (7)

Solve it for σi, to get

σi =
− ln p

ln v − ln viK
, (8)

where all quantities on the right hand side are known. Therefore, σi can
be calculated using known quantities. Specifically, v = 10 Yuan; p = 0.1,
p = 0.5 or p = 0.9 in the three cases; viK is the cash equivalent that we
determine from the experiment.26

Similarly, for the unknown urn (U), we have

(viU)
σi = mi (p) (v)

σi . (9)

Solve for mi (p), to get

mi (p) = (
viU
v
)σi . (10)

Substitute from (8) into (10) to get

mi (p) = (
viU
v
)

− ln p
ln v−ln viK . (11)

Since all quantities on the right hand side of (11) are known, the match-
ing probability can be found (recall viU is the cash equivalent). Following
this approach, we find the mean matching probabilities, m (p), and standard
deviations, which are listed in Table 2, below. The fifth column of Table 2
shows the theoretical predictions for the three matching probabilities, Q(0.1),
Q(0.5), and Q(0.9), respectively.27

26One subject chose viK = v = 10, for p = 0.9. Since the denominator in (8) would then
be zero for these values, we discarded this observation.
27The theoretically predicted values are found by substituting the values of p, 0.1, 0.5,

and 0.9, respectively, into (1).
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Table 2: t-test for the means.

Matching
probability

Mean
Standard
deviation

Sample
size

Quantum
probability Q

t-stat

m (0.1) 0.1864 0.1708 259 0.1711 1.4437
m (0.5) 0.4038 0.1416 262 0.4167 −1.4758
m (0.9) 0.7258 0.2056 263 0.6955 2.3906

Table 2, below, shows that the theoretically predicted matching proba-
bilities are quite close to the mean values we obtained from our experiments.

Our null and alternative hypotheses are: H0 : m (p) = Q (p) and H1 :
m (p) 6= Q (p). From Tables 1 and 2, 1.4758, 1.4437, 2.3906 are all less than
2.58. Thus, our experimental results fail to reject our quantum model at the
1% level of significance. Since m (0.1) > 0.1, m (0.5) < 0.5, m (0.9) < 0.9,
we find ambiguity seeking for the low probability but ambiguity aversion for
the medium and high probabilities.

7 Demographic results

In their answers to question 8 on the post-experimental questionnaire (Ap-
pendix B), only 4 out of the 295 subjects reported that color affected their
decisions. In their answers to question 6, almost none reported prior expe-
rience with similar experiments in the past. In their answers to question 4,
Degree of study, all students simply gave “undergraduate”, thus giving us
no useful information. From the answers to question 3 (Field of study), we
obtained the data for economics/non-economics. Not surprisingly, we found
high colinearity between year of study and age, so we have not reported the
latter.

7.1 Mann-Whitney U tests

We used two-sided Mann-Whitney U test (nonparametric test) to examine
if the demographic characteristics in Appendix B affected the subjects’re-
ported matching probabilities for p = 0.1, p = 0.5 and p = 0.9 in our
treatment. The results are shown in Table 3. At the 1% level, no signif-
icant differences were found between any of the two groups (male/female;
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Table 3: Mann-Whitney U test results.
Group Matching probability MWU p-value Sig diff

Male vs. Female
m (0.1)
m (0.5)
m (0.9)

0.9533
0.2825
0.5205

No
No
No

Econ vs. Non-econ
m (0.1)
m (0.5)
m (0.9)

0.8941
0.7529
0.1230

No
No
No

Stats vs. Non-stats
m (0.1)
m (0.5)
m (0.9)

0.0496
0.2053
0.7413

No*
No
No

Year 1 vs. Year 2
m (0.1)
m (0.5)
m (0.9)

0.2944
0.3981
0.0546

No
No
No**

Year 2 vs. Year 3
m (0.1)
m (0.5)
m (0.9)

0.6826
0.8746
0.0245

No
No
No*

Year 1 vs. Year 3
m (0.1)
m (0.5)
m (0.9)

0.0998
0.2693
0.4442

No**
No
No

economics/non-economics students; statistics/non-statistics students).
Note: In Table 3, “No” denotes no significant difference at 1%; “No∗”

denotes difference significant at 5% but not at 1%; “No∗∗”denotes difference
significant at 10% but not at 1% nor 5%.

