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1 Introduction

Consider the following version of the Ellsberg experiment1 due to Dimmock
et al. (2015). This involves two urns: The known urn (K) contains 100 balls
of n different colors, 1 < n ≤ 100, the same number of balls for each color
(for example, if n = 5 then there are 5 different colors and 20 balls of each
color in K). The unknown urn (U) also contains n balls of the same colors
as urn K but in unknown proportions. The subject is asked to select one of
the urns (K or U). A ball is drawn at random from the urn chosen by the
subject. There are two versions. In the low probability version, the subject
wins a sum of money if the color of the ball drawn matches a preassigned color
(which, however, could be chosen by the subject). In the high probability
version, the subject wins the sum of money if the color of the randomly drawn
ball matches any one of n−1 preassigned colors (again, these colors could be
chosen by the subject). These two versions are, of course, equivalent if n = 2,
but different for n > 2. The subject is also allowed to declare indifference
between K and U .
If a subject prefers K to U , she is called ambiguity averse. If she prefers

U to K, she is called ambiguity seeking. If she is indifferent between K and
U she is called ambiguity neutral.
Dimmock et al. (2015) perform a second set of experiments. Here the

ratio of the colors (whatever they are) in U were kept fixed. However, the
ratio in K was varied until a subject declared indifference. This ratio is
then called the matching probability. For example, in the low probability
treatment, they found that for n = 10 colors, subjects (on average) declared
indifference betweenK and U when the new urnK contained 22 balls (out of
100) of the winning color. Hence the matching probability of 0.1 is m (0.1) =
0.22 > 0.1. Thus subjects exhibited ambiguity seeking for the low probability
of 0.1. In the high probability treatment, they found that, again for n =
10 colors, subjects (on average) declared indifference when the new urn K
contained 69 balls of the winning colors. Hence, the matching probability of
0.9 is m (0.9) = 0.69 < 0.9. For n = 2 colors, subjects (on average) declared
indifference when the new urn K contained 40 balls of the winning color.
Hence, m (0.5) = 0.4 < 0.5. Thus, subjects exhibited ambiguity aversion for
medium and high probabilities but ambiguity seeking for low probabilities.
The reason why preferring K to U (or U to K) was regarded as para-

1Keynes (1921) and Ellsberg (1961, 2001).
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doxical2 is as follows. Although experimental subjects know the proportion
of colors in urn K (it contains exactly the same number of each color), they
do not know the ratio in urn U . But they have no reason to believe that
one color is more likely than another. Hence, by the heuristic of insuffi cient
reason (or equal a’priori probabilities)3, they should assign the same prob-
ability to each color in urn U .4 Hence, they should have no reason to prefer
K to U or U to K on probabilistic grounds. Keynes (1921) pointed out
that there is a difference in the strength or quality of the evidence. Subjects
may reason that, although the assignment of the same probability to each
color is sound, they are more confident in the correctness of this judgement
in the case of K than in the case of U . Hence, they prefer K to U . Thus
their preference works through the utility channel rather than the probability
channel. However, this explanation appears to be contradicted by the evi-
dence of Dimmock et al. (2015) that subjects are ambiguity seeking for low
probabilities. Moreover, even when subjects are told that each color in U has
the same probability, so that the heuristic of insuffi cient reason is not needed,
they still exhibit a preference for K over U (Rode et al. 1999). Furthermore,
because the probabilities in urn U have been revealed, the observed choice
of K over U cannot be attributed to ambiguity aversion or differences in the
strength or quality of the evidence.
The importance of the Ellsberg experiments is two fold. First, they pro-

vide tests for competing decision theories. Second, there are many real-world
situations that appear similar to the Ellsberg paradox. One example is that
of home-bias in investment (French and Poterba, 1991, Obstfeld and Rogoff,
2000). Investors are often observed to prefer investing in a domestic asset
over a foreign asset with the same return and the same riskiness.
La Mura (2009) proposed to replace standard (Kolmogorov) probabilities

in expected utility theory with quantum probabilities; and called the result-
ing decision theory projective expected utility theory. He gave an axiomatic
foundation for this new theory and derived the equivalence of the preference
representation and the utility representation. He applied the new theory to

2This was the situation before the advent of the source method, see subsection 3.5
below.

3Insuffi cient reason or equal a’ priori probabilities in now commonly referred to as
indifference. However, indifference has a well established alternative meaning in economics.
To avoid confusion, we shall use the older terminology.

