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Abstract 

We develop a procedure for removing four major specification errors from the usual formulation 

of binary choice models. The model that results from this procedure is different from the 

conventional probit and logit models. This difference arises as a direct consequence of our 

relaxation of the usual assumption that omitted regressors constituting the error term of a latent 

linear regression model do not introduce omitted regressor biases into the coefficients of the 

included regressors.        
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1. Introduction  

It is well-known that binary choice models are subject to certain specification errors. It can be 

shown that the usual approach of adding an error term to a mathematical function leads to a 

model with nonunique coefficients and error term. In this model, the conditional expectation of 

the dependent variable given the included regressors does not always exist. Even when it exists, 

its functional form may be unknown. The nonunique error term is interpreted as representing the 

net effect of omitted regressors on the dependent variable. Pratt and Schlaifer (1988, p. 34) 

pointed out that omitted regressors are not unique and as a result, the condition that the included 

regressors be independent of ‘the’ excluded variables themselves is “meaningless”. There are 

cases where the correlation between the nonunique error term and the included regressors can be 

made to appear and disappear at the whim of an arbitrary choice between two observationally 

equivalent models. To avoid these problems, we specify models with unique coefficients and 

error terms without misspecifying their correct functional forms. The unique error term of a 

model is a function of certain ‘sufficient sets’ of omitted regressors. We derive these sufficient 

sets for a binary choice model in this paper. In the usual approach, omitted regressors 

constituting the error term of a model do not introduce omitted-regressor biases into the 

coefficients of the included regressors. In our approach, they do so.          

Following the usual approach, Yatchew and Griliches (1984)
1
 showed that if one of two 

uncorrelated regressors included in a simple binary choice model is omitted, then the estimator 

of the coefficient on the remaining regressor will be inconsistent. They also showed that, if the 

disturbances in a latent regression model are heteroscedastic, then the maximum likelihood 

estimators that assume homoscedasticity are inconsistent and the covariance matrix is 

inappropriate. In this paper, we show that the use of a latent regression model with unique 

                                                           
1
 See, also, Greene (2012, chapter 17, p. 713).  
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coefficients and error term changes their results. Our binary choice model is different from those 

of such researchers as Yatchew and Griliches, Cramer (2006/07), and Wooldridge (2002, 

Chapter 15). The concept of unique coefficients and error term is distinctive to our work. 

Specifically, we do not assume any incorrect functional form, and we account for relevant 

omitted regressors, measurement errors, and correlations between excluded and the included 

regressors. Our model features varying coefficients (VCs) in which we interpret the VC on a 

continuous regressor as a function of three quantities: (i) bias-free partial derivative of the 

dependent variable with respect to the continuous regressor, (ii) omitted-regressor biases, and 

(iii) measurement-error biases. This interpretation of the VCs is unique to our work and allows 

us to focus on the bias-free (i.e., partial derivatives) parts of the VCs.  

The remainder of this paper is comprised of three sections. Section 2 summarizes a recent 

derivation of Swamy, Mehta, Tavlas and Hall (2014) of all the terms involved in a binary choice 

model with unique coefficients and error term. The section also provides the conditions under 

which such a model can be consistently estimated. Section 3 presents an empirical example. 

Section 4 concludes. An Appendix at the end of the paper has two sections. The first section 

compares the relative generality of assumptions underlying different linear and nonlinear models. 

The second section derives the information matrix for a binary choice model with unique 

coefficients and error term.   

2. Methods of Correctly Specifying Binary Choice Models and Their Estimation   

2.1 Model for a Cross-section of Individuals  

Greene (2012, pp. 681-683) described various situations under which the use of discrete choice 

models is called for. In what follows, we develop a discrete choice model that is free of several 

specification errors. To explain, we begin with the following specification:    
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1( )
i

* * *

i i i iLy x ,...,x                                                                                                                      (1) 

where i indexes n individuals, 
1( )

i

* *

i i iLx ,...,x  is a mathematical function, and its arguments are 

mathematical variables. Let (.)i  be short hand for this function. We do not observe *

iy  but 

view the outcome of a discrete choice as a reflection of the underlying mathematical function in 

equation (1). We only observe whether a choice is made or not (see Greene 2012, p. 686).  

Therefore, our observation is  

1iy      if *

iy  > 0, 

iy  = 0    if *

iy    0                                                                                                                        (2)  

where the choice “not made” is indicated by the value 0 and the choice “made” is indicated by 

the value 1, i.e., iy  takes either 0 or 1. An example of model (2), provided in Greene (2012, 

Example 17.1, pp. 683-684), is a situation involving labor force participation where a respondent 

either works or seeks work ( iy  = 1) or does not ( iy  = 0) in the period in which a survey was 

taken.
2
     

In equation (1), *

ix  = ( 1 )
i

* *

i i ,Lx ,...,x   is iL 1, iL  denotes the total number of the arguments 

of 1( )
i

* *

i i i ,Lx ,...,x  = (.)i ; there are no omitted arguments needing an error term. Equation (1) is 

a mathematical equation that holds exactly. Inexactness and stochastic error term enters into (1) 

when we derive the appropriate error term and make distributional assumption about it. The 

reasons for this are explained below. The number iL  may depend on i. This dependence occurs 

when the number of arguments of (.)i  is different for different individuals. For example, before 

deciding whether or not to make a large purchase, each consumer makes a marginal 

                                                           
2
 We will show below that the inconsistency problems Yatchew and Griliches (1984, p. 713) pointed out with the 

probit and logit models are eliminated by replacing these models by the model in (1) and (2).  
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benefit/marginal cost calculations based on the utilities achieved by making the purchase and by 

not making the purchase, and by using the available funds for the purchase of something else. 

The difference between benefit and cost as an unobserved variable *

iy  can vary across 

consumers if they have different utility functions with different arguments. These variations can 

show up in the form of different arguments of (.)i  for different consumers.  

It should be noted that (1) represents our departure from the usual approach of adding a 

nonunique error term to a mathematical function and making a “meaningless” assumption about 

the error term. Pratt and Schlaifer (1988, p. 34) severely criticized this approach. To avoid this 

criticism, what we have done in (1) is that we have taken all the x-variables and the variables 

constituting the error term   in Cramer’s (2006/07) (or e in Wooldridge’s (2002, p. 457)) latent 

regression model, and included them in (.)i  as its arguments. In addition, we also included in 

(.)i  all relevant pre-existing conditions as its arguments.
3
  

 The problem that researchers face is that of uncovering the correct functional form of 

(.)i .
4
 However, any false relations can be shown to have been eliminated when we control for 

all relevant pre-existing conditions. To make use of this observation due to Skyrms (1988, p. 59), 

we incorporate these pre-existing conditions into (.)i  by letting some of the elements of *

i
x  

represent these conditions.
5
 Clearly, we have no way of knowing what these pre-existing 

conditions might be, how to measure them (if we knew them), or how many there may be. To 

control for these conditions, we use the following approach. We assume that all relevant pre-

existing conditions appear as arguments of the function (.)i  in equation (1). This is a 

                                                           
3
 We explain in the next paragraph why we have included these conditions.  

4
 Some researchers may believe that there is no such thing as the true functional form of (1). Whenever we talk of 

the correct functional form of (1), we mean the functional form of (1) that is appropriate to the particular binary 

choice in (2).   
5
 Here we are using Skyrms’ (1988, p. 59) definition of the term ‘all relevant pre-existing conditions.’   
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straightforward approach. Therefore, when we take the partial derivatives of (.)i  with respect 

to 
*

ijx , a determinant of *

iy  included in (.)i  as its argument, the values of all pre-existing 

conditions are automatically held constant. This action is important because it sets the partial 

derivative 
* */i ijy x   equal to zero whenever the relation of *

iy  to 
*

ijx , an element *

ix , is false (see 

Skyrms 1988, p. 59).    

 The function (.)i  in (1) is exact and mathematical in nature, without any relevant 

omitted arguments. Moreover, its unknown functional form is not misspecified. Therefore, it 

does not require an error term; indeed, it would be incorrect to add an error term to (.)i . We 

refer to (1) as “a minimally restricted mathematical equation,” the reason being that no 

restriction other than the normalization rule, that the coefficient of *

iy  is unity, is imposed on (1). 