7.2 t-tests

For each demographic group, we also performed a t-test to see if the average
reported matching probability,m (p), differed significantly from the predicted
value of the quantum probability, Q (p). We report the results in Table 4,
below. The only group that showed a significant difference was the group of
students with prior training in statistics.
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Table 4: t-test results.

Group
Matching
probability

Mean
Standard
deviation

Sample
size

t-stat
Sig
diff

Econ
m (0.1)
m (0.5)
m (0.9)

0.1786
0.4080
0.7603

0.1296
0.1706
0.2315

23
23
20

0.2789
−0.2449
1.2531

No
No
No

Non-econ
m (0.1)
m (0.5)
m (0.9)

0.1871
0.4126
0.7227

0.1429
0.1712
0.2036

236
239
243

1.7275
−0.3662
2.0881

No
No
No

Male
m (0.1)
m (0.5)
m (0.9)

0.1829
0.4239
0.7319

0.1362
0.1738
0.2046

116
120
124

0.9371
0.4557
1.9838

No
No
No

Female
m (0.1)
m (0.5)
m (0.9)

0.1892
0.4023
0.7199

0.1462
0.1682
0.2071

143
142
139

1.4846
−1.0181
1.3919

No
No
No

Year 1
m (0.1)
m (0.5)
m (0.9)

0.1773
0.4204
0.7195

0.1465
0.1729
0.2136

171
173
172

0.5579
0.2838
1.4763

No
No
No

Year 2
m (0.1)
m (0.5)
m (0.9)

0.1817
0.4070
0.7820

0.0939
0.1357
0.1799

27
29
28

0.5893
−0.3837
2.5457

No
No
No

Year 3
m (0.1)
m (0.5)
m (0.9)

0.2150
0.3909
0.7134

0.1576
0.1816
0.1930

60
59
62

2.1601
−1.0900
0.7323

No
No
No

Stat
m (0.1)
m (0.5)
m (0.9)

0.2076
0.4043
0.7398

0.1555
0.1653
0.1710

126
128
130

2.638
−0.847
2.957

Yes (1%)
No

Yes (1%)

Non-stat
m (0.1)
m (0.5)
m (0.9)

0.1663
0.4198
0.7117

0.1243
0.1762
0.2344

133
134
133

−0.441
0.206
0.800

No
No
No
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Table 5: Comparison with classical probabilities.
Matching
probability

Mean
Standard
deviation

Sample
size

Classical
probability

t-stat
Sig
diff

m (0.1) 0.2076 0.1555 126 0.1 7.7672 Yes
m (0.5) 0.4043 0.1653 128 0.5 −6.55 Yes
m (0.9) 0.7398 0.1710 130 0.9 −10.682 Yes

To keep things in perspective, we report in Table 5 how well the classical
prediction fairs against the evidence.

Since the absolute values of the t-statistics in Table 5 are large relative to
the critical values (Table 1), it follows that the classical prediction is strongly
rejected for students trained in statistics.