4The same reasoning can be repeated within any particular source in source dependent
theory (see Section 3.5, below). So we have to take K and U as different sources.
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explain the Allais paradox. He suggested it may explain the Ellsberg para-
dox.
Busemeyer and Bruza (2012, section 9.1.2) applied projective expected

utility theory to explain the Ellsberg paradox. Their model has a free pa-
rameter, a. If a > 0 we get ambiguity aversion, if a = 0, we get ambiguity
neutrality, and if a < 0 we get ambiguity seeking. However, it cannot explain
the simultaneous occurrence in the same subject of ambiguity seeking (for low
probabilities), ambiguity neutrality and ambiguity aversion (for medium and
high probabilities), because a cannot be simultaneously negative, zero and
positive. By contrast, our model (Section 5, below) provides a parameter-free
derivation of quantum probabilities and can explain the simultaneous occur-
rence in the same subject of ambiguity seeking (low probabilities), ambiguity
neutrality and ambiguity aversion (medium and high probabilities). Its pre-
dictions are in good agreement with the empirical evidence in Dimmock et
al. (2015).
Busemeyer and Bruza (2012, section (9.1.2) conclude “In short, quantum

models of decision making can accommodate the Allais and Ellsberg para-
doxes. But so can non-additive weighted utility models, and so these para-
doxes do not point to any unique advantage for the quantum model”. Note,
however, that there is considerable arbitrariness in the choice of weights in
weighted utility models. Hence they introduce flexibility at the cost of lower
predictive power. In our model, we replace weights with quantum probabil-
ities which are parameter-free. Thus, our application of projective expected
utility theory has a clear advantage over all other decision theories. Fur-
thermore, projective expected utility can be extended to include reference
dependence and loss aversion, to yield projective prospect theory, where de-
cision weights are replaced with quantum probabilities. This would have a
clear advantage over all the standard (non-quantum) versions of prospect
theory.
Aerts et al. (2014) formulate and study a quantum decision theory (QDT)

model of the Ellsberg paradox. They consider one of the standard versions
of the Ellsberg paradox. They consider a single urn with 30 red balls and 60
balls that are either yellow or black, the latter in unknown proportions. They
use the heuristic of insuffi cient reason for the known distribution (red) but
not for the unknown distribution (yellow or black). They prove that in their
mode, the Ellsberg paradox reemerges if they use the heuristic of insuffi cient
reason (or equal a’priori probabilities) for the unknown distribution. They,
therefore, abandon this heuristic. They choose the ratio of yellow to black
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to fit the evidence from their subjects.
Although abandoning the heuristic of insuffi cient reason gives models

tremendous flexibility, it also reduces their predictive power. In both clas-
sical (Kolmogorov) probability theory and quantum probability theory any
probabilities (provided they are non-negative and sum to 1) can be assigned
to the elementary events. To make a theory predictive, some heuristic rule is
needed to assign a’priori probabilities (we call this a heuristic because it does
not follow from either classical or quantum probability theory). The heuristic
commonly used is that of insuffi cient reason or equal a’priori probabilities.5

This heuristic is crucial in deriving the Maxwell-Boltzmann distribution in
classical statistical mechanics and the Bose-Einstein and Fermi-Dirac distri-
butions in quantum statistical mechanics.6 Furthermore, other theories can
explain the Ellsberg paradox if we abandon insuffi cient reason (see Subsec-
tion 2.3). Thus, the explanation of Aerts et al. (2014) is not specifically
quantum, although it is expressed in that language.
Khrennikov and Haven (2009) provide a general quantum-like framework

for situations where Savage’s sure-thing principle (Savage, 1954) is violated;
one of these being the Ellsberg paradox. Their quantum-like or contextual
probabilistic (Växjö) model is much more general than either the classical
Kolmogorov model or the standard quantum model (see Khrennikov, 2010,
and Haven and Khrennikov, 2013). On the other hand, our approach is lo-
cated strictly within standard quantum theory. Furthermore, in their formu-
lation, the Ellsberg paradox reemerges if one adopts (as we do) the heuristic
of insuffi cient reason.7

We set up a simple quantum decision model of the Ellsberg paradox. We
argue that our quantum decision model, in conjunction with the heuristic of
insuffi cient reason, is in broad conformity with the evidence of Dimmock et
al. (2015). In the table below, the second column gives the means across
666 subjects of the observed matching probabilities for 0.1 , 0.5 and 0.9. The
third column gives the sample standard deviations. The fourth column gives
the theoretical predictions of our model.
Our theoretical predictions of m (0.5) and m (0.9) are in excellent agree-

ment with the average of observations. Our theoretical prediction of m (0.1)

5To be sure, this heuristic is not without problems. See, for example, Gnedenko (1968),
sections 5 and 6, pp 37 to 52.

