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Abstract

Discrete-time ARMA processes can be placed in a one-to-one correspondence with
a set of continuous-time processes that are bounded in frequency by the Nyquist
value of π radians per sample period. It is well known that, if data are sampled
from a continuous process of which the maximum frequency exceeds the Nyquist
value, then there will be a problem of aliasing. However, if the sampling is too rapid,
then other problems will arise that may cause the ARMA estimates to be severely
biased. The paper reveals the nature of these problems and it shows how they may
be overcome.

Key words: ARMA Modelling, Stochastic Differential Equations,
Frequency-Limited Stochastic Processes, Oversampling

1 Introduction

Modern digital communications depend on data sampled at regular inter-
vals from continuously varying signals. The so-called sampling theorem defines
the circumstances in which the continuous trajectory of the signal can be re-
covered from the discrete data. Although this crucial theorem is commonly
attributed to Nyquist (1924, 1928) and to Shannon (1949), there are others
who can reasonably lay claim to its discovery, as Luke (1999) has observed.

The sampling theorem indicates that, if at least two observations are made
in the time that it takes the signal component of highest frequency to complete
a single cycle, then a continuous signal can be reconstructed perfectly from
the sampled sequence. In effect, the theorem poses a limit to the frequencies
that can be captured by the sampled data. The limit is the so-called Nyquist
frequency of π radians per sampling interval.
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Sampling at an insufficient rate, also described as undersampling, leads to
a problem of aliasing whereby elements of the signal of frequencies in excess of
the Nyquist limit are confounded with elements of frequencies that lie within
the observable range. A good account of how this arises has been provided by
Oppenheim et al. (1983, Ch 8.), albeit that there are many other accessible
sources.

The problem of aliasing is sometimes present in moving cinema pictures,
which are created from the rapid projection of a succession of images that
capture instants in the trajectories of moving objects. The problem is familiar
to a generation who watched Western movies and who noticed the seemingly
slow and sometimes retrograde motion in the depiction of the rapidly rotating
wheels of a fleeing stagecoach.

The sampled data can be used to construct models of the processes gen-
erating the signals. Often, it is sufficient to model the relationships subsisting
in the sampled data, with only a passing reference to the underlying continu-
ous process. This may be achieved by fitting an autoregressive moving-average
(ARMA) model to the data. However, dynamic systems may be described bet-
ter by differential equations operating in continuous time. Therefore, the issue
arises of how to make the translation from discrete-time data to a continuous-
time model.

The usual methods for constructing continuous-time models from the dis-
crete data are fraught with difficulties, and they depend on assumptions that
may conflict with the evident properties of the signals. (A recent survey of
these methods has been provided by Garnier and Wang 2008.)

The usual assumption that underlies the estimation of stochastic differ-
ential equations is that their primum mobile or forcing function is a white-
noise process consisting of a continuous stream of infinitesimal increments of
a stochastic Wiener process. Such a white-noise process, which is everywhere
continuous but nowhere differentiable, is unbounded in frequency. Thus, an
assumption is commonly adopted that implies the inevitability of aliasing and
that seems to preclude the possibility of estimating a model that faithfully
represents the continuous process. However, the problems are not always so
severe.

It can be shown that, if the poles of the transfer function that maps from
the white-noise forcing function to the signal have frequency arguments that
fall within the Nyquist range, then the stochastic differential equation can be
estimated consistently. (See, for example, Pandit and Wu, 1983, Ch 7.) Also, it
may be observed that if the transfer function of the model strongly attenuates
the higher frequencies, then the assumption that the frequencies of the forcing
function are unbounded is of limited significance.

Notwithstanding these easements in the estimation of stochastic differen-
tial equations, it is sometimes important to recognise the frequency limits of
a stochastic forcing function. It is the purpose of this paper to highlight the
problems that can arise when the frequency limit of the forcing function, and
therefore of the signal, is less than the Nyquist value. Problems can then arise
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both with the discrete-time autoregressive moving-average model and with the
corresponding continuous-time stochastic differential equation.

In some circumstances, it should be possible to reduce the rate of sampling
so that the Nyquist frequency no longer exceeds the maximum frequency of
the signal. Even when is it is not possible to vary the sampling rate directly, it
may be possible to reconstitute the continuous signal in the manner indicated
by the sampling theorem.

Then, it is possible to generate the sample points that would arise from
resampling the continuous signal at an arbitrary rate. Thus, a sample can be
obtained that is attuned to the maximum frequency within the signal. The
relevant procedure will be described in this paper. However, a example will
be presented for which it is sufficient to subsample the data by taking one in
every four points.

The primary purpose of this paper is to illustrate the problems of over-
rapid sampling, also described as oversampling, and to show how to overcome
them. Nevertheless, it will be necessarily to deal more generally with the theory
of autoregressive moving-average models and of the corresponding stochastic
differential equations.

The plan of the paper is as follows. In section 2, the problems of over-
sampling are illustrated in the context of a macroeconomic data sequence.
In section 3, an account is given of the essential sampling theorem; and it is
shown how it can be adapted to finite data sequences. Section 4 provides the
theory of frequency-limited continuous-time processes that bear a one-to-one
correspondence with discrete-time ARMA models, and section 5 explains the
empirical findings of section 2.