8 Summary and conclusions

In this paper, we reported the results of our tests of the matching probabili-
ties predicted by the quantum model of al-Nowaihi and Dhami (2016). These
predicted matching probabilities agreed with those we observed (section 6).
According to our Mann-Whitney U-tests, none of the demographic character-
istics were significant. The only demographic characteristic we found to be
significant according to our t-tests was a prior training in statistics (section
7). However, even for these students, the quantum prediction is far closer to
the evidence than the classical prediction.
We showed (Proposition 1) that the Ellsberg paradox reemerges if we com-

bine the behavioral assumption of this paper with classical (non-quantum)
probability theory. Hence, unlike earlier quantum models, this paper makes
essential use of quantum probability.
Our derivation is parameter free, recall (1). Thus our model is more par-

simonious than any of the alternatives. Our model is in accord with stylized
facts 1 (insensitivity), 2 (exchangeability) and 3 (no error), see section 2.
At the end of section 2, we suggested It may also be in accord with stylized
facts 4 (salience) and 5 (anonymity); however, this could be a topic for future
research.
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9 Appendices

9.1 Appendix A: Experimental Instruction (transla-
tion from Chinese instruction)

General information on the experiment
You are now participating in an economic experiment. If you read the

following explanations carefully, you may be able to earn some money de-
pending on your decisions. You will receive 5 Yuan for participation. This
is irrespective of your decisions in the experiment. During the experiment
you are not allowed to communicate with other participants in any way. If
you have questions, please raise your hand, and the experimenter will come
to your desk. The experiment will be carried out only once.
This experiment is paper based. there are three tasks: Task 1, Task 2

and Task 3. In each task, there are two boxes- Box K and Box U , and each
box contains 100 colored balls. The composition of the balls is known for
Box K but unknown for Box U . After you complete a task, the experimenter
will collect the materials for that task and you will receive the materials for
the next task.
Task 1:
There are 50 purple balls and 50 yellow balls in Box K. For each of the

eleven rows in Table 1, tick exactly one of the following boxes: “Receive x
Yuan for sure”, “Indifferent”or “Play Box K”.
Box U contains 100 balls (purple or yellow) but in unknown proportions.

Thus Box U can contain any number of purple balls from 0 to 100 and any
number of yellow balls from 0 to 100 provided the sum of balls (purple plus
yellow) is 100. The composition of Box U will be randomly decided at the
end of the experiment. For each of the eleven rows in Table 2, tick exactly
one of the following boxes: “Receive x Yuan for sure”, “Indifferent”or “Play
Box U”.
In each table, if you believe that you are indifferent between the choice in

the left column and the right column, you may tick the box under the middle
column “Indifferent”.
At the end of the experiment, one of the eleven rows of Table 1 or one

of the eleven rows of Table 2 will be selected at random and played for real
money. In Table 1, you will receive x Yuan for sure if you have ticked the
box under “Receive x Yuan for sure”or, if you have ticked the box under
“Play Box K”, you will win 10 Yuan if a purple ball is drawn from Box K
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(otherwise you win nothing). In Table 2, you will receive x Yuan for sure
if you have ticked the box under “Receive x Yuan for sure”or, if you have
ticked the box under “Play Box U”you will win 10 Yuan if a purple ball is
drawn from Box U (otherwise you win nothing). In each table, if you have
ticked “Indifferent”in the randomly selected row, then one of the left or right
cells in this selected row will be randomly chosen to play for real.

Table 1
Receive x Yuan for sure Indifferent Play Box K

x = 10

x = 9

x = 8

x = 7

x = 6

x = 5

x = 4

x = 3

x = 2

x = 1

x = 0

Table 2
Receive x Yuan for sure Indifferent Play Box U

x = 10

x = 9

x = 8

x = 7

x = 6

x = 5

x = 4

x = 3

x = 2

x = 1

x = 0
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After you complete Task 1, the experimenter will collect the materials for
Task 1 and you will receive the materials for Task 2.
Task 2:
There are 100 balls of 10 different colors (including purple) in Box K.