6See Tolman, 1938, section 23, pp 59-62, for a good early discussion.
7Khrennikov and Haven (2009), subsection 4.6, p386.
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Matching probability Mean Standard deviation Theoretical prediction
m (0.1) 0.22 0.25 0.171 05
m (0.5) 0.40 0.24 0.416 67
m (0.9) 0.69 0.33 0.695 45

Table 1: Actual and predicted matching probabilities. Source: Dimmock et
al. (2015), Table 4.3.

is not statistically significantly different from the average of observed values.8

Our model is more parsimonious than the alternatives. Unlike all other
decision theory explanations of the Ellsberg paradox, our model is parameter
free. Our results follow purely from quantum probability theory and the
heuristic of insuffi cient reason. We think that this suggests that much of
what is normally attributed to probability weighting might actually be due
to quantum probability.
The fundamental difference between quantum decision theory (QDT) and

all other decision theories is that events in the latter, but not the former,
are distributive. Thus, in QDT the event “X and (Y or Z )”need not be
equivalent to the event “(X and Y ) or (X and Z )”. On the other hand, in all
other decision theories, these two events are equivalent. This non-distributive
nature of QDT is the key to its success in explaining paradoxes of behaviour
that other decision theories find diffi cult to explain. For example, order
effects, the Linda paradox, the disjunction fallacy and the conjunction fallacy
(see Busemeyer and Bruza, 2012, for an introduction and review). For papers
examining the limits of standard quantum theory when applied to cognitive
psychology, see Khrennikov et al. (2014) and Basieva and Khrennikov (2015).
The rest of the paper is organized as follows. Section 2 gives the main

stylized facts about the Ellsberg paradox and formulates a simple thought
experiment that is used in the rest of the paper. It also discusses reduction
of compound lotteries and the heuristic of insuffi cient reason. Section 3
reviews the leading explanations of the Ellsberg paradox. Section 4 reviews
the elements of quantum probability needed for this paper. The main results
of this paper are in Section 5. Section 6 summarizes and concludes.

8For m (0.1), z = 0.22−0.17105
0.25 = 0.195 8 < 1.96. For such a large sample, the t-

distribution is practically normal. Based on the normal test, the evidence does not reject
the theoretical prediction m (0.1) = 0.171 05 at the 5% level of significance.
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2 Stylized facts, a thought experiment, in-
suffi cient reason and the reduction of com-
pound lotteries

2.1 Stylized facts

The following are the main stylized facts of Ellsberg experiments.

1. Insensitivity: Subjects are ambiguity averse for medium and high prob-
abilities but ambiguity seeking for low probabilities (see Dimmock et
al., 2015, for a recent survey and new experimental results).

2. Exchangeability: Subjects are indifferent between colors. Subjects are
indifferent between being asked to choose a color first or an urn first
(Abdellaoui et al., 2011).

3. No error : Suppose a subject chooses one urn (K or U) over the other.
It is then explained to the subject that, according to classical probabil-
ity theory, she should have been indifferent. She is offered the chance
to revise her assessment. Subjects usually decline to change their as-
sessment (Curley et al., 1986).

4. Salience: Ambiguity aversion is stronger when the two urns are pre-
sented together than when they are presented separately. (Fox and
Tversky, 1995, Chow and Sarin, 2001, 2002).9

5. Anonymity (or fear of negative evaluation): Ambiguity aversion does
not occur if subjects are assured that their choice between urn U and
urn K is anonymous (Curley et al., 1986 and Trautmann et al., 2008).

In the next section, we shall evaluate the main proposed explanations of
the Ellsberg paradox in the light of stylized fact 1. They all satisfy stylized
facts 2 and 3. It has been suggested several times in the literature that
reference dependence might explain stylized fact 4 (see Chow and Sarin,
2001, 2002). None address stylized fact 5, nor do we.