Without this restriction, the function (.)i  is difficult to identify. The reason why no other 

restriction is imposed on it is that we want (1) to be a real-world relationship. With such a 

relationship we can estimate the causal effects of a treatment. Basmann (1988, pp. 73 and 99) 

argued that causality is a property of the real world. We define that real-world relations are those 

that are not misspecified. Causal relations are unique in the real world. This is the reason why we 

insist that the coefficients and error term of our model be unique. From Basmann’s (1988, p. 98) 

definition it follows that (1) is free of the most serious objection, i.e., non-uniqueness, which 

occurs when stationarity producing transformation of observable variables are used.
6
 We do not 

use such variables in (1).   

 

 

                                                           
6
 This is Basmann’s (1988, pp. 73 and 99) statement.  
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2.2 Unique Coefficients and Error Terms of Models  

2.2.1 Causal relations: Basmann (1988, pp. 73 and 99) emphasized that the word ‘causality’ 

designates a property of the real world.” Hence we work only with appropriate real-world 

relationships to evaluate causal effects.    

We define that the real-world relationships are those that are not subject to any 

specification errors. It is possible to avoid some of those errors, as we show below. The real-

world relationships and their properties are always true and unique. Such relationships cannot be 

found, however, by imposing severe restrictions because they can be false. Examples of these 

restrictions are given in the Appendix to the paper. For example, certain separability conditions 

are imposed on (1) to obtain (A1) in the Appendix. As a result of these conditions, (A1) may not 

be a real-world relationship and may not possess the causality property. Again in the Appendix, 

(A2) is a general condition of statistical independence which is very strong. Model (A5) of the 

Appendix with a linear functional form could be misspecified.
7
   

2.2.2 Derivation of a model from (1) without committing a single specification error: To 

avoid misspecifications of the unknown correct functional form of (1), we change the problem of 

estimating (1) to the problem of estimating some of its partial derivatives in    

*

iy  = 
*

0i +
* *

1 1i ix  +  + * *

i iiL iLx                                                                                                        (3) 

where, for  = 1, …, iL , 
*

i  = 
*

(.)i

ix






 if 

*

ix  is continuous and = 
*

(.)i

ix






 with the right sign if 

*

ix  is discrete having zero as one of its possible values,   is the first-difference operator, and the 

intercept 
*

0i  = 
*

iy  - * *

1

iL

i ix
  . In words, this intercept is the error of approximation due to 

                                                           
7
 Cramer (2006/07, p.2) and Wooldridge (2002, p. 457) assume that their latent regression models are linear. This is 

a usual assumption. We are simply justifying our unusual assumptions without criticizing the usual assumptions.    
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approximating *

ity  by ( * *

1

iL

i ix
  ). Therefore, model (3) with zero intercept does not misspecify 

the unknown functional form of (1) if the error of approximation is truly zero and model (3) with 

nonzero intercept is the same as (1) with no misspecifications of its functional form, since 
*

iy  - 

* *

1

iL

i ix
   + * *

1

iL

i ix
   = 

*

iy . This is how we deal with the problem of the unknown functional 

form of (1). Note that no separability conditions need to be imposed on (1) to write it in the form 

of (3). This is the advantage of (3) over (A1).   

Note that in the above definition of the partial derivative (
*

i ), the values of all the 

arguments of ( )it .  (including all relevant pre-existing conditions) other than 
*

ix  are held 

constant. These partial derivatives are different from those that can be derived from (A1) with  

i  suppressed. This is because in taking the latter derivatives the values of 
1 t

* *

i ,K iLx ,...,x
 are not 

held constant.   

Equation (3) is not a false relationship, since we held the values of all relevant pre-exiting 

conditions constant in deriving its coefficients. The regression in (3) has the minimally restricted 

equation in (1) as its basis. The coefficients of (3) are constants if (1) is linear and are variables 

otherwise. In the latter case, the coefficients of (3) can be the functions of all of the arguments of 

( )it . . Any function of the form (1) with unknown functional form can be written as linear in 

variables and nonlinear in coefficients, as in (3). We have already established that this linear-in-

variables and nonlinear-in-coefficients model has the correct functional form if its intercept is 

zero and is the same as (1) otherwise. In either case, (3) does not have a misspecified functional 

form. In this paper, we take advantage of this procedure.  
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 Not all elements of *

i
x  are measured; suppose that the first K of them are measured. This 

assumption needs the restriction that min( 1,..., nL L ) > K. Even these measurements may contain 

errors so that the observed argument 
ijx  is equal to the sum of the true value 

*

ijx  and a 

measurement error, denoted by 
*

ij .
8
 The arguments, 

*

igx , g  = K+1, …, iL , for which no data are 

available, are treated as regressors omitted from (3).
9
 These are of two types: (i) unobserved 

determinants of *

iy  and (ii) all relevant pre-existing conditions. We know nothing of these two 

types of variables. With these variables being present in (3), we cannot estimate it. Again without 

misspecifying (1) these variables should be eliminated from (3). To do so, we consider the 

“auxiliary” relations of each *

igx  to  1

* *

i iKx ,...,x . Such relations are: For g = K+1 …, iL ,  

*

igx  = *

0ig  + * *

1 1i igx   +  + * *

iK igKx                                                                                                 (4) 

where *

igj  = 

*

*

ig

ij

x

x




 if *

ijx  is continuous holding the values of all the regressors of (A8) other than 

that of *

ijx  constant and = 

*

*

ig

ij

x

x




 with the right sign if *

ijx  is discrete taking zero as one of its 

possible values and *

0ig  = *

igx  - * *

1

K

tj igjj
x

  . This intercept is the portion of *

igx  remaining after 

the effect ( * *

1

K

ij igjj
x

  ) of 1

* *

i iKx ,...,x  on *

igx  has been subtracted from it.  

 In (4), there are iL  - K relationships. The intercept *

0ig  is the error due to approximating 

the relationship between the gth omitted regressor and all the included regressors (“the correct 

relationship”) by * *

1

K

tj igjj
x

  . If this error of approximation is truly zero, then equation (4) with 

                                                           
8
 We postpone making stochastic assumptions about measurement errors.    

9
 The label ‘omitted’ means that we would remove them from (3).  
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zero intercept has the same functional form as the correct relationship. In the alternative case 

where the error of approximation is not zero, (4) is the same as the correct relationship, i.e., *

igx  - 

* *

1

K

tj igjj
x

   + * *

1

K

tj igjj
x

  . In either case (4) does not misspecify the correct functional form. 

According to Pratt and Schlaifer (1988, p. 34), the condition that the included regressors be 

independent of ‘the’ omitted regressors themselves is meaningless. This statement supports (4) 

but not the usual assumption that the error term of a latent regression model is uncorrelated with 

or independent of the included regressors.
10

 The problem is that omitted regressors are not 

unique, as Pratt and Schlaifer (1988, p. 34) proved.         

2.2.3 A latent regression model with unique coefficients and error terms: Substituting the 

right-hand side of equation (4) for *

igx  in (3) gives   

*

iy  = 
*

0i  + * *

01

iL

tg igg K      + * * * *

1 1
( )

iK L

ij ij igj igj g K
x

  
                                                       (5) The 

error term, the intercept, and the coefficients of the nonconstant regressors of this model are 

* *

01

itL

ig igg K    , 
*

0i , and  * * *

1
( )

iL

ij igj igg K 
   , j = 1, …, K, respectively.             

Bias-free partial derivatives: *

ij  = 
*

(.)i

ijx






 or = 

*

(.)i

ijx






, j = 1, …, K.                                      (6) 

These partial derivatives have the correct functional form if the *

ijx ’s are continuous.   

‘Sufficient’ sets of omitted regressors: The regressors, 1 i

* *

i ,,K iLx ,...,x , are called “omitted 

regressors” because they are included in (3) but not in equation (5). The regressors 1

* *

i iKx ,...,x  are 

called “the included regressors.” It can be seen from (5) that the portions 1 0 0i

* *

i ,K , iL,...,   of 

                                                           
10

 Cramer (2006/07, p. 4) and Wooldridge (2002, p. 457) make the usual assumption.    