There are exactly 10 balls of each color. For each of the eleven rows in
Table 1, tick exactly one of the following boxes: “Receive x Yuan for sure”,
“Indifferent”or “Play Box K”.
Box U contains 100 balls of the same colors as in Box K but in unknown

proportions. Thus, Box U could contain any number of purple balls from 0 to
100. And similarly for each of the other 9 colors (provided the sum of balls
of all colors is 100). The composition of Box U will be randomly decided
at the end of the experiment. For each of the eleven rows in Table 2, tick
exactly one of the following boxes: “Receive x Yuan for sure”, “Indifferent”
or “Play Box U”.
In each table, if you believe that you are indifferent between the choice in

the left column and the right column, you may tick the box under the middle
column “Indifferent”.
At the end of the experiment, one of the eleven rows of Table 1 or one

of the eleven rows of Table 2 will be selected at random and played for real
money. In Table 1, you will receive x Yuan for sure if you have ticked the
box under “Receive x Yuan for sure”. However, if you have ticked “Play
Box K”, then you shall win 10 Yuan if a purple ball is drawn from Box K
(otherwise you win nothing). In Table 2, you will receive x Yuan for sure
if you have ticked the box “Receive x Yuan for sure”. However, if you have
ticked the box “Play Box U”then you win 10 Yuan if a purple ball is drawn
from Box U (otherwise you win nothing). In each table, suppose that you
ticked “Indifferent”in the randomly selected row, then one of the left or right
cells in this selected row will be randomly chosen to play for real.
After you complete Task 2, the experimenter will collect the materials for

Task 2 and you will receive the materials for Task 3.
Task 3:
As in task 2, there are 100 balls in Box K of 10 different colors (including

purple). There are exactly 10 balls of each color. For each of the eleven rows
in Table 1, tick exactly one of the following boxes: The box “Receive x Yuan
for sure”, “Indifferent”or “Play Box K”.
As with task 2, Box U contains 100 balls of the same colors as in Box

K but in unknown proportions. For each of the eleven rows in Table 2,
tick exactly one of the following boxes: The box “Receive x Yuan for sure”,
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“Indifferent”or “Play Box U”.
In each table, if you believe that you are indifferent between the choice in

the left column and the right column, you may tick the box under the middle
column “Indifferent”.
At the end of the experiment, one of the eleven rows of Table 1 or one

of the eleven rows of Table 2 will be selected at random and played for real
money. In Table 1, you will receive x Yuan for sure if you tick the box
under “Receive x Yuan for sure”. However, now if you have ticked “Play
Box K”, then you shall win 10 Yuan if a non-purple ball is drawn from Box
K (otherwise you win nothing). In Table 2, you will receive x Yuan for sure
if you tick the box “Receive x Yuan for sure”. However, if you have ticked
the box “Play Box U”then you win 10 Yuan if a non-purple ball is drawn
from Box U (otherwise you win nothing). In each table, suppose that you
tick “Indifferent”in the randomly selected row, then one of the left or right
cells in this selected row will be randomly chosen to play for real.
After you have completed Task 3, the experimenter will collect the ma-

terials for Task 3 and the experiment will terminate.

9.2 Appendix B: Post-experimental Questionnaire

1. Age: ____ years old

2. Gender: (female/male)

3. Field of study: ______

4. Degree of study: ______

5. Year of study: ______

6. Have you participated in similar experiments in the past? (Yes/No)

7. Did you have statistics course(s) before? (Yes/No)

8. Does your preference of some particular color(s) affect your decisions?

A. No. B. Yes. Please specify how your preference of some particular
color(s) affected your decisions below.
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9.3 Appendix C

This appendix goes beyond al-Nowaihi and Dhami (2016) in two respects.
First, we here give a proof of Proposition 1. Second, the role played by the
law of reciprocity was only implicit in al-Nowaihi and Dhami (2016). Here
we make it explicit.
Proposition 1 serves two purposes. First, it highlights the role played

by the law of total probability. In general, the law of total probability, see
(13) below, is not valid in quantum probability theory.28 Instead, we use the
Feynman’s rules29 and the law of reciprocity30. Second, Proposition 1 shows
that our behavioral assumption, on its own, is not suffi cient to explain the
Ellsberg paradox; quantum probability is needed (recall the discussion at the
end of section 3, above)
See al-Nowaihi and Dhami (2016, section 4) for the quantum foundations