9Even more strikingly, Fox and Tversky (1995) found that for probability 1
2 , subjects

exhibited ambiguity aversion with the value of urn U remaining approximately the same
but urn K revalued upwards. Chow and Sarin (2001, 2002) did not find this result, but
did find that ambiguity aversion is more pronounced when subjects are presented with K
and U together.

7



2.2 A thought experiment

Throughout the rest of the paper, we consider the following simplified version
of the experiments in Dimmock et al. (2015). As far as we know, this
simplified experiment has not been conducted. So, the following is merely a
thought experiment.
We simplify the experiment in Dimmock et al. (2015) in several steps.

First we replace colors by numerals (this is justified by stylized fact 2). Fur-
thermore, we consider only two numerals: 1 and 2. The known urn K con-
tains n balls, m of which are labeled “1”and n −m are labeled “2”. Thus,
by the heuristic of insuffi cient reason, ball 1 is drawn with probability p = m

n

and ball 2 is drawn with probability q = n−m
n
.10 In the main, we shall adopt

the heuristic of insuffi cient reason. But, for purposes of comparison, we shall
sometimes consider cases where the subject does not apply this heuristic. For
example, the subject may be optimistic for low probabilities but pessimistic
for high probabilities (Subsection 2.3.4). Our most drastic simplification will
be to consider only two stages when constructing the unknown urn U . With
two balls and two stages, we can do our work in a 4 dimensional space.
A subject is presented with two urns. The known urn (K) contains ex-

actly two balls, one labeled “1”and the other labeled “2”. Ball 1 is drawn
from K with probability p. Ball 2 is drawn with probability q = 1 − p.
To compare with the evidence reported in Dimmock et al. (2015), we are
primarily interested in p = 0.1, 0.5 and 0.9.
Starting with urn K, construct urn U as follows. In the first round, draw

a ball at random from K and place it in U . Replace that ball in K with an
identically labeled ball. In the second round, draw a second ball at random
from K and place it in U . Replace that ball in K with an identically labeled
ball. Thus U contains two ball. Both could be labeled “1”, both could be
labeled “2”or one could be labeled “1”and the other labeled “2”. A ball is
drawn at random from U . The subject wins the sum of money v > 0 if ball
1 is drawn but wins nothing if ball 2 is drawn.
For example, and as in Dimmock et al. (2015), assume urnK contains 100

balls of 10 different colors, 10 balls of each color. This is told to the subjects.
The subjects are told that urn U also contains 100 balls of the same 10 colors
as urn K, but in unknown proportions. However, "unknown proportions" is
not defined any further for the subjects. We conjecture that subjects model

10This transformation is only for analytic convenience. In experiments, subjects are
always presented with colored balls whose ratios match the probabilities.
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"unknown proportions" in a simple way, for example, as described above.
Our theoretical predictions are in good agreement with the evidence in

Dimmock et al. (2015). This could merely be an accident. However, perhaps
there is a behavioral explanation. In particular, Dimmock et al. (2015), and
many other experiments, describe the unknown urn (U) as follows “The un-
known urn (U) contains n balls of the same colors as urn K but in unknown
proportions”. Maybe, this is too cognitively challenging. Maybe subjects do
not consider all possible distributions of balls in urn U . Pulford and Colman
(2008) provide strong evidence for this. There is also much evidence of such
cognitive limitations from other areas. For example, in p-beauty contests,
subjects think only up to level-k, with low k, typically k = 2 (Camerer,
2003). For a classically rational person, k should be infinite. Similar evi-
dence of cognitive limitations comes from psychological games (Khalmetski
et al., 2015). More generally, decision makers often simplify a problem before
attempting to find a solution (Kahneman and Tversky, 1979, Thaler, 1999
and Hey et al., 2010).

2.3 Insuffi cient reason and the reduction of compound
lotteries

According to Segal (1987, 1990), whether the results of Ellsberg experiments
are paradoxical or not for a particular decision theory hinges on how com-
pound lotteries are reduced in that theory. In our view, this is only partly
correct. We shall argue that no decision theory that respects both the re-
duction of compound lotteries and the heuristic of insuffi cient reason can
explain stylized fact 1 (insensitivity). However, relaxing one of these opens
the way to explaining the Ellsberg paradox. Consider the thought experiment
of Subsection 2.2.