With these results in hand, it will be show, in section 6, how it is pos-
sible, by means of a process of re-sampling, to obtain appropriate estimates
of frequency-limited ARMA processes by means of the usual estimators of
discrete-time ARMA models. Thereafter, it remains to describe, in section
7, how a linear stochastic differential equation (LSDE) may be fitted to the
frequency-limited data.

2 The Effects of Oversampling

The typical frequency-limited spectral structure can be illustrated by a
data sequence that requires only a simple method of detrending. Figure 1
shows the deviations from an interpolated trend of the logarithms of U.S.
quarterly gross domestic product (GDP) for the period 1968–2007. The trend
has been calculated using the filter of Hodrick and Prescott (1980, 1997) with
the smoothing parameter set to the value of 1600. (The filter in question is
also attributable to Leser 1961.)

Figure 2 shows the periodogram of the deviations. It will be seen that
the essential spectral structure extends no further than the frequency of π/4
radians per quarter. The remainder of the periodogram comprises what may
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Fig. 1. The deviations of the logarithmic quarterly index of real US GDP from an
interpolated trend. The observations are from 1968 to 2007. The trend is determined
by a Hodrick–Prescott (Leser) filter with a smoothing parameter of 1600.
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Fig. 2. The periodogram of the data points of Figure 1 overlaid by the parametric
spectral density function of an estimated regular AR(2) model.
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Fig. 3. The periodogram of the data points of Figure 1 overlaid by the spectral
density function of an AR(2) model estimated from frequency-limited data.

be described as a dead space that contains only the traces of minor elements
of noise. It is notable that the detrending of the data has imposed a zero at
the zero frequency.

One might hope to characterise the dynamic properties of the US GDP
process by fitting an ARMA model of relatively low orders. Thus, a second-
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order autoregressive AR(2) model with complex conjugate roots or poles
within the autoregressive polynomial should serve to represent the dynamics.
The argument of the complex roots should characterise the angular velocity of
the process, or equivalently, the length of its cycles, and their modulus should
characterise its damping properties.

However, when such a model is fitted to the data, it transpires, almost
invariably, that the roots of the autoregressive polynomial are real-valued.
(For a testimony to this, see Pagan 1997.) Figure 2 shows such an outcome,
which can be discerned from the shape of the parametric spectral density
function, or “spectrum”, of the estimated model.

A reasonable recourse in the face of such difficulties is to employ an es-
timator in which greater weight is placed on the low-frequency elements of
the data than on the high-frequency elements. If the interest is confined to
the business cycles, then it is reasonable to attribute weighs of unity to the
elements within the range of the business cycle frequencies and to attribute
weights of zero to those elements that lie outside the range. This can achieved
by applying an ordinary autoregressive Yule–Walker method-of-moments es-
timator to data that are limited to the low-frequency range. Such data can
be created by applying a perfect lowpass filter to the original data. (For a
description of such a filter, see Pollock, 2009.)

The consequence of applying an unrestricted estimator to data that are
strictly frequency-limited will be to create an estimated autoregressive polyno-
mial in which the complex roots approach the perimeter of the unit circle. The
effect will be to misrepresent the damping properties of the process. Figure 3
illustrates this outcome.

The only difference between the circumstances depicted in Figures 2 and 3
concerns an almost imperceptible noise contamination that is found through-
out the interval (π/4, π] in the original data. The ratio of the cumulated values
of the periodogram ordinates that lie in this frequency interval to the cumu-
lated total of periodogram ordinates over the interval [0, π] is 0.0752, or less
than 8 percent. Whereas this noise is affecting the estimates that give rise to
the parametric spectrum of Figure 2, it has been eliminated from estimation
of the spectrum of Figure 3.

A full explanation of these effects, which will be provided in section 5,
must await a detailed analysis of the sampling process and of frequency-limited
stochastic processes.

3 The Sampling Process

The sampling theorem of Shannon and Nyquist establishes that, if the
maximum frequency within a continuous square-integrable function is ωc ≤ π
radians per sample interval, which is taken to be the unit of time, then all of
the information within the function can be conveyed via a sequence of values
sampled regularly from the function at intervals of π/ωc units of time. (See
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Fig. 4. The sinc function wave-packet ϕ(t) = sin(πt)/πt comprising frequencies in
the interval [0, π].

Shannon, 1949.)
The theorem implies that, if samples are taken at unit intervals, then

the maximum frequency that can be detected is at π radians per interval,
which is the so-called Nyquist frequency. Moreover, if the underlying function
contains frequencies in excess of π, then, via the process of aliasing, these will
be confounded with frequencies that lie within the Nyquist frequency interval
[0, π].

The interval [0, π] is appropriate to the case where the function in question
is expressed in terms of sines and cosines. When it is expressed, equivalently, in
terms of complex exponential functions, the Nyquist frequency range becomes
[−π, π]. In the case of a function with a maximum frequency of π radians per
sample interval, it will be possible, in theory, to reconstitute the continuous
function from its sampled values by associating to each of them a so-called
sinc function kernel scaled by that value.