 10 
 

omitted regressors, 
1 i

* *

i ,K iLx ,...,x
, respectively, in conjunction with the included regressors 

1

* *

i iKx ,...,x  are sufficient to determine the value of 
*

iy  exactly. For this reason, Pratt and Schlaifer 

(1988, p. 34) called 
1 0 0i

* *

i ,K , i ,L ,,...,   “certain ‘sufficient sets’ of omitted regressors.” The second 

term ( * *

01

iL

tg igg K    ) on the right-hand side of (5) is called “a function of these sufficient sets of 

omitted regressors 
1 i

* *

i ,K iLx ,...,x
.” Pratt and Schlaifer (1984, 1988) pointed out that this function 

can be taken as the error term of (5). It remains as a mathematical function until we make a 

distributional assumption about it. Note that the problem with the error terms of the usual latent 

regression models including those of (A1), Karlsen, Myklebust and Tjøstheim’s (2007) and 

White’s (1980, 1982) models is that they are not the appropriate functions of the sufficient sets 

of omitted regressors and hence are not unique and/or are arbitrary.
11

   

Deterministic omitted-regressors bias: The term * *

1

iL

igj igg K     contained in the coefficient of 

*

tjx  in (5) measures such a bias.  

Swamy et al. (2014, pp. 197, 199 and 217-219) proved that the coefficients 

* * *

1
( )

itL

ij igj igg K 
    and the error term * *

01

iL

ig igg K     of (5) are unique in the following sense:  

Uniqueness: The coefficients and error term of model (5) are unique if they are invariant under 

the addition and subtraction of the coefficient of any regressor omitted from (5) times any 

regressor included in (5) on the right-hand side of (3) (see Swamy et al. 2014, pp. 199 and 219).  

The equations in (4) play a crucial role in Swamy et al.’s (2014) proof of the uniqueness 

of the coefficients and error term of (5). If we had taken the sum * *

, 1 , 1i K i Kx  
+  + * *

i iiL iLx   of the 

                                                           
11

 Cramer (2006/07, p. 4) and Wooldridge (2002, p. 457) adopt the usual latent regression models 

with nonunique coefficients and error terms.   
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last 
iL  - K terms on the right-hand side of (3) as its error term, then we would have obtained a 

nonunique error term. The reason why this would have happened is that omitted regressors are 

not unique. What (4) has done is that it has split each gth omitted regressor into a ‘sufficient set’ 

and an included-regressors’ effect. This sufficient set times the coefficient of the gth omitted 

regressor has become a term in the (unique) error term of (5) and the included-regressors’ effect 

times the coefficient of the gth omitted regressor has become a term in omitted-regressor biases 

of the coefficients of (5). This is not the usual procedure where the whole of each omitted 

regressor goes into the formation of an error term and no part of it becomes a term in omitted-

regressor biases. The usual procedure leads to nonunique coefficients and error term. In the YG 

procedure, only some of the included regressors which, when omitted, introduce omitted-

regressor biases into the (nonunique) coefficients on the remaining included regressors. Yatchew 

and Griliches (1984), Wooldridge (2002), and Cramer (2006/07) followed the usual procedure. 

Without using (4) it is not possible to derive a model with unique coefficients and error term.                                             

2.2.4 A correctly specified latent regression model: Substituting the terms on the right-hand 

sides of equations *

ijx  = ijx  - *

ij , j = 1, …, K, for *

ijx , j = 1, …, K, respectively, in (5) gives a 

model of the form  

 0 1 1

*

i i i i iK iKy x x                                                                                                                (7)                                                                               

where the intercept is defined as      

*
2

* * * * * * *

0 0 0

1 1

( )
i i

ij

L L

i i ig ig ij ij igj ig

g K g KS   

     


                                                                               (8) 

and the other terms are defined as  
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ij ijx   = 

*

* * *

1

(1 )( )
iL

ij

ij ij igj ig

g Kij

x
x  

  


    if ijx 1S   

          = ijx  ( * * *

1

iL

ij igj ig

g K 

    ) if ijx 2S                                                                                     (9) 

where the set 1S  contains all the regressors of equation (7) that are continuous, the set 2S  

contains all the regressors of (7) that can take the value zero with positive probability, the ratio of 

*

(1 )
ij

ijx



 in the first line of equation (9) comes from the equation *

ijx  = ijx  - *

ij  = (1  - 

*

)
ij

ij

ij

x
x


, and 

this ratio does not appear in the second line of equation (9) because ijx 2S  can take the value 

zero with positive probability.  

Equation (7) implies that a model is correctly specified if it is derived by inserting 

measurement errors at the appropriate places in a model with unique coefficients and error term 

(see Swamy et al. 2014, p. 199).  

Deterministic measurement-error biases: The formula 
*

2

* * * *

1

( )
i

ij

L

ij ij igj ig

g KS  

  


     in (8) 

measures the sum of measurement-error biases in the coefficients of ijx 2S  and the formula 

*

* * *

1

( )( )
iL

ij

ij igj ig

g Kijx  

  


    in the first line of (9) measures such a bias in the coefficient ij  of ijx

1S .  

Under our approach, measurement errors do not become random variables until 

distributional assumptions are made about them.   
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2.2.5 What specification errors are (3)-(8) free from? (i) The unknown functional form of (1) 

is not allowed to become the source of a specification error in (3). (ii) The uniqueness of the 

coefficients and error term of (5) eliminates the specification error resulting from non-unique 

coefficients and error term. (iii) Pratt and Schlaifer (1988, p. 34) pointed out that the requirement 

that the included regressors be independent of the excluded regressors themselves is 

“meaningless”. The specification error introduced by making this meaningless assumption is 

avoided by taking a correct function of certain ‘sufficient sets’ of omitted regressors as the error 

term of (5). (iv) The specification error of ignoring measurement errors when they are present is 

avoided by placing them at the appropriate places in (5). It should be noted that when we affirm 

that (7) is free of specification errors, we mean that it is free of specification-errors (i)-(iv). Using 

(3)-(6) we have derived a real-world relationship in (7) that is free of specification-errors (i)-(iv). 

Thus, our approach affirms that any relationship suffering from anyone of these specification 

errors is definitely not a real-world relationship.  

2.3 Comparison of (7) with the Yatchew and Griliches (1985), Wooldridge (2002), and 

Cramer (2006/07) Latent Regression Models  

In Section 2.2.3, we have seen that the relationships between each omitted regressor and the 

included regressors in (4) introduce omitted-regressor biases into the coefficients on the 

regressors of (5). We have pointed out in the last paragraph of that section that this is not how 

Yatchew and Griliches (YG) derived omitted-regressor biases. They work with models in which 

the coefficients and error terms do not satisfy our definition of uniqueness. YG considered a 

simple binary choice model and omitted one of its two included regressors. According to YG, 

this omission introduces omitted regressor bias into the coefficient on the regressor that is 

allowed to remain. The results proved by YG are: (i) even if the omitted regressor is uncorrelated 
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with the remaining included regressor, the coefficient on the latter regressor will be inconsistent. 

(ii) If the errors in the underlying regression are heteroscedastic, then the maximum likelihood 

estimators that ignore the heteroscedasticity are inconsistent and the covariance matrix is 

inappropriate (see also Greene 2012, p. 713). We do not omit any of the included regressors from 

(5) to generate omitted-regressor biases. For YG, omitted regressors in (4) are those that generate 

the error term in their latent regression model. Equation (5)’s error term is a function of those 

variables that satisfy Pratt and Schlaifer’s definition of ‘sufficient sets’ of our omitted regressors. 

Thus, YG’ concepts of omitted-regressors, included regressors, and error terms are different 

from ours. Their model is subject to specification errors (i)-(iv) listed in the previous section. 

YG’s assumptions about the error term of their model are questionable because of its non-

uniqueness. Unless its coefficients and error term are unique no model can represent any real-

world relationship which is unique. According to YG, Wooldridge, and Cramer, the regressors 

constituting the error term of a latent regression model do not produce omitted-regressors biases. 