necessary for this appendix. See Busemeyer and Bruza (2012), chapter 2, pp.
28-98, for a more comprehensive account. In our case, working in the Hilbert
space C4 gives the same results as working in R4, as can be verified by direct
calculation. Hence, for simplicity, we shall work in the Hilbert space R4.
Recall that the state of a quantum system is given by normalized vector, s,
in Hilbert space, i.e., s†s =(s†) s = 1, where s† is the conjugate transpose of
s (in our case, simply the transpose of s, since we are working in R4).

9.3.1 States of urn U

In our experiments (as is usual in Ellsberg experiments), subjects were told
that urn U contains the same number of balls of the same colors as urn K,
but in unknown proportions. However, the term “unknown proportions” is
not defined any further in the instructions to subjects in the experiments.
Therefore, we need to conjecture how subjects may view urn U . Our conjec-
ture is described in the construction of urn U in section 3, in which each of
the two urns contains two balls labeled 1 and 2. Using this construction, we
may define the following states that are based on the outcomes arising from
this construction:

1. s1 is the state where ball 1 is drawn in each of the two rounds (each
with probability p).

28See Busemeyer and Bruza (2012), chapter 1, p. 5.
29See Busemeyer and Bruza (2012), chapter 1, p13.
30See Busemeyer and Bruza (2012), chapter 2, p. 39.
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2. s2 is the state where ball 1 is drawn in round one (probability p) then
ball 2 is drawn in round two (probability 1− p).

3. s3 is the state where ball 2 is drawn in round one (probability 1 − p)
then ball 1 is drawn in round two (probability p).

4. s4 is the state where ball 2 is drawn in each of the two rounds (each
with probability 1− p).

urn U contains two balls labeled 1 if it is in state s1. It contains one
ball labeled 1 and the other labeled 2 if it is either in state s2 or in state s3.
In state s4 both balls are labeled 2. We represent these states in R4 by the
orthonormal basis:

s1 =


1
0
0
0

 , s2 =

0
1
0
0

 , s3 =

0
0
1
0

 , s4 =

0
0
0
1

 .
Let s give the initial state of urn U (unknown composition). Then Born’s

rule leads to:

s = ps1 +
√
p (1− p)s2 +

√
p (1− p)s3 + (1− p) s4, (12)

where there is a probability p2 that ball 1 is drawn in each round (state s1),
a probability p (1− p) that ball 1 is drawn in round 1 then ball 2 is drawn
in round 2 (state s2), a probability p (1− p) that ball 2 is drawn in round 1
then ball 1 is drawn in round 2 (state s3) and, finally, a probability (1− p)2
that ball 2 is drawn in each round (state s4).
Let the event that ball 1 is drawn from urn U be denoted by t. We

now calculate the probability of event t under the classical and the quantum
treatments.

9.3.2 Classical (Kolmogorov) treatment (Proof of Proposition 1)

From points 1-4 of section 9.3.1, we see that starting from the initial state
s, to arrive at the state t, where ball 1 is drawn, we must follow one of the
following three paths:

1. s→ s1 → t,
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2. s→ s2 → t,

3. s→ s3 → t.

By the law of total probability, we then have:

P (t) = P (t|s1)P (s1) + P (t|s2)P (s2) + P (t|s3)P (s3) . (13)

From points 1-4 of section 9.3.1, we see that P (t|s1) = 1, P (s1) = p2,
P (t|s2) = 1

2
, P (s2) = p (1− p), P (t|s3) = 1

2
, P (s3) = (1− p) p. Hence,

from (13), we get:
P (t) = p. (14)

Hence, if the probability of drawing ball 1 from the known urn K is p,
then the classical probability of drawing ball 1 from the unknown urn U is
also p. This establishes Proposition 1.