The sinc function ϕ(t) is the Fourier transform of a frequency-domain
rectangle ϕ(ω) supported on the interval [−π, π]; and it is just a sine function
to which a hyperbolic taper has been applied:

ϕ(t) =
sin(πt)

πt
=

1

2π

π∫
−π

eiωtdω. (1)

This is illustrated in Figure 4.
The following expression for the continuous function is derived by applying

a sinc function kernel to each element of the sequence {xk; k = 0,±1,±2, . . .}:

x(t) =
∞∑

k=−∞
xk

sin{π(t − k)}
π(t − k)

=
∞∑

k=−∞
xkϕ(t − k). (2)

Here, t ∈ R is to be regarded as a continuous index of time. The formula
indicates that there is a one-to-one correspondence between continuous func-
tions supported on the Nyquist frequency interval and their sampled ordinates
taken at unit intervals in time.
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Although the Shannon–Nyquist theorem is proved in relation to a square
integrable function, it is clear that the construction above can be extended to
encompass stationary stochastic processes. Thus, it might be assumed that the
doubly-infinite sequence {xk; k = 0,±1,±2, . . .} is generated by an ordinary
autoregressive moving-average process.

The sequence of sinc functions ϕ(t − k); k ∈ Z = {0,±1,±2, . . .} consti-
tutes an orthogonal basis for the set of all continuous analytic functions that
lie within the Nyquist frequency interval. To show this, let ϕ(ω) be the Fourier
transform of ϕ(t) and consider the following autoconvolution:

∫
t

ϕ(t)ϕ(τ − t)dt =
∫
t

ϕ(t)

 1

2π

∫
ω

ϕ(ω)eiω(τ−t)dω

 dt (3)

=
1

2π

∫
ω

ϕ(ω)


∫
t

ϕ(t)e−iωtdt

 eiωτdω

=
1

2π

∫
ω

ϕ(ω)ϕ(ω)eiωτdω = ϕ(τ).

The symmetry of ϕ(t) allows us to write ϕ(τ − t) = ϕ(t − τ), whereas the
idempotency of ϕ(ω) gives ϕ2(ω) = ϕ(ω). Together, these two conditions
indicate that ϕ(t) is its own autocorrelation function. Therefore, the condition

ϕ(t) = 0 for t ∈ {±1,±2, . . .}, (4)

which is manifest in the formula of (1) and in Figure 3., indicates that sinc
functions separated by integer distances are mutually orthogonal.

When the set of sinc functions {ϕ(t − k); k ∈ Z} at unit displacements
are sampled at the integer values of t, the result is nothing but the set of
unit impulses at the integer points. This constitutes a basis for the set of all
sequences defined over the set of integers.

The reconstruction or interpolation of a function in the manner suggested
by the sampling theorem is not possible in practice, because it requires sum-
ming an infinite number of sinc functions, each of which is supported on the
entire real line. Nevertheless, a continuous frequency-limited periodic func-
tion, defined on a finite interval, can be reconstituted from a finite number
of wrapped or periodic sinc functions, which are Dirichlet kernels by another
name. The Dirichlet kernel is obtained by sampling the frequency-domain
rectangle of the sinc function.

Consider a continuous function x(t) defined the interval [0, T ). Such a
function can be regarded as a single cycle of a periodic or circular function
such that x(t) = x(t + T ); and, therefore, it has a Fourier series expansion in
terms of the complex exponential functions exp(iωj), where ωj = 2πj/T is the
jth Fourier frequency. If the function x(t) is bounded by the Nyquist frequency,
then the relevant expression for the series expansion of x(t), together with the
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inverse transformation, which provides the Fourier coefficients ξj, is

x(t) =
T−1∑
j=0

ξje
iωjt ←→ ξj =

1

T

T−1∑
t=0

x(t)e−iωjt. (5)

Here, t ∈ R is considered to be a continuous index of time. When t =
0, 1, . . . , T −1 is an integer, the equation represents the discrete Fourier trans-
form of the sampled sequence {xt; t = 0, 1, . . . , T−1} together with the inverse
transform.

Putting the expressions for the Fourier ordinates at the sample points
into the finite Fourier series expansion of the time function and commuting
the summation signs gives

x(t) =
T−1∑
j=0

{
1

T

T−1∑
k=0

xke
−iωjk

}
eiωjt =

1

T

T−1∑
k=0

xk


T−1∑
j=0

eiωj(t−k)

 . (6)

The inner summation of the final expression gives rise to the Dirichlet Kernel:

ϕ◦
n(t) =

T−1∑
t=0

eiωjt =
sin({(T − 1)/2}ω1t)

sin(ω1t/2)
. (7)

Thus, the Fourier expansion can be expressed in terms of the Dirichlet kernel,
which is a circularly wrapped sinc function:

x(t) =
1

T

T−1∑
t=0

xkϕ
◦
n(t − k). (8)

The functions {ϕ◦(t−k); k = 0, 1, . . . , T −1} are appropriate for reconsti-
tuting a continuous periodic function x(t) defined on the interval [0, T ) from
its sampled ordinates x0, x1, . . . , xT−1. However, the periodic function can also
be reconstituted by an ordinary Fourier interpolation

x(t) =
T−1∑
j=0

ξje
iωjt =

[T/2]∑
j=0

{αj cos(ωjt) + βj sin(ωjt)} , (9)

where [T/2] denotes the integral part of T/2 and where αj = ξj−ξ−j and βj =
i(ξj + ξ−j) are the coefficients from the regression of the data on the sampled
ordinates of the cosine and sine functions at the various Fourier frequencies.