Their omitted-regressor bias is not the same as those in (5). YG’s results cannot be obtained from 

our model (7). Their nonunique heteroscedastic error term is different from our unique 

heteroscedastic error term in (7). It can be shown that the results of YG arose as a direct 

consequence of ignoring our omitted-regressor and measurement-error biases in (9). Omitted 

regressors constituting the YG model’s (non-unique) error term also introduce omitted-regressor 

biases in our sense but not in their sense. Furthermore, the YG model suffers from all the four 

specification errors (i)-(iv) which equations (3)-(5), (7)-(9) avoid.    

To recapitulate, misspecifications of the correct functional form of (1) are avoided by 

expressing it in the form of equation (3). If the sum,
1

* *
iL

ig ig

g K

x 

 

 , of the last iL K  terms on the 
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right-hand side of (3) is treated as its error term, then this error term is not unique (see Swamy et 

al. 2014, p. 197). Suppose that the coefficients of (3) are constants. Then the correlation between 

the nonunique error term and the first K regressors of (3) can be made uncertain and certain, at 

the whim of an arbitrary choice between two observationally equivalent forms of (3), as shown 

by Swamy et al. 2014, pp. 217-218). To eliminate this difficulty, a model with unique 

coefficients and error term is derived by substituting the right-hand side of equation (4) for the 

omitted regressor, *

igx , in (3) for every g = K+1, …, iL . Equation (7) shows how the terms of an 

equation look like if this equation is made free of specification errors (i)-(iv). For each 

continuous 
ijx  with j > 0 in (7), its coefficient contains the bias-free partial derivative (

*

(.)i

ijx






) 

and omitted-regressor and measurement-error biases.                                                                                                                                                                                                      

2.3.1 Parameterization of model (7): The partial derivative (
* *

i ijy / x  ) components of the 

coefficients ( ij , j = 1, …, K) of (7) are the objects of our estimation. For this purpose, we 

parameterize (7) using our knowledge of the probability model governing the observations in (7). 

We assume that for j = 0, 1, …, K:  

ij  0 0 1 1i j i j ip jp ijz z z                                                                                               (10) 

where 0iz   1, the  ’s are fixed parameters, the z’s drive the coefficients of (7) and are, 

therefore, called “coefficient drivers.” These drivers are observed. We will explain below how to 

select these drivers. The errors ( ij ’s) are included in equation (10) because the p + 1 drivers 

may not be able to explain all variation in ij .  

Admissible drivers: For j = 0, 1, …, K, the vector iZ  = { 0 11, ,..., }i i ipZ Z Z   in (10) is an 

admissible set of coefficient drivers if given iZ , the value that the vector of the coefficients of (7) 
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would take in unit i had iX  = {1, 1,..., }i iKX X   been ix  =  1(1, ,..., )i iKx x   is independent of iX  

for all i.
12

  

We use the following matrix notation: 
ix  = ( 11, ,..., )i iKx x   is (K+1) 1 , iz  = (1, 

1 )i ipz ,...,z   is ( 1) 1p  , 
j
  = 

0 1( )j j jp, ,...,    is 1 ( 1)p  , 
ij  = 

j iz  is a scalar, Π  is the 

(K+1) ( p +1) matrix having 
j
  as its jth row, and i  = ( 0 )i iK,...,    is ( 1) 1K   . Substituting 

the right-hand side of (10) for ij  in (7) gives  

*

iy  = Πi ix z  + 
i ix                                                                                                                        (11)  

Assumption I: The regressors of equation (7) are conditionally independent of their coefficients 

given the coefficient drivers.   

Assumption II: For all i, let g( , )
i i

x z  be a Borel function of ( , )
i i

x z , E|
*

iy | <  , and E| 
*

iy

g( , )
i i

x z | <  .  

Assumption III: For i, i  = 1,…,n, ( ) 0| ,  i i iE x z , 
2( ) Δ| , i i i iE x z     , and 

( ) 0| ,
 i i i iE x z   if i i .               

In terms of homoscedastic error term, equation (11) can be written as  

*

iy Δ/   
i ix x  = Π Δ/   

i i i ix z x x  + Δ/    
i i i ix x x                                                     (12) 

where Δ  is positive definite.   

                                                           
12

 A similar admissibility condition for covariates is given in Pearl (2000, p. 79). Pearl (2000, p. 99) also gives an 

equation that forms a connection between the opaque phrase “the value that the coefficient vector of (3) would take 

in unit i, had iX  = ( 1,...,i iKX X )  been ix  = 1( ,..., )i iKx x ” and the physical processes that transfer changes in 

iX  into changes in 
*

iy .                
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Under Assumptions I, II, and III, the conditional expectation  

E( *

iy  | ,
i i

x z  ) =   Πi ix z                                                                                                                (13)                                                                                                                  

exists (see Rao 1973, p. 97).  

2.4 Derivation of the Likelihood Function for (11) 

The parameters of model (11) to be estimated are Π  and 
2Δ  . Due to the lack of observations 

on the dependent variable *

iy  not all of these parameters are identified. Therefore, we need to 

impose some restrictions. The following two restrictions are imposed on model (11):   

(i) The 
2

  in 2Δ   cannot be estimated, since there is no information about it in the data. To 

solve this problem, we set 2

  equal to 1.   

(ii) From (2) it follows that the conditional probability that iy  = 1 (or *

iy  > 0) given ix  and iz  is  

Prob( *

iy  > 0| ix , iz ) = Prob( i ix  > - Πi ix z  | ix , iz )                                                                 (14) 

where the information about the constant term is contained in the proportion of observations for 

which the dependent variable is equal to 1.  

For symmetric distributions like normal,  

Prob( *

iy  > 0| ix , iz ) = Prob( 
i ix   < Π

i i
x z  | ix , iz ) = F( Π Δ/ 

 
i i i ix z x x  | ix , iz )              (15) 

where F(.|.) is the conditional distribution function of 
i ix  . The conditional probability that iy  = 

0 (or *

iy    0) given ix  and iz  is 1 - F( Π Δ/ 
 
i i i ix z x x  | ix , iz ). The conditional probability 

that iy  = 1 (or *

iy  > 0) given ix  and iz  is F( Π Δ/ 
 
i i i ix z x x  | ix , iz ). F(.|.) in (15) denotes the 
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conditional normal distribution function of the random variable i ix / Δ

i ix x  with mean zero 

and unit variance; if  is the density function of the standard normal. Let   be the column stack 

of Δ . To exploit the symmetry property of Δ , we add together the two elements of ( ) i ix x  

corresponding to the (j, j ) and ( j , j) elements of Δ  in Δ

i ix x  and eliminate the ( j , j)  

element of Δ  from   for  j = 0, 1, …, K . These operations change the (1 2( 1)K  ) vector 

( ) i ix x  to the (1 (K+1)(K+2)/2) vector, denoted by ( )
__________

i ix x  , and change the 2( 1) 1K    

vector   to the [(K+1)(K+2)/2] 1  vector, denoted by  .          

The maximum likelihood (ML) method is used to estimate the elements of Π  and Δ . To 

do so, each observation is treated as a single draw from a binomial distribution. The model with 

success probability F( Π Δ/ 
 
i i i ix z x x  | ix , iz ) and independent observations leads to the 

likelihood function,    

Prob( 1 1 2 2 n nY y ,Y y ,...,Y y   | ix , iz ) = 
0

[1
y

 F( Π Δ/ 
 
i i i ix z x x  | ix , iz )] 

1y

F


 (

Π Δ/ 
 
i i i ix z x x  | ix , iz )                                                                                                            (16) 

The likelihood function for a sample of n observations can be written as  

L(Π,Δ |data) = 
1

[ (
n

i

F


 Π Δ/ 
 
i i i ix z x x  | ix , iz )] iy [1- (F Π Δ/ 

 
i i i ix z x x  | ix , iz )] 1 iy

      (17)  

This equation gives  
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ln L = 
1

( ) ( )
 ln  + (1- )ln 1

( ) ( )
________ ________

Long Longn
i i i i

i i

i

i i i i

z x z x
y F y F

x x x x


     
         

     
              


 

  

                                 (18) 

where   is a Kronecker product and 
Long  is the column stack of Π .    

