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Abstract

This paper shows how to extract the density of the shocks of information perceived

by the Bank of England between two consecutive releases of its inflation density forecasts.

These densities are used to construct a new measure of ex ante inflation uncertainty, and

a measure of news incorporation into subsequent forecasts. Also dynamic tests of point

forecast optimality is constructed. It is shown that inflation uncertainty as perceived by

the Bank was decreasing before the financial crisis, increasing sharply during the period

2008-2011. Since then, uncertainty seems to have stabilized, but it remains still above its

pre-crisis levels. Finally, it is shown that forecast optimality is lost at some points during

the financial crisis, and that there are more periods of optimal forecasts in long term than

in short term forecasting. This could be also interpreted as that short term forecasts are

subject to profound revisions.
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1 Introduction

Density forecasting has become a useful tool for researchers and policymakers as a way to evaluate

the uncertainty surrounding key economic and financial variables. In particular, inflation density

forecasts are used by some central banks as informative tools in the process of monetary policy

implementation. The Bank of England regularly produces inflation density forecasts presented to

the public in the form of the so-called fan charts. These forecasts are updated each quarter to

reflect how the information gathered by the Bank is expected to affect inflation in the following

quarters. The main aim of this paper is to develop a method to extract the density of these shocks

of information by comparing the revisions of density forecasts. These densities are informative

of the effect that the Bank expects new information will have in future inflation. In this sense,

the variance of these shocks of information can be interpreted as a measure of the expected (ex-

ante) uncertainty can be constructed from them which could be used as an input in forward

looking models. This exercise can be done for different forecast horizons, constructing something

resembling to a term structure of uncertainty.

A second use of the density of the shocks of information is to evaluate the optimality of point

forecasts along the lines of Alessi et al. (2014), who stress the importance of assessing the forecast

accuracy of central banks’ forecast ability in the light of the recent financial crisis. There’s a vast

literature on the evaluation of the Bank of England point and density forecasts. Wallis (2004),

Clements (2004) or Dowd (2007) evaluate the forecasting ability of the fan charts showing that,

although they are more accurate for short term forecasting, uncertainty is generally overestimated.

Internal assessment of the fan charts within the Bank of England has been performed by Britton

et al. (1998), Elder et al. (2005) or more recently Fawcett et al. (2015). More recently Gneiting

and Ranjan (2011) or Galbraith and van Norden (2012) re evaluate these forecasts pointing again

to the overestimation of risks and the lack of resolution. All these tests are static in the sense that

they check performance over a time span. In this paper it is shown how the density of information

shocks can be used to check dynamically a set of regularities of optimal point forecasts noted by

Mankiw and Saphiro (1986), Nordhaus (1987) or Patton and Timmermann (2012), namely, the
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unbiasedness of optimal point forecasts and the decreasing variance of forecast errors as the

forecasted outcome approaches in time. Quarters in which these conditions are not met within

the sample period are identified. This could help identify periods in which optimality is lost and

help improve forecasting methods. Although it will be left for future work, this method could be

used to check density forecast efficiency, extending the idea of Mincer and Zarnowitz (1969) as

explored by Mitchell (2008).

The main results of the paper, which focus on the period 1998-2015, show that inflation

uncertainty was decreasing during the period before the financial crisis, with uncertainty being

higher for long term forecasts than for short therm. Uncertainty increased rapidly during the

period 2007-2011, having stabilized now at levels higher than its pre-crisis values. It is also shown

that new information forms around 60% of the information contained in revisions of density

forecasts for short and long term forecasting. Finally, it is shown that point forecasts can be

considered optimal except during some quarters during the financial crisis. Also, short term

forecasts are subject to deeper revisions more often than long term forecasts. Such periods of

significant changes in point forecasts are identified.

The paper is structured as follows: section 2 describes the method used to extract the density

of the socks of information via convolutions, defines a measure of news absorbtion and proposes

dynamic tests of forecast optimality; section 3 applies this technique to the Bank of England

density forecasts, and section 4 concludes.

2 An evaluation of inflation density forecasts

2.1 Recovering the densities of information shocks via convolutions

Let zt+h be the random variable being forecasted and let ft+h(·) be its unknown density function.