If t ∈ {0, 1, . . . , T − 1} is the integer index of discrete time, then the
formula of (9) will serve to generate the sampled ordinates. If t ∈ [0, T ) is a
continuous real-valued index, then the formula will serve to reconstitute the
continuous signal that is presumed to underlie these data.
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4 Frequency-Limited Stochastic Processes

A continuous-time autoregressive moving-average process that is supported
on the Nyquist interval [−π, π] may be derived from an ordinary discrete-time
process with unit time intervals by associating sinc functions to each of its or-
dinates. By virtue of the Shannon–Nyquist theorem, there will be a one-to-one
correspondence between the discrete-time processes and the frequency-limited
continuous-time processes.

Linear stochastic differential equations (LSDE’s) that are driven by the
increments of a Wiener process are commonly described as CARMA processes.
To avoid confusion, these will be described as LSDE processes. An continuous-
time ARMA process driven by a frequency-limited of “band-limited” white
noise can also be represented by a linear stochastic differential equation. Such
a representation will be provided in section 7.

The continuous-time ARMA process can be derived directly by applying
an appropriate filter to a continuous frequency-limited white-noise process
supported on the Nyquist interval. The continuous white-noise process is ob-
tained from a train of sinc-function wave packets arriving regularly at unit
intervals of time and having amplitudes that are distributed independently
and identically in the manner of the ordinates of a discrete-time white-noise
process.

It should be observed that the datum t = 0, from which the discrete points
in time are measured, is arbitrary. Any other point on the real line could serve
as the datum; and a decomposition of the continuous function will always
be available that attributes sinc-function pulses to the sequence of discrete
points, measured in unit steps from that datum.

Let {yk; k = 0,±1,±2, . . .} be the sampled ordinates of the ARMA process
and let {εk; k = 0,±1,±2, . . .} be the ordinates of the white-noise forcing
function. The corresponding continuous-time functions are

y(t) =
∞∑

k=−∞
ykϕ(t − k) and ε(t) =

∞∑
k=−∞

εkϕ(t − k), (10)

respectively, where t ∈ R and k ∈ Z and where ϕ(t) is the sinc function
kernel. The equation of the continuous-time ARMA process is

p∑
j=0

αjy(t − j) =
q∑

j=0

βjε(t − j), (11)

where α0 = 1. This has a moving-average representation in the form of

y(t) =
∞∑

j=0

ψjε(t − j), (12)

where the coefficients are from the series expansion of the rational function
β(z)/α(z) = ψ(z).
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If εt = ε(t) and εs = ε(s), with t, s ∈ R, are elements sampled at arbi-
trary points from the continuous frequency-limited white-noise forcing func-
tion, then their covariance is

C(εt, εs) = σ2
εϕ(t − s) = γε(τ), τ = t − s, (13)

where σ2
ε is the variance parameter. This the autocovariance function of the

white-noise process. The result is understood by recognising that εs = ϕ(τ)εt+
η, where η is uncorrelated with εt. This result is in accordance with equation
(3), which indicates that ϕ(τ) is its own autocorrelation function.

If y(t) =
∑

i ψiε(t−i), and y(s) =
∑

j ψjε(s−j), with t, s ∈ R and i, j ∈ Z,
then the autocovariance function of yt = y(t) and ys = y(s) is

C

{ ∑
i

ψiεt−i,
∑
j

ψjεs−j

}
=

∑
i

∑
k

ψiψi+kC(εt, εs−k); k = j − i (14)

=
∑
k

γkϕ(τ − k) = γ(τ); τ = t − s,

where γk = σ2
ε

∑
j ψjψj+j is the kth autocovariance of the discrete-time process.

It can be seen immediately that γ(τ) = γτ , is a discrete-time autocovariance
when τ takes an integer value, and that the continuous-time autocovariance
function is obtained from the discrete-time function by sinc-function interpo-
lation.

The autocovariances of a discrete-time ARMA process are the coefficients
of the series expansion of the generating function

γ(z) = σ2
ε

β(z)β(z−1)

α(z)α(z−1)
, (15)

where α(z) = α0 + α1z + · · · + αpz
p and β(z) = β0 + β1z + · · · + βqz

q are the
autoregressive and moving-average polynomials respectively. Here, it may be
assumed the p > q, since this is a necessary condition for the existence of a
stochastic differential equation corresponding to the ARMA process.

A recursive procedure for generating the autocovariance of a discrete-time
ARMA process has been provided by Pollock (1999). An analytic expression
is also available that is based on the following partial-fraction decomposition
of the transfer function:

ψ(z) =
β(z)

α(z)
=

d1

1 − µ1z
+ · · · + dp

1 − µpz
. (16)

Here, µ1, . . . , µp are the roots of the polynomial equation α(z−1) = 0. (It is
assumed that there are no repeated roots.) The general analytic expression
for the autocovariance function of an ARMA process is

γ(τ) = σ2
ε

p∑
i=1

{ p∑
j=1

didj

1 − µiµj

}
µτ

i . (17)
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Fig. 5. A continuous autocovariance function of an AR(2) process, obtained via
the inverse Fourier transform of the spectral density function, together with the
corresponding discrete-time autocovariances, calculated from the AR parameters.

The spectrum of the discrete-time process, denoted by f(ω), is the Fourier
transform of the sequence of autocovariances. It is a periodic function that is
generated by the function γ(z) when z travels around the perimeter of the unit
circle in the complex plane. When z = exp{−iω} within γ(z), the spectrum
is generated as ω runs from −π to π.