2.4.1 Unconstrained and constrained maximum likelihood estimation: In the case where Δ  

is identified, then its positive definite estimate may not be obtained unless the log likelihood 

function in (18) is maximized subject to the restriction that Δ  is positive definite. Furthermore, 

these constrained estimates of 
Long  and   do not satisfy the following likelihood equations.       

 
ln L

Long




 = 

1

( )

(1 )

n
i i i

i i i

f y F

F - F

 
 
 

  
( )

( )
_________ _

i i

i i

z x

x x



  

 = 0                                                                          (19) 

 
ln L

 
 = 

3

2

1

( ) 1 1
( ) ( ) ( )

(1 ) 2
( )

__________

_________

n
Longi i i

i i i i

i i i
i i

f y F
z x x x

F F
x x

 
          

      








 = 0                         (20)  

where iF  stands for 
( )

( )
__________

Long

i i

i i

z x
F

x x

 
  

 
   





 and if  is the derivative of iF .  

We now show that Δ  is not identified. The log likelihood function in (18) has the property that 

it does not change when 
Long  is multiplied by a positive constant   and   inside the square 

root by 2 . This can be seen clearly from  

 ln L = 
) )

1 2 2

( )( ( )(
 ln  + (1- )ln 1

( ) ( ) ( ) ( )
________ ________



     
         

     
              


 

 

 

   

Long Longn
i i i i

i i

i

i i i i

z x z x
y F y F

x x x x

                  (21)  
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An implication of this property is that if ln L in (18) attains a maximum value at (
Longˆ  ,

ˆ 
 ) , 

then (
Longˆ   ,

ˆ 


2 )  yields another point at which ln L attains its maximum value. 

Consequently, solving equations (19) and (20) for 
Long  and   gives an infinity of solutions, 

respectively. None of these solutions is consistent because Δ  is not identified. For this reason 

we set Δ  = I . After inserting this value in equation (19), it is solved for 
Long . This solution is 

taken as the maximum likelihood estimate of 
Long .                                         

The information matrix, denoted by I( ) Long , is            

                                                E 
2ln 

( )

 
    Long Long

L
                                                                (22) 

 where the elements of this matrix are given in equation (A8) with Δ  = I .  

Suppose that Δ  = I. Then the positive definiteness of (22) is a necessary condition for 

 Long
 to be identifiable on the basis of the observed variables in (17). If the likelihood equations 

in (19) have a unique solution, then the inverse of the information matrix in (22) will give the 

covariance matrix of the limiting distribution of the ML estimator of  Long
. Suppose that the 

solution of (19) is not unique. In this case, if Lehmann and Casella’s (1998, p. 467, (5.5)) method 

of solving (19) for  Long
 is followed, then the square roots of the diagonal elements of (22) when 

evaluated at Lehmann and Casella’s solutions of (19), give the large sample standard errors of 

the estimate of  Long
.               

2.5 Estimation of the Components of the Coefficients of (7) 
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The estimates of the coefficients of (7) are obtained by replacing the  ’s and ij  of (10) by their 

maximum likelihood estimates and the mean value zero, respectively. We do not get the correct 

estimates of the components of 
ij  in (9) from its estimate unless its two different functional 

forms in (10) and (8) and (9) are reconciled. For a continuous ijx  with j > 0, we recognize that its 

coefficient 
ij  in (9) and 

ij  in (10) are the same. Therefore, the sum 

0 0 1 1i j i j ip jp ijz z z        in (10) is equal to the function 

*

* * *

1

(1 )( )
iL

ij

ij igj ig

g Kijx


  

 

    in (9). 

We have already shown that *

ij  is equal to 
*

(.)i

ijx




 and the sum of omitted-regressor and 

measurement-error biases (ORMEB) is equal to { * *

1

iL

igj ig

g K

 
 

  – 

*

ij

ij

v

x
 ( *

ij  + * *

1

iL

igj ig

g K

 
 

 )}.  

Equation (9) has the form                                                                                                                                                                           

                     ij  = (1- Dij )( Aij  + Bij )                                                                                         (23)   

where 

*

D ( )
ij

ij

ij

v

x
 , *Aij ij , 

* *

1

B
i

L

ij igj ig

g K

 
 

  .  

Equations (9) and (10) imply that   

       0

1

p

j ih ijjh

h

ˆ ˆz 


  = (1- Dij
ˆ )( Âij  + B̂ij )                                                                                    (24)       

where the ̂ ’s are the ML estimates of the  ’s derived in Section 2.4.1. We do not know how to 

predict ij  and, therefore, we set it equal to its mean value which is equal to zero. Equation (24) 

reconciles the discrepancies between the functional forms of (9) and (10). We have the ML 
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estimates of all the unknown parameters on the left-hand side of equation (24). From these 

estimates, it can be determined that for individual i and regressors ijx , j = 1,… K:  

The estimate of the partial derivative ( *

ij ) = Aij
ˆ  = (1- 1D )ij

ˆ 

0( ĵ  + 
1

)ih jh

h G

ˆz 


                        (25)  

The estimate of omitted-regressor bias (
* *

1

i
L

igj ig

g K

 
 

 ) = B̂ij  = (1- 1D )ij
ˆ 

2

( )ih jh

h G

ˆz 


                   

(26) 

The estimate of measurement-error bias [

*

* * *

1

 ( )( )
iL

ij

ij igj ig

g Kijx


  

 

   ] = - D̂ij ( Âij  + B̂ij )            (27)          

where the p + 1 coefficient drivers are allocated either to a group, denoted by 1G , or to a group, 

denoted by 2G ; 2G  = p +1 - 1G . The unknowns in formulas (25)-(27) are Dij
ˆ  and 1G . We 

discuss how to determine these unknowns below.          

The type of data Greene (2012, pp. 244-246, Example 8.9) used can tell us about D̂ij . 

Which of the terms in 0

1

p

j ih jh

h

ˆ ˆz 


 , should go into 0( ĵ  + 
1

)ih jh

h G

ˆz 


 , can be decided after 

examining the sign and magnitude of each term in 0

1

p

j ih jh

h

ˆ ˆz 


 . If we are not sure of any 

particular value of 1G , then we can present the estimated kernel functions for *

ij , i = 1, … n, for 

various values of 1G .   

Regarding Dij  we can make the following assumption:   
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Assumption IV: For all i and j: (i) The measurement error 
*

ijv  forms a negligible proportion 

*

( )
ij

ij

v

x
 of ijx .   

Alternatively, the percentage point 

*

( )
ij

ij

v

x
 100 can be specified if we have the type of data 

Greene (2012, pp. 244-246, Example 8.9) had. If such data are not available, then we can make 

Assumption IV. Under this assumption, (1- 1D )ij
ˆ   in (25) and (26) gets equated to 1 and the 

number of unknown quantities in formulas (25) and (26) is reduced to 1.     

Under these assumptions, we can obtain the estimates of Aij
ˆ  and their standard errors. 

These standard errors are based on those of ̂ ’s involved in Aij
ˆ . If the estimate of Aij  given by 

formula (25) is accurate, then our estimate of the partial derivative *

ij  is free of omitted-

regressor and measurement-error biases, and also of specification errors (i)-(iv) listed in Section 

2.2.5.   

2.5.1 How to select the regressors and coefficient drivers appearing in (11)? The choice of 

the dependent variable and regressors to be included in (7) is entirely dictated by the partial 

derivatives we want to learn. The learning of a partial derivative, say *

ij  = 
*

*

i

ij

y

x




, requires (i) the 

use of 
*

iy  and *

ijx  as the dependent variable and a regressor of (7), respectively, (ii) the use of z’s 

in (25) and (26) as the coefficient drivers in (10), and (iii) the use of the values of 1G  and Dij  in 

(25). These requirements show that the learning about one partial derivative is more 

straightforward than learning about more than one partial derivative. Therefore, in our practical 
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work we will include in our basic model (7) only one non-constant regressor besides the 

intercept.  