At moment t a forecast for this random variable is made, say zt+1(h− 1), in the form of a density

forecast, f̂t|h(·), constructed using all the information available to the forecaster up to time t -let It

denote this information set. At time t+1 a new forecast for the same random variable is produced,
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say zt+1(h − 1) with density f̂t+1|h−1(·). This new density forecast is made using all information

available up to t + 1 (i.e. using information set It+1) so, if forecasts are efficient, any difference

between f̂t+1|h−1(·) and f̂t|h(·) should reflect the effect of the incorporation of information made

available between t and t + 1. We can, then, decompose the revision zt+1(h − 1) using the well

known forecast update equation as

zt+1(h− 1) = zt(h) + εt+1(h− 1), (1)

where εt+1(h− 1) can be interpreted as the information or news shock perceived between periods

t and t + 1. Notice that both density forecasts can be misspecified, so εt+1(h − 1) should be

interpreted as a forecast revision, not as an econometric or a forecast error. The forecasts are

subjective in the sense that they only incorporate information perceived by the forecaster. If the

efficient forecast at time t + 1 should be made using information set Ωt+1 and It+1 ⊂ Ωt+1, then

f̂t+1|h−1(·) would be a biased estimate of ft+h(·) -the same could happen to f̂t|h(·). In this case, the

density of εt+1(h− 1) would only reflect changes in density forecasts due to perceived information

which need not be the full information set. Nonetheless, information extracted from the density of

these revisions or information shocks can be highly relevant, as they provide with ex-ante measures

of perceived risks of the forecasted outcome: a high variance of this shock would imply that the

forecaster expect the outcome to become more uncertain, and nonnegative skewness could be

interpreted as an increase in the perceived risk of extreme event outcomes.

Although conceptually similar to the Functional Autoregressive method used by Chaudhuri

et al. (2016) to obtain density forecasts of UK inflation rates, the method proposed here is based

on the notion of convolution. Notice that εt+1(h − 1) = zt+1(h − 1) − zt(h), where zt+1(h − 1)

and zt(h) are two random variables with known densities. If they were uncorrelated, the density

function of the shock εt+1(h − 1) could be obtained as the convolution of a difference of random

variables1. However, zt+1(h − 1) will in general be correlated with zt(h), as the information sets

on which those forecasts are constructed overlap (in general It ⊂ It+1). In that case, the density

1If X and Y are two independent random variables with densities fX(·) and fY (·) respectively, then fX ∗fY (z) =∫∞
−∞ fX(x)fY (x− z)dx.
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of the information shock should be obtained from the the joint density of zt+1(h − 1) and zt(h),

say fzt+1(h−1)zt(h)(·, ·) as

f̂ε,h−1(z) =

∫ ∞
−∞

fzt+1(h−1)zt(h)(x, x− z)dx. (2)

As the forecasts are made at different times and with possibly different models, this joint density

is not normally available. All that is available are the original density forecasts, that can be

thought of as the marginal densities derived from this joint distribution. The proposed method

consists of reconstructing the joint density of zt+1(h − 1) and zt(h) from its known marginal

densities, and then recovering the density of the information shock using (2). To this aim, copulas

are helpful tools. A copula is a distribution function that models the dependency structure of

two or more random variables with known marginal densities. More formally, let F̂t+1|h−1(·)

and F̂t|h(·) be the marginal cumulative distribution functions (cdfs) of zt+1(h − 1) and zt(h)

respectively. Following Sklar (1959), if these distribution functions are continuous, there exists a

unique function C(·, ·|θ) : [0, 1]2 → [0, 1] such that, in this bivariate case, the copula function is

reduced to a bivariate cumulative distribution function with uniform marginals:

F̃zt+1(h−1)zt(h)(x1, x2) = C
[
F̂t+1|h−1(x1), F̂t|h(x2)|θ

]
, x1, x2 ∈ <, (3)

where F̃zt+1(h−1)zt(h)(x1, x2) is an estimate of the joint cumulative distribution function of zt+1(h−1)

and zt(h), and θ ∈ Θm is anm-vector of parameters that controls the degree of dependence between

both random variables. The joint probability density function can be easily obtained from (3) as

f̃zt+1(h−1)zt(h)(x1, x2) = c
[
F̂t+1|h−1(x1), F̂t|h(x2)|θ

]
f̂t+1|h−1(x1)f̂t|h(x2), (4)

where c(·, ·|θ) is the copula density. A plethora of parametric copulas has been proposed in the

literature to model the dependence between random variables (see e.g. Joe, 1997, for a review).