The spectrum of a continuous-time ARMA process, which is limited in
frequency to the Nyquist interval [−π, π], is no longer a periodic function.
However, it has the same values over the interval as the periodic spectrum of
the corresponding discrete-time process. The autocovariance function of the
continuous-time process is given by the inverse Fourier integral transform of
this spectrum. Thus

γ(τ) =

π∫
−π

eiωτf(ω)dω =

π∫
0

2 cos(ωτ)f(ω)dω, (18)

where the second equality follows in consequence of the symmetry of f(ω) =
f(−ω).

Since no tractable analytic expression is available for evaluating this inte-
gral exactly, it must be approximated via a discrete cosine Fourier transform:

γ(τ) � γ◦
N(τ) =

2π

N

[N/2]∑
j=0

cos(ωjτ)f(ωj), ωj =
2πj

N
. (19)

Here, N is the number of points sampled from the function f(ω) over the
interval [−π, π], whereas γ◦

N(τ) is the circular autocovariance for samples of
size N . It will be found is γ◦

N(τ) → γ(τ) as N → ∞. However, the continuous-
time autocovariances are generated more easily by allowing the index τ of
equation (17) to vary continuously.

An example of the Fourier approximation of the autocovariance function
is provided by Figure 5, where a sequence of N = 256 elements sampled from
the function f(ω) has been transformed to create a continuous piecewise linear
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Fig. 6. The parametric spectrum of an ARMA(2, 2) process, limited in frequency
to π radians per period and oversampled at the rate of 4 observations per period,
represented by a heavy line, together with the parametric spectrum of an AR(2)
model fitted to the sampled autocovariances.

rendition of γ(τ) over the range τ ∈ [0, 16]. The ordinates of the discrete-time
autocovariance function are also plotted on the diagram. These have been
obtained directly from the autoregressive parameters by the recursive method.
Their coincidence with the ordinates of the continuous function testifies to the
accuracy of the approximation.

5 Consequences of Fitting ARMA Models to Oversampled Data

Before describing the appropriate recourses for dealing with oversampled
data, in which the maximum frequency is less than the Nyquist value of π
radians per sample interval, it is appropriate to analyse the effects that have
been illustrated in section 2.

From the theoretical autocovariance function of a continuous-time process
supported on the Nyquist interval [−π, π], it will be possible to derive the
autocovariances of a discrete-time process that would be obtained by over-
rapid sampling. From these discrete theoretical autocovariances, one can infer
the parameters of a misspecified ARMA model that represents the asymptotic
limits of estimates based on oversampled data.

If the sampled values are separated by intervals of ωc/π < 1 units of time,
then the spectrum of the resulting discrete-time process will be supported on
an interval [−ωc, ωc], which is a subset of the Nyquist interval. Its spectrum
will be zero-valued over the complementary interval within Nyquist interval,
which has been described as a dead space.

Having sampled the autocovariances from the continuous function, a method
of moments can be used to infer the corresponding parameters. In the case of
a pure AR process, this is a matter of solving the Yule–Walker equations. In
the case of an ARMA model, an iterative procedure is also required for finding
the moving-average parameters via a Cramér–Wold factorisation. An effective
procedure that exploits the Newton–Raphson algorithm has been expounded
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Fig. 7. The parametric spectrum of the oversampled ARMA(2, 2) process, repre-
sented by a heavy line, supported on the spectrum of a white-noise contamination,
together with the parametric spectrum of an AR(2) model fitted to the sampled
autocovariances.

by Tunicliffe–Wilson (G.T. Wilson) (1969). The Yule–Walker procedure and
the Cramér–Wold factorisation have been combined in a procedure, coded in
both in C and in Pascal, that has been provided by Pollock (1999).

This procedure has been in incorporated in a program, OVERSAMPLE.PAS,
that is available at the following web address:

http://www.le.ac.uk/users/dsgp1/

Apart from determining the effects of oversampling, the program can be used
to investigate the effects of a white-noise contamination of the data generated
by the specified process.

Here, the program will be used to reaffirm what has already been re-
vealed in Section 2 using an empirical data sequence. For the experiments, an
ARMA(2, 2) process is specified, which is regarded as the truth and which is
designated Model (a). This is represented by the equation

y(k) + α1y(k − 1) + α2y(k − 2) = β0ε(t) + β1ε(k − 1) + β2ε(k − 2), (20)

where ε(k) is a discrete-time white-noise process of unit variance. The autore-
gressive parameters are set to α1 = −1.0607 and α2 = 0.5625. This is equiva-
lent to specifying a pair of conjugate complex roots ρ exp{±iθ} with a modulus
ρ = 0.75 and with arguments of ±θ = ±45◦. These values are recorded in Table
1, which also displays some misspecified models. The moving-average parame-
ters of Model (a) are β0 = 1, β1 = 0 and β2 = −1. Their effect is to place zeros
on the unit circle at zero frequency and at the Nyquist frequency of π radians
per unit sample period. The zero at zero frequency mimics a characteristic of
a detrended data sequence and the zero at π emphasises the limitation of the
process to the frequency interval [0, π].

Figure 6 shows, via the heavy line, the parametric spectrum of the specified
process when it has been subject to sampling at the rate of 4 observations
per unit period, which confines the plotted spectrum to the frequency band
[0, π/4]. This oversampled version of Model (a) is designated Model (b).
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With this rate of sampling, the effective modulus of the autoregressive
roots is 0.9306 = (0.75)1/4 and their effective arguments are ±11.25◦ = ±45◦/4.
The emptiness of the dead space in the interval (π/4, π], which signifies the
absence of any noise contamination, can also be interpreted either as the result
of the application to the data of a perfect low pass filter or as a consequence
of a weighting scheme within the estimator that sets the spectral ordinates
within this interval to zero.