It should be remembered that the coefficient drivers in (10) are different from the 

regressors in (7). There are also certain requirements that the coefficient drivers should satisfy. 

They explain variations in the components of the coefficients of (7), as is clear from equations 

(25) and (26). After deciding that we want to learn about *

ij  = 
*

*

i

ij

y

x




 and knowing from (23) that 

this *

ij  is only a part of the coefficient ij  of the regressor *

ijx  in the (
*

iy , *

ijx  )-relationship, we 

need to include in (10) those coefficient drivers that facilitate accurate evaluation of the formulas 

(25)-(27). Initially, we do not know what such coefficient drivers are. We have decided to use as 

coefficient drivers those variables that economists include in their models of the (
*

iy , *

ijx )-

relationship as additional explanatory variables. Specifically, instead of using them as additional 

regressors we use them as coefficient drivers in (10).
13 , 14

 It follows from equations (25) and (26) 

that among all the coefficient drivers included in (10) there should be one subset of 1G  

coefficient drivers that is highly correlated with the bias-free partial derivative part and another 

subset of 2G  coefficient drivers that is highly correlated with the omitted-regressor bias of the 

jth coefficient of (7).
15

   

                                                           
13

 We illustrate this procedure in Section 3 below. 
14

 Pratt and Schlaifer (1988) consider what they call “concomitants” that absorb ‘proxy effects’ and include them as 

additional regressors in their model. The result in (9) calls for equation (10) which justifies our label for its right-

hand side variables.   
15

 An important difference between coefficient drivers and instrumental variables is that a valid instrument is one 

that is uncorrelated with the error term, which often proves difficult to find, particularly when the error term is 

nonunique. For a valid driver we need variables which should satisfy equations (25) and (26). On the problems with 

instrumental variables, see Swamy, Tavlas, and Hall (2015). 
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If 1G  and Dij  are unknown, as they usually are, then we should make alternative 

assumptions about them and compare the results obtained under these alternative assumptions.   

2.5.2 Impure marginal effects: The marginal effect of any one of the included regressors on the 

probability that iy  = 1 is  

1Prob( 1 )i

i

y | x,z

x

 


 = if ( Π Δi i i ix z / x x   | ix , iz ) 

(1 2) (3 2)

Π Πz (Δ )

( Δ ) ( Δ )

i i i i

/ /

i i i i

z x x

x x x x



 

   
 

  
                   (28)  

where we set Δ  = I .  

These effects are impure because they involve omitted-regressor and measurement-error biases. 

It is not easy to integrate omitted-regressor and measurement-error biases out of the probability 

in (15).
16

 

3. Earnings and Education Relationship  

This section is designed to give some specific empirical examples on the type of misspecification 

that usually found in actual data sets. Several authors studied this relationship. We are also 

interested in learning about the partial derivative of earnings with respect to education of 

individuals. For this purpose, we set up the model    

 0 1 1

* *

i i i iy x                                                                                                                                                     (29) 

where 
*

iy  denotes unobserved earnings, 1

*

ix  denotes unobserved education, and the components 

of 0i  and 1i  are given in (8) and (9), respectively. Equation (29) is derived in the same way 

                                                           
16

 These biases are not involved in Wooldridge’s marginal effects because according to that researcher omitted 
regressors constituting his model’s error term do not introduce omitted-regressor biases into the coefficients of 
the included regressors. 
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that (7) is derived. Like (7), equation (29) is devoid of four specification errors. In our empirical 

work, we use 1ix  = years of schooling as a proxy for education.  

 Greene (2012, p. 14) used model (29) after changing it to a fixed coefficient model with 

added error term, in which the dependent variable is the log of earnings (hourly wage times 

hours worked). He pointed out that this model neglects the fact that most people have higher 

incomes when they are older than when they are young, regardless of their education. Therefore, 

Greene argued that the coefficient on education will overstate the marginal impact of education 

on earnings. He further pointed out that if age and education are positively correlated, then his 

regression model will associate all the observed increases in income with increases in education. 

Greene concluded that a better specification would account for the effect of age. He also pointed 

out that income tends to rise less rapidly in the later earning years than in the early ones. To 

accommodate this phenomena and the age effect, Greene (2012, p. 14) included in his model the 

variables age and 2age .  

Recognizing the difficulties in measuring education pointed out by Greene (2012, p. 

221), we measure education as hours of schooling plus measurement error. Another problem 

Greene discussed is that of the endogeneity of education. We handle this problem by making 

Assumptions II and III. Under these assumptions, the conditional expectation E( *

iy | ,i ix z ) = 

Πi ix z  exists. Other regressors Greene (2012, p. 708) included in his labor supply model include 

kids, husband’s age, husband’s education and family income.  

The question that arises is the following: How should we handle the variables mentioned 

in the previous two paragraphs? Researchers who studied earnings-education relationship have 

often included these variables as additional explanatory variables in earnings and education 
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equation with fixed coefficients. Greene (2012, p. p. 699) also included the interaction between 

age and education as an additional explanatory variable. Previous studies, however, have dealt 

with fixed coefficient models and did not have anything to do with VCs of the type in (29). The 

coefficients of the earnings-education relationship in (29) have unwanted omitted-regressor and 

measurement-error biases as their portions. We need to separate them from the corresponding 

partial derivatives, as shown in (7) and (9). How do we preform this separation? Based on the 

above derivation in (1)-(9), we use the variables identified in the previous two paragraphs as the 

coefficient drivers.          

When these coefficient drivers are included, the following two equations get added to 

equation (29):    

 ij  0 0 1 1 6 6i j i j i j ijz z z            (j = 0, 1)                                                                      (30) 

where 0iz  = 1 for all i, 1iz  = Wife’s Age, 2iz  = Wife’s 2Age , 3iz  = Kids, 4iz  = Husband’s age, 

5iz  = Husband’s education, and 6iz  = Family income.   

 It can be seen from (11) that equation (30) with j = 0 makes the coefficient drivers act as 

additional regressors in (29) and equation (30) with j = 1 introduces the interactions between 

education and each of the coefficient drivers. Greene (2012, p. 699) informed us that binary 

choice models with interaction terms received considerable attention in recent applications. Note 

that for j = 1, h = 1, …, 6, jh  should not be equated to 
2

1

*

i

*

i ih

y

x z



 
 because 1i  is not equal to 

1

*

i

*

i

y

x




.    

Appendix Table F5.1 of Greene (2012) contains 753 observations used in the Mroz study 

of the labor supply behavior of married women. We use these data in this section. Of the 753 

married women in the sample, 428 were participants and the remaining 325 were nonparticipants 
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in the formal labor market. This means that iy  = 1 for 428 observations and iy  = 0 for 325 

observations. The data on 1ix  and the z’s for these 753 married women are obtained from 

Greene’s Appendix Table F5.1. Using these data and applying an iteratively rescaled generalized 

least squares method to (29) and (30) we obtain         

0î  = 
(81.0820)

27 6573.  
1

(3 9504)
+ 0.1316  zi

.
 -

2
(0..0441)

0 0049 i. z  -
3

(7.0849)
11 9494 i. z  -

4
(0.6261)

0 4414 i. z  -
5

(0.7910)
1 4708 i. z  +

6
(0.0002)

0 0003 i. z       (31)  

1î  = -
(6.9397)

4 2328.  +
1

(0.3405)
0 1696 i. z  -

2
(0.0038)

0 0019 i. z  +
3

(0.6076)
0 5168 i. z  +

4
(0.0550)

0 0261 i. z  +
5

(0.0676)
0 0702 i. z  -

6
(0.000019)

0 000013 i. z       (32)  

Table 1 Estimates of 0i  and 1i  with their Standard Errors for Five Married Women
17

  

0î  

(standard error) 

1î  

(standard error) 

 

-13.280 

(6.5787) 

1.2811 

(0.5535) 

-5.2539 

  (9.1608)                          

0.7930 

(0.7830)              

-15.221 

 (4.9202) 

1.5029 

(0.4197) 

-21.577 

(11.213) 

1.8393 

(0.9942) 

-9.2086 

(7.8416) 

1.0386 

(0.6504) 

 

From (23) we obtain  

1î  = (1- 1Di
ˆ )(

1Âi
 + 

1B̂i
)                                                                                                             (33)  

Our interest is in the partial derivative 
1Âi
 = 1

1

*
* i
i *

i

y

x






 which is the bias-free portion of 1î . This 

partial derivative measures the “impact” of the ith married woman’s education on her earnings. 