Parametric copulas are convenient as they have closed form expressions for the distribution func-

tion C(·, ·) and the corresponding copula density c(·, ·), and different families allow to accommo-
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date a wide range of dependence structures. In the bivariate case, closed form expressions of the

Kendall and Spearman rank correlation coefficients can be obtained for each copula as a function

of the copula parameters. However, parametric copulas depend on the vector of parameters θ that

need to be estimated. A common procedure to estimate these parameters is to use the Inference

Function for Marginal procedure described in Joe and Xu (1996), consisting on estimating the

copula parameters by maximum likelihood using (4), having previously characterized the marginal

distributions. This method would give a single estimate of the parameter vector θ for the entire

sampling period, making necessary the strong assumption that the dependence structure between

forecasts is constant over time. In order to overcome this restriction a minimum distance estima-

tor of the copula parameters is proposed here. Notice that, given that εt+1(h − 1) and zt(h) are

independent by construction, an approximation to f̂t+1|h−1(·) can be obtained by the convolution

of the density of the forecast at time t and the estimate of the density of the shock as

ĝt+1|h−1(z|θ) =

∫ ∞
−∞

f̂t|h(z − x)f̂ε,h−1(x)dx. (5)

As f̂ε,h−1(·) is constructed using (4), ĝt+1|h−1(z) depends on the copula parameter vector θ. The

proposed estimation method for θ consists on minimizing the Kullback-Leibler information crite-

rion distance measure (see e.g. Mitchell and Hall, 2005) that measures the discrepancy between

the ’true’ density f̂t+1|h−1(·) and the approximated one ĝt+1|h−1(z). Thus, the proposed estimator

for θ is

θ̂MDE = arg min
θ

∫ ∞
−∞

f̂t+1|h−1(x) ln

[
f̂t+1|h−1(x)

ĝt+1|h−1(x|θ)

]
dx. (6)

The copula parameters θ are chosen so that the expected difference of the log-scores of both

densities are minimal. This estimator falls into the class of minimum distance estimators described

in Basu et al. (2011) and, although the finite sample properties of this estimator are left for further

research, the estimator is consistent. This proposed estimator has two main practical advantages

with respect to the IFM method: first, it can be performed dynamically, so that every time a

revision of a forecast is made a new estimate of the copula parameters is obtained. Also, the

method does not need data to estimate the parameters. This is of great practical relevance. If,
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as commented earlier, we interpret the variance of the information shock as a measure forecast

uncertainty of zt+h, the proposed method provides a way to obtain measure of ex-ante uncertainty

calculated at the moment of releasing an update of the density forecast. By obtaining this densities

for different forecast horizons, h, we can study the ’term structure’ of uncertainty for a fixed point

event.

2.2 A measure of news absorbtion

The decomposition (5) evaluated under the optimal value of θ can also be used to construct a

measure of information incorporation to updates of the density forecast. Assume that in (5)

ĝt+1|h−1(z) = f̂t+1|h−1(z), i.e., that the fit is perfect. The convolution theorem (see for example

Bracewell, 1999) states that the Fourier transform of a convolution can be decomposed as the

product of the Fourier transform of the densities involved in the convolution2, so that

FT [f̂t+1|h−1(z)] ≡ st+1|h−1(λ) = st|h(λ)sε,h(λ), λ ∈ [−π, π]. (7)

The Fourier transform allows us to express the behaviour of the density at frequency λ as the

product of both components at the same frequency. Making this relation additive by taking

logarithms in (7), we can construct an approximate measure of the relative importance of ε on

the updated density forecast at frequency λ:

dε(λ) =
ln[sε,h(λ)]

ln[st+1|h−1(λ)]
, 0 ≤ dε(λ) ≤ 1.