The figure also shows the parametric spectrum of an AR(2) model derived
from the autocovariances sampled at this rate from their continuous function,
which is Model (c). It can be seen that the spectral spike of the model is
excessively prominent and that its peak is at a higher frequency that the peak
of the spectrum of the true process.

The estimated autoregressive parameters are α1 = −1.9062 and α2 =
0.9735, which correspond to conjugate complex roots with a modulus ρ =
0.9866 and with arguments of ±θ = ±14.9873◦. The polar parameters imply
cyclical fluctuations that are both more rapid and more persistent than the
actual fluctuations that would be generated by the true model.

Figure 7 shows the parametric spectrum of the oversampled process sup-
ported on the spectrum of a minimal white-noise contamination that extends
over the entire frequency range of [0, π] and which is represented by a broken
line that is barely raised above the horizontal axis. This is to be construed
as a discrete-time process that contaminates the individual observations, as
opposed to a continuous background noise. The variance of the noise is 0.05 of
the variance of the ARMA(2, 2) process. The figure also shows the parametric
spectrum of an AR(2) model that has been fitted to the autocovariances of
the contaminated process.

The difference between the true spectrum and the spectrum of the fit-
ted model, Model (d), is considerable. The fitted spectrum betrays the fact
that the autoregressive polynomial of the model has a pair or real-valued
roots in place of the conjugate complex roots of the process. The estimated
autoregressive parameters are α1 = −1.0386 and α2 = 0.1291 and the corre-
sponding real-valued roots of the autoregressive polynomial are µ1 = 0.1443
and µ2 = 0.8943.

The results of these experiments can be explained by reference to the
autocovariance function. When the rate of sampling is excessive, the autoco-
variances will be sampled at points that are too close to the origin, where the
variance is to be found. Then, their values will decline at a diminished rate.
This reduction in the rate of convergence is reflected in the modulus of the
estimated complex roots, which indicates a rate of damping that understates
the true value.

The opposite effect is experienced when there is a noise contamination.
Then, the full variance of the noise will be added to the variance of the un-
derlying process. Nothing will be added to the adjacent sampled ordinates of
autocovariance function. Therefore, the sampled autocovariances will decline
at an enhanced rate. If this rate of convergence exceeds the critical value,
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Table 1
The poles (autoregressive roots) of the true ARMA(2, 2) model and of the AR(2)
models fitted to the ordinates of the oversampled autocovariance function.

The Model Sampling Poles Modulus Argument
Interval in Degrees

(a) True ARMA(2,2)
with unit sampling 1.0 0.5303 ± i0.5303 0.75 ±45.00

(b) True ARMA(2,2)
with oversampling 0.25 0.9127 ± i0.1816 0.9306 ±11.25

(c) Fitted AR(2)
with oversampling 0.25 0.9531 ± i0.2552 0.9866 ±14.99

(d) Fitted AR(2) with
noise and oversampling 0.25 0.1443, 0.8943 — —

then there will be a transition from cyclical convergence to monotonic con-
vergence. In that case, the estimated autoregressive roots will be real-valued,
which belies the complex dynamics of the true process, which would be liable
to generate data with well-defined cycles.

6 Estimation Methods for Oversampled Data

The method that is proposed for estimating the parameters of an oversam-
pled (frequency-limited) ARMA process relies on the possibility of resampling
the data. The method entails the assumption that, underlying the sample,
there is a trajectory generated by a continuous ARMA process. It is presumed
that the limiting frequency within this process is ωc < π and that the original
sample has been taken at unit intervals. (This circumstance can be compared
to that of the experiments of the previous section, where the limiting fre-
quency of the process was π radians per unit period and where 4 observation
were assumed to be taken within that period. Both circumstances amount to
oversampling.)

In view of the frequency limit of the process, it would have been appro-
priate to take the sample at the wider intervals of τ = π/ωc. If τ is an integer
number, then it will be sufficient to take one in every τ elements from the
original sample and, thereafter, to estimate a discrete-time ARMA model in
the usual way. If τ is not an integer, then the fact that the underlying con-
tinuous trajectory of the signal can be reconstituted from the original sample
implies that synthetic sample points can be obtained that are separated by
the requisite non-integer interval of π/ωc units.

To derive such sample points, the Fourier transform must be taken of the
original T data points. This delivers the coefficients αj, βj; j = 0, 1, . . . , [T/2],
which are associated with the trigonometric functions at the Fourier frequen-
cies ωj = 2πj/T . Let q be the index such that ωq ≥ ωc is the least upper
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Fig. 8. The periodogram of the data that have been filtered and subsampled at the
rate of 1 observation in 4, overlaid by the parametric spectrum of an estimated
ARMA(2, 1) model.

bound of ωc amongst the Fourier frequencies. Then, the formula that would
be used to generate the reconstituted signal is

x(t) =
q∑

j=0

{αj cos(ωjt) + βj sin(ωjt)} . (21)

This is just a truncated version of the summation of (9). It differs from that
of (9) only by the omission of the coefficients αj, βj for j > q that are deemed
to be zero-valued. Whereas the continuous trajectory would be generated by
allowing t to vary continuously, the resampled data are generated by setting
t = (π/ωc) × k for k = 0, 1, . . . , [Tωc/π].