2.3.1 The known urn

If the subject chooses urn K, she faces the simple lottery

K = (p, v) ,

where she wins v > 0 if ball 1 is drawn (with probability p), or 0 (with
probability q), if ball 2 is drawn.
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2.3.2 The unknown urn

By sketching the decision tree, and using the heuristic of insuffi cient rea-
son, we can easily see that if the subject chooses urn U , then she faces the
compound lottery

U =

(
p,

(
p, (1, v) ; q,

(
1

2
, v

))
; q,

(
p,

(
1

2
v

)
; q, (0, v)

))
.

Using the reduction of compound lotteries, we get

U = (p, v) .

Comparing with the case of the known urn (K), we see that

U = K.

Thus, no decision theory that respects both the reduction of compound lot-
teries and the heuristic of insuffi cient reason can explain stylized fact 1.

2.3.3 Matching probabilities

Now keep the composition of urn U fixed but vary the probability with which
ball 1 is drawn from urn K until the subject expresses indifference between
urnK with its new composition and the old urn U . Suppose that indifference
is reached when the probability with which ball 1 is drawn from the new
urn K is P (hence, the probability with which ball 2 is drawn is 1 − P ).
Then P = m (p) is the matching probability. Note that the definition of
the matching probability m (p) is operational and does not depend on the
underlying decision theory.

2.3.4 Dropping insuffi cient reason or dropping reduction of com-
pound lotteries?

Consider a decision maker who thinks that low probability events are more
likely than what is justified by the heuristic of insuffi cient reason but that
high probability events are less likely. However, assume that she respects
reduction of compound lotteries. Suppose she faces the two lotteries

L =

(
1

n
,

(
1

n
, (1, v) ;

n− 1

n
,

(
1

2
, v

))
;
n− 1

n
,

(
1

n
,

(
1

2
v

)
;
n− 1

n
, (0, v)

))
=

(
1

n
, v

)
.
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H =

(
n− 1

n
,

(
n− 1

n
, (1, v) ;

1

n
,

(
1

2
, v

))
;

1

n
,

(
n− 1

n
,

(
1

2
v

)
;

1

n
, (0, v)

))
=

(
n− 1

n
, v

)
.

Lottery L results in a win if the low probability event occurs (p = 1
n
). Lottery

H results in a win if the high probability event occurs (p = n−1
n
). Assume

that she assigns a probabilities of k
n
and n−k

n
to events whose probabilities

according to insuffi cient reason are 1
n
and n−1

n
, respectively, where 1 < k < n

2

so that
1

n
<
k

n
<
n− k
n

<
n− 1

n
. (1)

For simplicity, assume that she assigns probabilities of 0, 1
2
, 1 to events whose

probabilities according to insuffi cient reason are 0, 1
2
, 1, respectively. Thus

she codes lottery L as

L′ =

(
k

n
,

(
k

n
, (1, v) ;

n− k
n

,

(
1

2
, v

))
;
n− k
n

,

(
k

n
,

(
1

2
v

)
;
n− k
n

, (0, v)

))
=

(
k

n
, v

)
.

Analogously, she codes lottery H as

H′ =

(
n− k
n

,

(
n− k
n

, (1, v) ;
k

n
,

(
1

2
, v

))
;
k

n
,

(
n− k
n

,

(
1

2
v

)
;
k

n
, (0, v)

))
=

(
n− k
n

, v

)
.

Given (1), all decision theories in common use require that11(
1

n
, v

)
≺
(
k

n
, v

)
≺
(
n− k
n

, v

)
≺
(
n− 1

n
, v

)
,

such a decision maker will exhibit ambiguity seeking for low probabilities and
ambiguity aversion for high probabilities, in agreement with stylized fact 1.
But such a theory would also be consistent with the reverse. Thus, it can

11a ≺ b means lottery b is strictly preferred to lottery a.
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accommodate the Ellsberg paradox at the expense of losing its predictive
power.
We prefer to retain the heuristic of insuffi cient reason and, therefore,

we have to modify or replace reduction of compound lotteries. But how?
Or with what? Here we adopt quantum probabilities in place of standard
(Kolmogorov) probabilities.