Finally, a measure of the absorbtion of new information into the updated density forecast can be

obtained aggregating dε(λ) at all frequencies as

Abst+1|h−1 =
1

2π

∫ π

−π
dε(λ)dλ (8)

2This can be easily proven as FT [ft+1|h−1(z)] =
∫∞
−∞

[∫∞
−∞ ft|h(z − x)f̂ε,h(x)dx

]
e−iλzdz =∫∞

−∞ f̂ε,h(x)e−iλz
[∫∞
−∞ ft|h(z − x)e−iλ(z−x)d(z − x)

]
dx = st|h(λ)sε,h(λ).
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This measure, which ranges between zero and one, gives an approximate estimate of the proportion

of new information incorporated to the revision of the inflation forecast.

2.3 Dynamic evaluation of forecasts

In this section it will be shown how the densities of the information shocks, interpreted as forecast

revisions, can be used to check two well known regularities of optimal forecasts: unbiasedness and

the monotonic increase of the variance of forecast revision with the forecast horizon. Under a

quadratic loss function the optimal forecast for zt+h made at moment t is obtained as

ẑt(h) = arg min
z̃∈Z

E[(zt+h − z̃)2|It], Z ⊂ <.

The point forecast ẑt(h) is said to be efficient if it incorporates all information available to the

forecaster at time t. Testing for point forecast efficiency is commonly performed using the popular

Mincer and Zarnowitz (1969) regression-based test, or extensions to more general settings proposed

more recently by, for example, Rossi and Sekhposyan (2015). Efficiency tests based on forecast

revisions have also been proposed by Mankiw and Saphiro (1986) or Patton and Timmermann

(2012). All these tests are static in the sense that the efficiency is checked for a given sample.

However, it would be useful to check whether the properties of the forecasts are violated during the

sampling period. It is know from Nordhaus (1987) that forecast revisions should be unpredictable,

and therefore have conditional zero mean, and be independent of past revisions. Although the

second part of the statement could prove hard to check dynamically, the first one (namely, the

unbiasedness property of forecasts) can be checked using the density of the shocks of news derived

earlier. Notice that from (1) εt+1(h− 1) is a forecast revision, and that

E[εt+1(h− 1)] = E{[zt+h − ẑt(h)]− [zt+h − ẑt+1(h− 1)]} = E[êt(h)− êt+1(h− 1)], (9)

where ẑt(h) is the optimal point forecast and the h-step forecast errors is defined as êt(h) = zt+h−

ẑt(h). Under a square loss function, the forecasts should be unbiased, so that E[εt+1(h− 1)|It] =
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E[εt+1(h−1)|It+1] = 0, i.e., εt+1(h−1) must have a conditional and unconditional mean of zero. A

nonzero mean would imply that a significant revision has been made, implying that the previous

forecast did not incorporate all available information, or that new information is expected to affect

substantially the forecasted variable. Therefore, unbiasedness can be though of as a necessary but

not sufficient condition for efficiency. A dynamic test of unbiasedness can be defined as

H0 : µt+1|h−1 = 0 against H1 : µt+1|h−1 6= 0

where µ̂t+1|h−1 = E(εt+1(h − 1)). This can be easily performed as for each revision the density

of εt+1(h − 1) is known. A rejection of the null can, then, be useful to identify periods in which

efficiency is potentially breached.

A second well known regularity that can be tested dynamically using the densities of the shocks

of information is the well known fact (see e.g. Mankiw and Saphiro, 1986) that the variance of the

forecast revisions decreases as the forecast horizon decreases. This regularity can be intuitively

explained by the fact that, as we approach the outcome date, the variance of the forecast error

decreases indicating a decrease in uncertainty driven by the incorporation of information into

the forecast, while the variance of the forecast itself increases (see e.g. Granger and Newbold,

1986). This trade-off between the variances of the forecast and the forecast error is well known,

and its implications to forecast revisions is studied in Isiklar and Lahiri (2007) and is the base

used by Patton and Timmermann (2012) to construct their rationality test. This regularity

can be tested dynamically using the previous setting. We know that if forecasts are efficient