The truncated summation of (21) excludes any elements of noise contam-
ination that lie in the dead-space interval (ωc, π]. If such contamination is
thought to be minor, then its presence within the interval [0, ωc] can be safely
ignored.

The noise contamination affecting an AR(p) process can often be captured
by the moving-average component of an ARMA(p, q) model fitted to the data
(The addition of a white-noise contamination to an AR(p) process gives rise
to an ARMA(p, p) process.)

In applying the method of moments estimator to an ARMA(p, q) model,
the empirical counterpart of the sequence of autocovariances γ0, γ1, . . . , γq is
entailed in the calculation of the moving-average component, while that of
the sequence γq+1−p, γq+2−p, . . . , γq+p is used in calculating the autoregressive
parameters. (See, for example, Pollock 1999, p. 545.) If there is a pre-specified
moving-average component of order q, then the autoregressive parameters
alone are estimated from the latter sequence.

These strategies of estimation have been incorporated in a computer pro-
gram, CONGRESS.PAS, that is available at the web address that has been
provided in section 4. A single zero at zero frequency may be imposed on the
estimates by setting β(z) = 1 − z, and a zero at the Nyquist frequency π can
be imposed by setting β(z) = 1 + z. To impose zeros at both points requires
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setting β(z) = 1 − z2. The program, which allows these choices, also contains
procedures for generating pseudo-random data via frequency-limited ARMA
processes.

The program has been applied to the data represented by Figure 1. An
ARMA(2, 1) model, with a zero at zero frequency, has been fitted to values
sampled from this trajectory at 1/4 of the original sample rate, which makes
this an annual rate. In Figure 8, the parametric spectrum of the fitted model
has been superimposed upon the periodogram of the subsampled data. It will
be seen that this periodogram has a distended version the profile of the spectral
structure that is supported of the interval [0, π/4] in Figures 2 and 3. Little
is altered when an additional zero is imposed at π. The parametric spectrum
fits the periodogram well.

It should be emphasised that the usual procedures of least-squares and
maximum-likelihood estimation are applicable to the resampled data, regard-
less of their unusual provenance. In particular, the sample properties of the
estimators are not affected and the usual forecasting methods continue to
apply. However, the standard software that is available does not enable the
imposition of pre-specified moving-average zeroes, which accounts of our use
of an empirical method-of-moments estimator, which is a derivative of the
Yule–Walker estimator.

An alternative approach to improving the performance of an AR model
relies upon a weighted Whittle estimator. This approach had been pursued by
various authors including, notably, Haywood and Tunnicliffe–Wilson, (1997)
and Proietti (2008). However, it is a delicate matter to find a weighting scheme
that will allow one to navigate between the opposing hazards that are rep-
resented by the two experiments of the previous section. Nevertheless, it has
been shown that an appropriate weighting scheme can serve to enhance greatly
the forecasting performance of an ARMA model.

Another method, which may have a similar inspiration to that of Hay-
wood and Tunnicliffe–Wilson (1997), is due to Morton and Tunnicliffe–Wilson
(2004). (See, also, Tunnicliffe–Wilson et al. 2016.) These authors propose a
model that incorporates a lowpass filter that depends upon a single estimable
parameter. The filter serves to attribute appropriate weights to the Fourier
elements in the low-frequency range.

Finally, it should be acknowledged that the problems besetting oversam-
pled processes will be alleviated by greatly increasing the autoregressive order
in the estimated model and by including a moving-average component. How-
ever, given the proliferation of the autoregressive parameters and, therefore,
of the poles of the transfer function, a simple characterisation of the cyclical
dynamics of the signal will no longer be readily available.
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7 Frequency-Limited Stochastic Differential Equations

A description has been provided of a continuous frequency-limited trajec-
tory, which is derived from the data points of a discrete-time ARMA process
by sinc-function interpolation. It is possible to describe a stochastic differen-
tial equation that will generate such a trajectory and to obtain estimates of
its parameters. This section describes methods for achieving this.

The conventional linear stochastic differential equation of orders p and q,
denoted by LSDE(p, q), is represented by

(φ0D
p + φ1D

p−1 + · · · + φp)y(t) = (θ0D
q + θ1D

q−1 + · · · + θq)ζ(t) (22)

or φ(D)y(t) = θ(D)ζ(t),

wherein D is the derivatives operator such that Dx(t) = dx(t)/dt and where
ζ(t) represents the forcing function. The usual normalisation sets φ0 = 1, as
would be the case of a second-order equation describing the acceleration of a
body in a viscous medium that is subject to a random forcing function.

The forcing function ζ(t) of the LSDE model is commonly assumed to be
constituted from the instantaneous and infinitesimal increments of a Wiener
process, which are unbounded in frequency.

In the case of the continuous frequency-limited model, which bears a one-
to-one correspondence with a discrete-time ARMA model, the forcing function
ε(t) is a frequency-limited white-noise process, supported on the Nyquist fre-
quency interval [−π, π], which can be constituted from a train of sinc functions.

Provided that p > q, and provided that the polynomial equation φ(s) = 0
does not contain repeated roots, the rational form of the LSDE(p, q) model is
amenable to the following partial-fraction expansion:

y(t) =
θ(D)

φ(D)
ζ(t) =

{
c1

D − κ1

+
c2

D − κ2

+ · · · + cp

D − κp

}
ζ(t) (23)

=

∞∫
0

{c1e
κ1τ + c2e

κ2τ + · · · + cpe
κpτ} ζ(t − τ)dτ.