                                                           
17

 The standard errors of estimates are given in parentheses below the estimates for five married women. The 

estimates and their standard errors for other married women are available from the authors upon request.   
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Our prior belief is that the right sign for this bias-free portion is positive. Now it is appropriate to 

use the formula (
*

1i ) = 
1Ai

ˆ  = (1- 1

1D )i
ˆ 

10(̂  + 
1

1 )ih h

h G

ˆz 


  in (25) with j = 1 to estimate 1

1

*
* i
i *

i

y

x






. We assume that 
1Di

ˆ  is negligible. We need to choose the terms in the sum 10(̂  + 
1

1 )ih h

h G

ˆz 


  

from the terms on the right-hand side of equation (32). It can be seen from this equation that if 

we retain the estimate 10̂  = -
(6.9397)

4 2328.  in the sum 10(̂  + 
1

1 )ih h

h G

ˆz 


 , then this sum does not give 

positive estimate of 
*

1i  for any combination of the six coefficient drivers in (32). Therefore, we 

remove 10̂  from 10(̂  + 
1

1 )ih h

h G

ˆz 


 . We expect the impact of education on earnings to be small.  

To obtain the smallest possible positive estimate of 
*

1i , we choose the smallest positive term on 

the right-hand side of (32). This term is +
5

(0.0676)
0 0702 i. z . Hence we set the z’s other than 5iz  in 

1

1ih h

h G

ˆz 


  equal to zero. Thus, we obtain 1G  = 1 and 
*

1
ˆ

i  = +
5

(0.0676)
0 0702 i. z . The value of 5iz  times 

0.0702 gives the estimate of the impact of the ith married woman’s education on her earnings.  

Table 2 Estimates of the Bias-free Portion of 1i  for Five Married Women
18

  

50.0702 iz  

0.8419 

(0.8110) 

0.6314 

(0.6083) 

0.8419 

(0.8110) 

0.7016 

(0.6758) 

0.8419 

(0.8110) 

                                                           
18

 The standard errors of estimates are given in parentheses below the estimates for five married women. These 

estimates and standards errors for other married women are available from I-Lok Chang upon request.   
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To conserve space, we present the values of 
*

1
ˆ

i  = +
5

(0.0676)
0 0702 i. z  only for only i = 1, …, 5 

in Table 2. The impact estimates for all 753 married women are presented in the form of a 

histogram or a kernel density function in Figure 1 below. We interpret the estimate 
5

(0.0676)
0 0702 i. z  to 

imply that an additional year of schooling is associated with a 
5

(0.0676)
0 0702 i. z   100 percent increase 

in earnings. This impact of education on earnings is different for different married women. The 

impact of a wife’s education on her earnings is 0.0702 times her husband’s education.
19

 Our 

results in Table 2 and Figure 1 below show that the greater are the years of schooling of a 

husband, the larger is the impact of his wife’s education on her earnings. However, the estimates 

of 1

*

i  appear to be high at least for some married women whose husbands had larger years of 

schooling. Therefore, they may contain some omitted-regressor biases.    

 

Figure 1: Estimates of the “Impacts” of Education on the Earnings for 

753 Married Women  

                                                           
19

 According to Geene (2012, p, 708), it would be natural to assume that all the determinants of a 

wife’s labor force participation would be correlated with the husband’s hours which is defined as 

a linear stochastic function of the husband’s age and education and the family income. Our 

inclusion of husband’s variables in (32) is consistent with this assumption. 
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A histogram and a kernel density function presented in Figure 1 are much more revealing than a 

table containing the values, 50 0702 i. z , i = 1,…, 753, and their standard errors would. Also, such 

a table occupies a lot of space without telling us mush. We are using Figure 1 as a descriptive 
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device. The kernel function in Figure 1 is multimodal. All the estimates in this figure have the 

correct signs.    

 Greene’s (2012, p. 708) estimate 0.0904 of the coefficient of education in his estimated 

labor supply model is not comparable to the estimates in Figure 1 because (i) his model is 

different from our model, (ii) the dependent variable of his labor supply model in Greene (2012, 

p.683) is the log of the dependent variable of our model (29), and (iii) our definition of 
1

*

i

*

i

y

x




 in 

(3) is different from Greene’s (2012, p. 14) definition of 
1

i

i

y

x




. Greene’s estimate is some kind of 

average estimate applicable to all 753 married women. It is unreasonable to expect his average 

estimate to be close to the estimate for each married women. We will now show that given the 6 

coefficient drivers in (32), it is not possible to reduce the magnitudes of all the estimates in 

Figure 1 without changing the positive sign of some of these estimates in the left tail end of 

Figure 1 to the negative sign. This is what has happened in Figure 2. To reduce the magnitudes 

of the estimates of bias-free parts (
1Âi
 = 1

1

*
* i
i *

i

y

x






) of the 1î ’s given in Figure 1 for all i, we 

use the alternative estimates, 50 0702 i. z  - 0 000013. 6iz  of the bias-free parts of the 1î ’s called 

“modified 
1Âi
, i = 1,…, 753.” The histogram and kernel density function for the modified 

1Âi
 is 

given in Figure 2 below.  

Figure 2: Modified Estimates of the “Impacts” of Education on the 

Earnings for 753 Married Women 
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Five of the estimates in the left-tail end of this figure have the wrong (negative) sign. More 

number of wrong signs will occur if we try to further reduce the magnitudes of the modified 

estimates. The kernel density function of the modified estimates is unimodal unlike the kernel 

density function in Figure 1. The range of the modified estimates is smaller than that of the 

estimates in Figure 1.     

From these results it is incorrect to conclude that the conventional discrete choice models 

and their method of estimation give better and unambiguous results than the latent regression 
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model in (11) and (14) and formula (25). The reasons for this circumstance are the following: (i) 

The conventional models including discrete choice models suffer from four specification errors 

listed in Section 2.2.5 and the model in (11) and (14) is free of these errors; (ii) The conventional 

latent regression models have nonunique coefficients and error terms and the model in (11) and 

(14) is based on model (5) which has unique coefficients and error term. How can a model with 

nonunique coefficients and error term give unambiguous results? (iii) The conventional method 

of estimating the discrete choice models appears to be simple because these models are based on 

the assumption that ‘the’ omitted regressors constituting their error terms do not introduce 

omitted-regressor biases into the coefficients of their included regressors. The model in (11) and 

(14) is not based on any such assumption. (iv) Pratt and Schlaifer pointed out that in the 

conventional model the condition that its regressors be independent of ‘the’ omitted regressors 

constituting its error term is meaningless. The error terms of the model in (11) and (14) are not 

the functions of ‘the’ omitted-regressors.   

              

4. Conclusions  

We have removed four major specification errors from the conventional formulation of probit 

and logit models. A reformulation of Yatchew and Griliches’ probit model so that it is devoid of 

these specification errors changes their results. We also find that their model has nonunique 

coefficients and error term. YG make the assumption that omitted regressors constituting the 

error term of their model do not introduce omitted-regressor biases into the coefficients of the 

included regressors. We have developed a method of calculating the bias-free partial derivative 

portions of the coefficients of a correctly specified probit model.   
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Appendix 

In this Appendix, we show that any of the models estimated in the econometric literature is more 

restrictive than (1). We also show that these restrictions, when imposed on (1), lead to several 

specification errors.       