V ar[ε2t (h)] ≥ V ar[ε2t+j(h − j)] for j > 0, and let V Rt,h = V ar[ε2t (h)]/V ar[ε2t+h−1(1)] for h > 1 ,

the testing problem is

H0 : V Rt,h ≥ 1 against H1 : V Rt,h < 1,

where in dh the variance of the revisions are compared to the revision of the forecast one period

before the outcome date. As forecast errors at horizon h have an MA(h−1) correlation structure,
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this should prevent problems derived from the correlation between numerator and denominator

in dj. Notice that the null distribution of dh is unknown, so it must be simulated. Realizations of

ε2t (h) are obtained from its distribution using the Inverse Transform Sampling method3. Again, a

non-rejection of the null hypothesis does not necessarily imply a lack of efficient incorporation of

information into subsequent revisions of forecasts. These two tests proposed in this section can

act as warning signals about periods in which efficiency is lost, but a full dynamic efficiency test

should be derived. The approach proposed in this paper appears a promising method of achieving

this.

3 Evaluating the Bank of England fan charts

3.1 Extraction of shocks

Since 1993, and following the introduction of inflation targeting for UK monetary policy in 1992,

the Bank of England produces its inflation forecasts4 in the form of density forecasts. Each quarter

the Bank releases its forecasts for the next 12 quarters (8 quarters until the second quarter of 2013)

under two assumptions: constant official interest rates and the assumption that interest rates will

follow market interest rates. The graphical representation of these forecasts is known as the fan

chart and it depicts the Bank’s balance of risks around the central tendency of inflation. The

Bank reports the Monetary Policy Committee judgement on the future evolution of the central

tendency (mode, µ), uncertainty (σ) and skewness5 (η) of inflation. The value of these parameters

and a report containing all the extra assumptions underlying the construction of the fan charts

are publicly available on the Bank of England’s website6. Once these parameters are decided, the

3The Inverse Transform Sampling method is suitable to obtain values of a random variable X when the only
information available is its cumulative distribution function, F (x). The method works as follows: obtain a re-
alization u of a standard uniform distribution on the interval [0,1]. The draw from X is the value x such that
F (x) = u.

4RPIX inflation until December 2003 and CPI inflation since.
5Skewness is measured as the difference between the mean and the mode.
6http://www.bankofengland.co.uk/publications/Pages/inflationreport/irprobab.aspx
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Figure 1: Moments of errors

(a) variance (b) skewness

fan charts are constructed using the Two Piece Normal (TPN) distribution

f(x) =

 A exp
[
− (x−µ)2

2σ2
1

]
if x < µ

A exp
[
− (x−µ)2

2σ2
2

]
otherwise

(10)

with A =
√

2/π(σ1 + σ2)
−1. The parameters of the distribution (µ, σ1 and σ2) are chosen so that

it replicates the evolution of mode, uncertainty and skewness of inflation projected by the Bank

using the following relations that can be derived from Britton et al. (1998) and Wallis (2004)

b =
πη2

2σ2
, g = sign(η)×

[
1−

(
(
√

1 + 2b− 1)2

b

)]
, σ1 =

σ√
1 + g

, σ2 =

√
(1 + g)

(1− g)
σ1

with µ equal to the mode projected by the Monetary Policy Committee (MPC).

Every quarter the Bank releases a new set of density forecasts which imply a revision of the

previous ones incorporating the new information made available during the previous quarter. This

new information may or may not alter the balance of risk assessment made by the Bank which

could, then, affect the shape of the updated density forecasts of inflation. The analysis presented

here starts in January 1998, the year in which the Bank of England was granted independence.

The method described in section 2.1 will be applied here to obtain the densities of these shocks

of information. As noted earlier, a copula function is needed to model the joint density of two
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density forecast; the Frank copula (Frank, 1979; Genest, 1987) is used in (4). The Frank copula,

with density function defined as

c(u1, u2) = θηe−θ(u1+u2)/[η − (1− e−θu1)(1− e−θu2)]2, η = θ − 1,

and parameter θ > 0, allows for negative dependence between the marginals, and symmetric

dependency and does not allow for tail dependence. It is, then, useful to model strong positive

or negative dependence where this dependence is centered in the centre of the distribution. This

is an appropriate choice for this problem. Dependence between revisions are likely to be strongly

positive, and focused on central moments rather than in extreme events.