9.3.3 Quantum treatment

In general, the law of total probability (13) is not valid in quantum probability
theory. Instead, we use the Feynman’s rules and the law of reciprocity.

Reciprocity Let t be the state where ball 1 is drawn from U . We wish to
calculate the probability, P (s→ t), of the transition s→ t. By the quantum
law of reciprocity, P (s→ t) = P (t→ s), both being equal to (s†t)2.31 But
P (t→ s) is the probability of the state of U conditional on drawing ball 1
from U . Let w be this state. To find w, we first project s onto the subspace
spanned by {s1, s2, s3}, then normalize. This gives

w =

√
p

2− ps1 +
√
1− p
2− ps2 +

√
1− p
2− ps3. (15)

Feynman’s rules To arrive at the state, w, the state of urn U conditional
on ball 1 being drawn, we must follow one of the three paths:

1. s→ s1 → w,

2. s→ s2 → w.
31Recall we are working in a real Hilbert space. For a complex Hilbert space, we would

have P (s→ t) = P (t→ s) = (s†t) (s†t)∗, where (s†t)∗ is the complex conjugate of s†t.
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3. s→ s3 → w.

Using Feynman’s first rule (single path), A (s→ si → w)
= A (s→ si)A (si → w), the relevant transition amplitudes are:

A (s→ s1) = s†s1 = p, A (s1 → w) = s1†w =
√

p
2−p , A (s→ s1 → w) =√

p3

2−p .

A (s→ s2) = s†s2 =
√
p (1− p), A (s2 → w) = s2†w =

√
1−p
2−p , A (s→ s2 → w)

= (1− p)
√

p
2−p .

A (s→ s3) = s†s3 =
√
p (1− p), A (s3 → w) = s3†w =

√
1−p
2−p , A (s→ s3 → w)

= (1− p)
√

p
2−p .

We shall treat the paths s→ s2 → w and s→ s3 → w as indistinguish-
able from each other but both distinguishable from path s→ s1 → w. Our
argument for this is as follows. The path s→ s1 → w results in urn U
containing two balls labeled 1. This is clearly distinguishable from paths
s→ s2 → w and s→ s3 → w, each of which result in urn U containing one
ball labeled 1 and one ball labeled 2. From examining urn U , it is impossible
to determine whether this arose by selecting ball 1 first (path s→ s2 → w),
then ball 2 (path s→s3 → w), or the other way round.
We apply Feynman’s second rule (multiple indistinguishable paths) to find

the amplitude of the transition s → w, via s2 or via s3. We add the ampli-
tudes of these two paths. Thus, A (s→ w), via s2 or s3 is A (s→ s2 → w)+

A (s→ s3 → w) = 2 (1− p)
√

p
2−p . The probability of this transition is(

2 (1− p)
√

p
2−p

)2
= 4p(1−p)2

2−p . The probability of the transition s→ s1 → w

is
(√

p3

2−p

)2
= p3

2−p . We apply Feynman’s third rule (multiple distinguishable

paths) to get the total probability of the transition s→ w, via all paths. We
add the two probabilities. This gives P (s→ w) = p3

2−p+
4p(1−p)2
2−p = 5p3−8p2+4p

2−p .

Quantum probability Recall that s is the initial state of urn U , t is the
state in which ball 1 is drawn and w is the state of urn U conditional on ball
1 having been drawn. We wish to calculate the probability, P (s→ t), of the
transition s→ t. By the quantum law of reciprocity, P (s→ t) = P (t→ s).
But P (t→ s) is the probability of the state of U conditional on drawing ball
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1 from U . We have already calculated this to be 5p3−8p2+4p
2−p .

Thus, if the probability of drawing ball 1 from the known urn K is p,
then the quantum probability of drawing ball 1 from the unknown urn U is

Q (p) =
5p3 − 8p2 + 4p

2− p .

This completes the proof of Proposition 2.
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