I. Derivation of Linear and Nonlinear Regressions with Additive Error Terms 

I.1 Nonunique Coefficients and Error Terms 

I.1.1 Beginning problems – Rigorous derivation of models with additive error terms: It is 

widely assumed that the error term in an econometric model arises because of omitted regressors 

influencing the dependent variable. We can use appropriate Felipe and Fisher’s (2003) 

separability and other conditions to separate the included regressors, 1

* *

i iKx ,...,x , from omitted 

regressors, 1 i

* *

i ,K iLx ,...,x , so that (1) can be written as   

 1 1 2 1( ) ( )
i

* * * * *

i i i iK i i ,K i ,Ly x ,...,x x ,...,x    =  1 1 1( ; , ..., )* *

i i iK px ,...,x    + i                                (A1)                                                        

where i  = 2 1( )
i

* *

i i ,K i ,Lx ,...,x  is a function of omitted regressors. Let i  be the random error term 

and let 1 1( )* *

i i iKx ,...,x  be equal to 1 1 1( ; , ..., )* *

i i iK px ,...,x    which is an unknown function of 

1

* *

i iKx ,...,x .
20

 Let 1, ..., p   be the fixed parameters representing the constant features of model 

(A1). From the above derivation we know what type of conditions which, when imposed on (1), 

give exactly the model in Greene (2012, p. 181, (7-3)).   

                                                           
20

 Another widely cited work that utilized a set of separability conditions is that of Heckman and Schmierer (2010). 

These authors postulated a threshold crossing model which assumes separability between observables Z that affect 

choice and an unobservable V. They used a function of Z as an instrument and used the distribution of V to define a 

fundamental treatment parameter known as the marginal treatment effect.     
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 The separability conditions used to rewrite (1) in the form of (A1) are very restrictive, as 

shown by Felipe and Fisher (2003). Furthermore, in his scrutiny of the Rotterdam School 

demand models, Goldberger (1987) pointed out that the treatment of any features of (1) as 

constant parameters such as 1, ..., p   may be questioned and these parameters are not unique.
21

 

Use of non-unique parameters is a specification error. Therefore, the functional form of (A1) is 

most probably misspecified.  

Skyrms (1988, p. 59) made the important point that spurious correlations disappear when 

we control for all relevant pre-existing conditions.
22

 Even though some of the regressors, 

1 t

* *

t ,K t ,Lx ,...,x , represent all relevant pre-existing conditions in our formulation of (A1), they 

cannot be controlled for, as we should to eliminate false (spurious) correlations, since they are 

included in the error term of (A1). Therefore, in (A1), the correlations between *

ty  and some of 

1

* *

t tKx ,...,x  can be spurious.   

 Karlsen, Myklebust and Tjøstheim (KMT) (2007) considered a model of the type (A1) 

for time series data. They assumed that { t } is an unobserved stationary process and 

1{ }* *

t tKX ,...,X  and {
*

tY } are both observed nonstationary processes and are of unit-root type. 

White (1980, 1982) also considered (A1) for time-series data and assumed that the t ’s are 

serially independent and are distributed with mean zero and constant variance. He also assumed 

that t  is uncorrelated with 1{ }* *

t tKX ,...,X  for all t. Pratt and Schlaifer (1984, 1988) criticized that 

these assumptions are meaningless because they are about t  which is not unique and is 

                                                           
21

 The ‘uniqueness’ is defined in Section 2.2.3.   
22

 We have been using the cross-sectional subscript i so far. We change this subscript to the time subscript t 

wherever the topic under discussion requires the use of the latter subscript.    
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composed of variables of which we know nothing. Any distributional assumption about a 

nonunique error term is arbitrary.    

I.1.2 Full independence and the existence of conditional expectations: Consider (A1) again. 

Let X = 1 1( )* *

i i iKx ,...,x , Y = 
*

iy  and M = i , be three random variables. Then X and M are 

statistically independent if their joint distribution can be expressed as the product of their 

marginal distributions. It is not possible to verify this condition.  

Let H(X) and K(M) be the functions of X and i , respectively. As Whittle (1976) pointed 

out, we must live with the idea that, for the given random variables like M and X, we may be 

only able to assert the validity of the condition  

E[H(X)K(M)] = E[H(X)]E[K(M)]                                                                                               (A2) 

where the functions H and K are such that E[H(X)] <   and E[K(M)] <  . If condition (A2) 

holds only for certain functions, H and K, then we cannot say that X and M are independent. 

Suppose that equation (A2) holds only for linear K, so that E[H(X)M] = E(M)E[H(X)] for any H 

for which E[H(X)] <  . This equation is equivalent to E( i | x) = E( i ) which shows that the 

disturbance at observation i is mean independent of x at i. This may be true for all i in the 

sample. This mean independence implies Greene’s (2012, p. 183) assumption (3).   

Let us now drop condition (A2) and let us assume instead that  

H(X) be a Borel function of X,                                                                                    (A2.1) 

E|Y | <  ,                                                                                                                     (A2.2) 

E|YH(X)| <  .                                                                                                             (A2.3) 

Using these assumptions, Rao (1973, p. 97) proved that  

 E[H(X)Y | X = x] = H(x)E(Y |x)                                                                                                  (A3)           

 E{H(X)[Y – E(Y |X)]} = 0                                                                                                          (A4)  
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Equations (A3) and (A4) prove that under conditions (A2.1)-(A2.3), E(Y |x) exists.
23

                                                                     

I.1.3 Linear conditional means and variances: Under the necessary and sufficient conditions 

of Kagan, Linnik and Rao’s (KLR’s) (1973, pp. 11-12) lemma (reproduced in Swamy and von 

zur Muehlen 1988, pp. 114-115), the following two equations hold almost certainly:  

E(
*

iY | 1

* *

i iKx ,...,x ) = 
0

K
*

ij j

j

x


   with 0 1*

ix   for i = 1,…,n                                                             (A5) 

and  

Var(
*

iY | 1

* *

i iKx ,...,x ) = 2

 , a finite, positive constant for all i = 1,…,n                                      (A6)  

If the conditions of KLR’s lemma are not satisfied, then (A5) and (A6) are not the correct 

first and second conditional moments of 
*

iY . The problem is that we cannot know a priori 

whether or not these conditions are satisfied. The conditions of KLR’s Lemma are not satisfied if 

1{ }* *

t tKx ,...,x  and { *

ty } are integrated series.
24

 Furthermore, { *

ty } cannot be made stationary by 

first differencing it once or more than once because of the nonlinearity of 1 1( )* *

t t tKx ,...,x . In these 

cases, we can use, as Berenguer-Rico and Gonzalo (2013) do, the concepts of summability, 

cosummability and balanced relationship to analyze model (A1). Clearly the conditions of 

KLR’s lemma are stronger than White’s assumptions which, in turn, are stronger than KMT’s  

(2007) assumptions. It is clear that KMT’s assumptions are not always satisfied. 

II Derivation of the Information Matrix for (10)   

                                                           
23

 This proof is relevant to Heckman’s interpretation that in any of his models, the error term is the deviation of the 

dependent variable from its conditional expectation (see Heckman and Vytlacil 2005). Conditions (A2.1)-(A2.3) do 

not always hold and hence this conditional expectation does not always exist.  
24

 A nonstationary series is integrated of order d if it becomes stationary after being first differenced d times (see 

Greene 2012, p. 943). If {
*

ty } in (A1) is a nonstationary series of this type, then it cannot be made stationary by 

first differencing it once or more than once if 1 1( )* *

t t tKx ,...,x  is nonlinear. Basmann (1988, p. 98) acknowledged 

that a model representation is not free of the most serious objection, i.e., nonuniqueness, if stationarity producing 

transformations of its observable dependent variable are used.      
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Consider the log likelihood function in (18). For this function,  

 
2 ln
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       (A7) 

where if   is the partial derivative of if  with respect to 
Long .   

 E( iy ) = 1 iF  + 0 (1 - iF ) = iF .  Using this result in (A7) gives  

E
2 ln

( )Long Long

L

 

 
   

 = 
2

1 i(1- )

n
i

i i

f

F F


( )( )

( )
__________

i i i i

i i

z x z x

x x

  

  

                                                           (A8)  

where the condition that n > (K+1)(p+1) is needed for the matrix on the right-hand side of this 

equation to be positive definite.    
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 Taking the expectation of both sides of equation (A11) gives  

 E
2ln L
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2
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i

i i i
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where the condition that n > (K+1)(K+1) is needed for the matrix on the right-hand side of this 

equation to be positive definite.  
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