3 Classical (non-quantum) decision theories
and the Ellsberg paradox

In this section, we review the main alternatives to QDT with respect to their
success or failure to explain the stylized facts of the Ellsberg paradox.
In subsection 3.1, below, we give a brief review of standard (Kolmogorov)

probability theory. We do this for two reasons. First, because it is funda-
mental to all decision theories. Second, to make clear the similarities and
differences with quantum probability (section 4). Probabilities can be either
objective, in the sense that they are the same for all decision makers, or they
can be subjective in the sense that they can differ across decision makers. In
the latter case, they can be elicited from a decision maker’s observed choices,
given the decision theory under consideration.

3.1 Standard (Kolmogorov) probability theory

In the standard approach we have a non-empty set, Ω, called the sample
space, and a σ-algebra, S, of subsets of Ω. The elements of S are called
events. S has the following properties: ∅ ∈ S, X ∈ S ⇒ Ω − X ∈ S,
{Xi}∞i=1 ⊂ S ⇒ ∪∞i=1Xi ∈ S. Note that the distributive laws hold: X ∩(
∪∞j=1Yj

)
= ∪∞j=1 (X ∩ Yj) and X ∪

(
∩∞j=1Yj

)
= ∩∞j=1 (X ∪ Yj).

A probability measure is then defined as a function, P : S → [0, 1] with
the properties that P (∅) = 0, P (Ω) = 1 and if Xi ∩ Xj = ∅, i 6= j, then
P (∪∞i=1Xi) =

∑∞
i=1 P (Xi).

Let X, Y ∈ S, P (Y ) 6= 0. Define P (X|Y ) = P (X∩Y )
P (Y )

. In particular,

if X ⊂ Y , then P (X|Y ) = P (X)
P (Y )

. P (X|Y ) is called the probability of X
conditional on Y . Then P (.|Y ) is a probability measure on the set
{X ∈ S : X = Z ∩ Y , for some Z ∈ S}. From this we can derive Bayes law:
P (X|Y ) = P (Y |X)P (X)

P (Y )
and its other equivalent forms. Importantly, the law
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of total probability holds: Let X ∈ S and let {Yi}ni=1 be a partition of Ω,
so Yi ∈ S, Yi 6= ∅, ∪ni=1Yi = Ω, Yi ∩ Yj = ∅ for i 6= j, then P (X) =∑n

i=1 P (X|Yi)P (Yi).
A random variable is a mapping, f : Ω → R satisfying: For each r ∈ R,

{x ∈ Ω : f (x) ≤ r} ∈ S. A random variable, f , is non-negative if f (x) ≥ 0
for each x ∈ Ω. For two random variable, f, g, we write f ≤ g if f (x) ≤ g (x)
for each x ∈ Ω. A random variable, f , is simple if its range is finite. For
any random variable, f , and any x ∈ Ω, let f+ (x) = max {0, f (x)} and
f− (x) = −min {0, f (x)}. Then, clearly, f+ and f− are both non-negative
random variables and f (x) = f+ (x)− f− (x), for each x ∈ Ω. We write this
as f = f+ − f−.
Let f be a simple random variable with range {f1, f2, ..., fn}. Let Xi =

{x ∈ Ω : f (x) = fi}. Then, Xi ∈ S, Xi ∩Xj = ∅ for i 6= j and Un
i=1Xi = Ω.

The expected value of the simple random variable, f , isE (f) =
∑n

i=1 fiP (Xi).
The expected value of the non-negative random variable, g, is
E (g) = sup {E (f) : f is a simple random variable and f ≤ g}. Note that
E (g) may be infinite. If f = f+ − f− is an arbitrary random variable such
that not both E (f+) and E (f−) are infinite, then the expected value of f
is E (f) = E (f+)−E (f−). Note that E (f) can be −∞, finite or ∞. How-
ever, if both E (f+) and E (f−) are infinite then E (f) is undefined (because
∞−∞ is undefined).

3.2 Expected utility theory (EU)

It will be suffi cient for our purposes to consider a partition of Ω into a finite set
of exhaustive and mutually exclusive events: Ω = ∪ni=1Xi, Xi 6= ∅, Xi∩Xj =
∅ for i 6= j, i = 1, 2, ..., n. A decision maker can take an action a ∈ A that
results in outcome oi (a) ∈ O and utility u (oi (a)) if the event Xi occurs,
where u : O → R. The decision maker chooses an action, a ∈ A before
knowing which event, Xi, will occur or has occurred. Let pi be the probability
with which event Xi occurs. Then the decision maker’s expected utility from
choosing the action a ∈ A is Eu (a) =