The discrete-time ARMA(p, q) model has an analogous partial-fraction
expansion:

y(k) =
β(L)

α(L)
ε(k) =

{
d1

1 − µ1L
+

d2

1 − µ2L
+ · · · + dp

1 − µpL

}
ε(k) (24)

=
∞∑

τ=0

{d1µ
τ
1 + d2µ

τ
2 + · · · + dpµ

τ
2} ε(k − τ).

Here, L is the lag operator, which has the effect that Lε(k) = ε(k − 1)
when applied to a sequence ε(k).

The principle of impulse invariance is a common means of deriving the
discrete-time counterpart of a continuous-time filter. The principle proposes
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that the discrete-time transfer function should be matched to the continuous-
time function by equating the ordinates of the two impulse response functions
at the sample points, such that∑

j

djµ
τ
j =

∑
j

cje
κjτ for τ ∈ {0, 1, 2, . . .}. (25)

This can be achieved by setting dj = cj and µj = exp{κj} for j = 1, 2, . . . , p.
(For an exposition of the principle, see Oppenheim et al. 1983, Ch 7.)

The principle of impulse invariance can be used for deriving the continuous-
time counterpart of a discrete-time model. Thus, If µ is a real-valued pole of
the ARMA model, then κ = ln µ is the corresponding pole of the LSDE model.
If µ = exp{κ} = ρ exp{iω} is complex-valued, and if it can be assumed that
ω ∈ [−π, π], then κ = ln µ = ln ρ + iω. A necessary restriction on the ARMA
pole is that µ > 0, if it is real-valued, or that ρ > 0, if it is complex-valued

(It should be observed that, when the poles are complex-valued, the ex-
pression µ = exp{κ} represents a many-to-one mapping from a set of continuous-
time parameters to a discrete-time parameter. For, with κ = δ + iω, there is

µ = eκ = eδeiω = eδ{cos(ω + 2πn) + i sin(ω + 2πn)}, (26)

where n is an arbitrary integer. Thus, in the absence of a restriction that sets
n = 0 and that confines ω to the Nyquist interval, there are many continuous
processes which, when sampled at equal intervals, yield the same discrete
process. This is the essence of the problem of aliasing.)

The differential equation that corresponds to the continuous ARMA pro-
cess can be derived by compounding the partial fractions

cj

D − κj

=
dj

D − ln µj

; j = 1, . . . , p. (27)

It will be seen that, if q < p in the ARMA(p, q) model, then the result will be
an LSDE(p, p − 1) model.

Another method of deriving a continuous-time model as a counterpart to a
discrete-time model is via the autocovariance principle. The principle proposes
that the parameters of the continuous-time model should be determined by
equating the continuous autocovariance function with the available discrete-
time function at the integer points over which the latter is defined.

For an continuous ARMA model driven by a frequency-limited white-
noise process supported on the Nyquist interval, the autocovariance function
is provided by equation (17), when τ ∈ R is a continuous index. In this case,
the impulse invariance principle is equivalent to the autocovariance principle;
and the derivation of the LSDE is straightforward.

In the case where it is assumed that the continuous model is driven by
a process ζ(t) comprising the increments of a Wiener process, an alternative
continuous autocovariance function is appropriate that is given by
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γc(τ) = σ2
ζ

∞∫
0

ψ(t)ψ(t + τ)dt = σ2
ζ

p∑
i=1

p∑
j=1

cicj

∞∫
0

e(κi+κj)t+κiτdt

 (28)

= σ2
ζ

p∑
i=1

{ p∑
j=1

cicj
−eκiτ

κi + κj

}
.

The translation from the poles of the discrete-time model to those of
the continuous model is unaffected. However, it is no longer appropriate to
set cj = dj. Instead, the partial-fraction numerators must be determined by
equating the discrete-time and the continuous-time autocovariances at the
integer points, for which an iterative procedure is required,

One can also endeavour to estimate the continuous-time parameters di-
rectly from the data. The difficulty of such an approach is in the non-observability
of the time derivatives of the data. Additional problems are posed when there
is a moving-average component to contend with.

A template for the estimation of a second-order autoregressive LSDE(2,0)
model from a continuous record has been provided by Priestley (1981, p.
382). The method is the continuous-time analogue of an ordinary least-squares
estimation.

If it is assumed that the LSDE(2, 0) model is driven by the increments of
a Wiener process, then any sampled sequence of the forcing function will con-
stitute a discrete-time white-noise process, regardless of the rate of sampling.
The problem remains of how to obtain estimates of the derivatives at the
sample points. If this can be achieved, then the parameters can be estimated
efficiently by ordinary least-squares regression.

To obtain a discrete-time white-noise sequence from the continuous
frequency-limited white-noise process defined in section 4, it is necessary for
the sampling to be at the Nyquist rate, which acquires that two observations
in the time that it takes the element of highest frequency to complete a single
cycle.

In that case, as the sampling theorem indicates, the continuous trajectory
that underlies the data can be reconstituted by Fourier or sinc function inter-
polation. Since the resulting trajectory is an analytic function, is it possible
to obtain derivatives of any order at each of the sample points. Therefore, the
ordinary least-squares method of estimating a LSDE(p, 0) model in this way
is entirely practical, albeit that it takes time to calculate the derivatives.
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