3.2 Uncertainty measure

Figure 3.1 contains the plots of the variance (panel a) and skewness coefficient (panel b) of the

information shocks extracted from the Bank of England density forecasts for the one quarter

ahead (blue line), two quarters ahead (red line), one year ahead (green line) and two years ahead

(yellow line). The picture shows a decrease in the variance of the information shocks from the

end of the 90s to the end of 2007. Also for a given forecasted quarter in this period the variances

of the shocks uniformly decrease with the forecast horizon suggesting that the second regularity

of optimal forecasts commented on earlier (uniform decrease of the variance of revisions as we

approach the outcome date) is likely to hold. This suggests also that it is likely to assume that the

Bank was efficiently incorporating information to its forecasts during that period. As mentioned

earlier, the shock expected for inflation in two years’ time should have a high variance reflecting the

uncertainty surrounding the outcome variable. The incorporation of information in the subsequent

revision of this forecast in the following quarters should decrease uncertainty as measured by the

variance of the errors extracted from the fan charts. During the period 2008-2011 this mechanism

of information incorporation seems to break. The variances of the errors increase sharply at all

forecast horizons reflecting the increase of economic uncertainty, and there is no clear evidence of

the decrease of variances with the forecast horizon. This could be due to the inability of the Bank
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Table 1: Correlation of V ar[εt+h(h)] with uncertainty measures

Correlation p-value
h EPU JLN-F JLN-M EPU JLN-F JLN-M

1 0.6634 -0.2778 -0.3664 0.00 0.01 0.00
2 0.6764 0.00
4 0.6162 0.0079 -0.3526 0.00 0.47 0.00
8 0.5215 0.00

to incorporate or even process new information in the density forecasts. After 2011 the variances

of the shocks, although still quite high with respect to its pre-crisis values, seem to have stabilized.

Also, a pattern of efficient incorporation of information seems to have been re-established.

We can interpret the variance of the shocks as a measure of perceived uncertainty at different

horizons. For example, the blue line in Figure 1a represents the expected uncertainty surrounding

inflation in the next quarter, while the yellow line can be interpreted as the expected uncertainty

of inflation in two years’ time. In order to compare the relationship of this measure with other

popular measures of uncertainty, the rank correlation coefficients of the proposed measure with

the UK Economic Policy Uncertainty (EPU) index of Baker et al. (2013) and the macroeconomic

and financial uncertainty indices of Jurado et al. (2015) (JLN-M and JLN-F respectively) are

presented in table 1. While there is a strong positive correlation between EPU and the variance

of the information shocks for the selected horizons, the correlation seems to be negative for the

JNL measures. While this last result is striking at first glance, it should be noted that this latter

measure is specific of the US. The proposed measure of uncertainty has an advantage as compared

to the previous ones: it can be calculated every time a revision of the forecast is performed, so it

is in this sense an ex-ante measure of uncertainty that could be incorporated into forward looking

models. Also, as it is a measure of inflation uncertainty expected by the Bank of England, it

could be used to check whether uncertainty plays a role in monetary policy actions.

With respect to the skewness coefficient, the distribution of information shocks for one and

two years ahead seem to be quite symmetrical, meaning that the Bank does not have a strong

belief in the likelihood of extreme event outcomes. However, the MPC seems to pay attention to

this possibility when producing short term forecasts. The skewness coefficient of the information
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Figure 2: News absorbtion

shocks fluctuates widely until the beginning of the financial crisis for short term forecast revisions.

However, since then the distribution of the shocks perceived by the Bank seem to have a more

symmetrical distribution for all forecast horizons. This result, together with the fact that the

variance of the information shocks increased during the financial crisis, can be interpreted to

mean that the Bank is perceiving a more uncertain environment in which large positive shocks

are as likely as large negative ones.