∑n
i=1 piu (oi (a)). The decision maker

prefers action a ∈ A over action b ∈ A if Eu (a) ≥ Eu (b). The preference is
strict if Eu (a) > Eu (b). The decision maker is indifferent between a and b
if Eu (a) = Eu (b). The probabilities pi, i = 1, 2, ..., n, can either be objective
(the same for all decision makers, von Neumann and Morgenstern, 1947)
or subjective (possibly different for different decision makers, Savage, 1954).
In the latter case, it follows from Savage’s axioms that these probabilities
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can be uniquely elicited from the decision maker’s behaviour. Note that the
action a ∈ A results in the lottery (o1 (a) , X1; o2 (a) , X2; ...; on (a) , Xn), i.e.,
the lottery that results in outcome oi (a) if the event Xi occurs. In terms of
probabilities this lottery can be written as (o1 (a) , p1; o2 (a) , p2; ...; on (a) , pn),
i.e., the lottery that results in outcome oi (a) with probability pi. Sometimes
it is more convenient to write the lottery explicitly rather than the action
that gave rise to it.

Example 1 (Ellsberg paradox under expected utility): Normalize the sub-
ject’s utility function so that u (0) = 0. Recalling subsections 2.3.1 and 2.3.2,
straightforward calculations give Eu (K) = Eu (U) = pu (v). Thus the sub-
ject is indifferent between urns K and U . Recalling subsection 2, these results
are not consistent with stylized fact 1 (insensitivity).

3.3 The smooth ambiguity model (SM)

The smooth ambiguity model (Klibanoff et al., 2005) is currently the most
popular theory in economics for modelling ambiguity. It encompasses several
earlier theories as special limiting cases. These include von Neumann and
Morgenstern (1947), Hurwicz (1951), Savage (1954), Luce and Raiffa (1957),
Gilboa and Schmeidler (1989) and Ghirardato et al. (2004). Conte and Hey
(2013) find it provides the most satisfactory account of ambiguity12.
For our purposes, it will be suffi cient to consider the following special case

of the smooth model. Recall that under expected utility theory (subsection
3.2), a decision maker chooses an action a ∈ A that results in the outcome,
oi (a), with probability, pi, i = 1, 2, ..., n. The outcome, oi (a), yields the
utility u (oi (a)) to the decision maker. Hence, her expected utility isEu (a) =∑n

i=1 piu (oi (a)). Now suppose that the decision maker is unsure of the
probability pi with which she believes action a will result in outcome oi (a).
Furthermore, she believes that pi will take the value pij with probability
qj, j = 1, 2, ...,m. Thus,

∑n
i=1 piju (oi (a)) is the expected utility of action

a ∈ A under the probability distribution (p1j, p2j, ..., pnj). Thus, as usual,
the decision maker’s attitude to risk is determined by u. To characterize
the decision maker’s attitude to ambiguity, a new function, ϕ : R → R,
is introduced and is assumed to be increasing. Then the decision maker’s
expected utility under the smooth model that results from choosing the action

12However, Kothiyal et al. (2014) disagree, see below.

14



a ∈ A is Su (a) =
∑m

j=1 qjϕ (
∑n

i=1 piju (oi (a))). The smooth model reduces
to expected utility theory in the following two cases: (1), m = 1, so there is
no ambiguity, (2), ϕ is positive affi ne.
Suppose m > 1, so we do have genuine ambiguity. If ϕ is strictly concave,

then the smooth model can explain ambiguity aversion. It can explain am-
biguity seeking, if ϕ is strictly convex. But it cannot explain 1 (insensitivity,
i.e., ambiguity seeking for low probabilities and ambiguity aversion for high
probabilities), because ϕ cannot be both strictly concave and strictly convex.

3.4 Rank dependent utility theory (RDU)

Expected utility theory (EU) is probably still the most popular decision
theory in economics. The considerable refutations of EU have motivated
many developments. One of the most popular of these is rank dependent
utility theory (RDU). Recall that in EU (subsection 3.2) probabilities enter
the objected function, Eu (a) =