Finally, figure 2 shows the measure of news absorbtion, which measures the degree of incor-

poration of new information in subsequent forecasts. Notice that for short term forecasts this

measure is more volatile than for long term forecasts, although in all cases it fluctuates around

0.6. This means that approximately 60% of the information contained in a forecast comes from

information made available after the previous release. Regarding long term forecasting (one and

two years ahead) the proportion is similar, although it seems to be declining since the financial

crisis. This result seems to indicate that in a period of greater uncertainty new information is

taken with caution before incorporating it into long term forecasts. An open question is to decide

how much of this new information is ’news’ or ’noise’ as noted in Lahiri and Liu (2006).

3.3 Optimal forecasts regularity tests

Figure 3 shows the mean of the shocks of information for selected forecast horizons (right axis).

The grey bars indicate a rejection of the null hypothesis of zero mean at the 10% significance level
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Figure 3: Efficiency tests: Test for zero mean of the shocks

(a) h=1 (b) h=2

(c) h=4 (d) h=8

and, a therefore, it identifies periods of biased forecasts or significant forecast revisions. Notice

that the number of periods for which the null hypothesis is rejected is decreasing with the horizon

and that for h=2, 75% of the forecasts can be considered optimal. However, that potential loss

of optimality is focused consistently across horizons in the periods immediately after 2007 and

during the financial crisis. This coincides with the period in which uncertainty, as measured by the

variance of the shocks of information, starts to increase. This identifies a period in which economic

and financial conditions worsened very quickly, and the Bank seem to have difficulty in processing

the information properly. For the rest of forecast horizons, the proportion of non-optimal forecasts

is below the 75%. Another period of lack of optimality that the test is consistently identifying is

the period around January 2004, when the Bank changed its inflation target from RPIX to CPI,

which could be considered spurious. The picture painted does not contradict previous results that

prove the efficiency of the Bank of England forecasts (see e.g. Bank of England, 2015; Elder et al.,

2005), but instead complements it, identifying certain periods in which efficiency is lost. It can

also be noted that forecasts are more significantly revised for short term forecasts than for long

term forecasting, which is consistent with the higher uncertainty of inflation for horizons larger
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Figure 4: Efficiency tests: Test for decreasing variance of the shocks

(a) h=4 (b) h=8

than two.

Finally, figure 4 plots the variance of the shocks for one and two years ahead forecasts. Grey

bars indicate rejection at 10% significance level of the null hypothesis that these variances are

significantly larger than the variance of the shocks one month ahead. Although the number of

periods for which the null is rejected is higher than in the previous test, the results are similar:

there seems to be a loss of optimality in the aftermath of the financial crisis. It should be noted

that the rejection of the null during the years of the so-called Great Moderation could be due

to the effect of the Friedman-Ball hypothesis -low inflation expected in periods of low inflation

uncertainty. What is observed here is the fact that inflation was low and the economic conditions

were stable, which resulted in a period of low uncertainty. However, the results indicate that this

hypothesis may not hold after the financial crisis, where inflation uncertainty is still large but the

level of inflation remains at low levels. Further investigation is needed in this aspect.

4 Conclusions

This paper proposes a new method to extract the density of information shocks from the revision of

density forecasts. Studying this density gives information about the change in the balance of risks

and it could help understand the mechanism of information incorporation to subsequent forecasts.

The paper focuses on extracting this information from the revision of inflation density forecasts

produced by the Bank of England. The variance of these shocks at different forecast horizons

is proposed as a new measure of ex-ante inflation uncertainty. The results show that until the
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beginning of the financial crisis the Bank was perceiving a period of decreasing uncertainty. Since

then, inflation uncertainty perceived by the Bank rose sharply and, although it has stabilized, it

is still at levels above its pre-crisis values. New information released between two vintages, which

represent about 60% of the information contained in revisions, seems to have been incorporated

optimally. Periods of unbiasedness of forecasts are identified which may correspond with periods in

which forecast efficiency does not hold. These moment focus on the 2008-2011 period when there

seems to be no clear learning mechanism that incorporates information into revisions of forecasts.

This results and the methodology proposed open interesting areas of research: it should help

improve density forecast evaluation tests, as it can be used to eliminate the dependence present

in multi-step forecasts. Also, the uncertainty shocks obtained can be used to study if they have

affected monetary policy outcomes and in what ways.
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