∑n
i=1 piu (oi (a)), linearly. However, in RDU,

probabilities enter the objective function in a non-linear, though precise, way.
We start with a probability weighting function, which is a strictly increasing
function w : [0, 1]

onto→ [0, 1], hence w (0) = 0 and w (1) = 1. Typically,
low probabilities are overweighted and high probabilities are underweighted.
The probability weighting function is applied to the cumulative probability
distribution. Hence, it transforms it into another cumulative probability
distribution. Hence, we may view RDU as EU applied to the transformed
probability distribution. The attraction of this is that the full machinery of
risk analysis developed for EU can be utilized by RDU (Quiggin, 1982, 1993).
We now give the details.
Consider a decision maker who can take an action, a ∈ A, that results in

outcome, oi (a) ∈ O, with probability pi, i = 1, 2, ..., n, pi ≥ 0,
∑n

i=1 pi = 1.
The decision maker has a utility function, u : O → R. The decision maker
has to choose her action before the outcome is realized. Order outcomes in
increasing magnitude. Assuming an increasing utility function, this gives:
u (o1 (a)) ≤ u (o2 (a)) ≤ ... ≤ u (on (a)). Define decision weights, πi, i =

1, 2, ..., n, as follows. πn = w (pn), πi = w
(∑n

j=i pj

)
− w

(∑n
j=i+1 pj

)
, i =

1, 2, ..., n−1. The decision maker’s rank dependent utility is then RDu (a) =∑n
i=1 πiu (oi (a)). Expected utility theory (EU) is obtained by taking w (p) =

p. Empirical evidence shows that typically w (p) is inverse-S shaped, so
low probabilities are overweighted but high probabilities are underweighted.
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Probabilities in the middle range are much less affected. It is important to
note that this need not be because decision makers misperceive probabilities
(although that does happen). Rather, the weights people assign to utilities
are much more sensitive to probability changes near 0 and near 1 compared
to probability changes in the the middle range.13

Applying RDU (with u (0) = 0) to the lotteries K and U of subsections
2.3.1 and 2.3.2 we get RDu (U) = RDu (K) = w (p)u (v). Hence, a decision
maker obeying RDU will exhibit ambiguity neutrality.
Thus, just like EU, RDU is not consistent with stylized fact 1 (insensi-

tivity).
Two important extensions of RDU that we do not review here are cumula-

tive prospect theory (Tversky and Kahneman, 1992) and Choquet expected
utility (Gilboa 1987, 2009, Schmeidler, 1989). Cumulative prospect the-
ory extends RDU by including reference dependence and loss aversion from
Kahneman and Tversky, (1979). Choquet expected utility extends RDU by
replacing probability weighting functions with more general capacities (Cho-
quet, 1953-1954). Like a probability measure, a capacity is defined on a
σ-algebra of subsets of a set. However, unlike a probability measure, a ca-
pacity need not be additive. By contrast, the quantum probability measure is
an additive measure but defined on the lattice of closed subspaces of a Hilbert
space, rather than a σ-algebra of subsets of a set. Further extensions of both
are reviewed in Wakker (2010). Despite their importance, these extensions
are not immediately relevant to the results of this paper.

3.5 Source dependent probability theory (SDP)

Source dependent probability theory is probably the most satisfactory of
classical (non-quantum) theories of ambiguity in general and the Ellsberg
paradox in particular (Abdellaoui et al. 2011, Kothiyal et al. 2014 and
Dimmock et al. 2015). Recall, from subsection 3.4, that RDU predicts
ambiguity neutrality: For the lotteries K and U of subsections 2.3.1 and
2.3.2 we got RDu (U) = RDu (K) = w (p)u (v). RDU can accommo-
date stylized fact 1 (subsection 2.1) if we introduce source dependence of
the probability weighting function.14 Specifically, let wK (p) be the indi-
vidual’s probability weighting function when facing the known urn, K, and

13This feature enables RDU to account for the Allais paradox.
14More fully treated, source dependence is also introduced into prospect theory, see

Wakker (2010). But RDU is suffi cient for our purposes.
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wU (p) her probability weighting function when facing the unknown urn U .
If wK (p) < wU (p) for low p but wK (p) > wU (p) for high p, then the subject
will exhibit ambiguity seeking for low probabilities but ambiguity aversion
for high probabilities, in agreement with stylized fact 1. By the definition
of matching probability, m (p), we have wK (m (p))u (v) = wU (p)u (v) and,
hence, m (p) = w−1K (wU (p)). In the low probability treatment, Dimmock
et al. (2015) found that for n = 10 colors, subjects (on average) declared
indifference between K and U when K contained 22 balls (out of 100) of
the winning color. Hence, m (0.1) = 0.22 > 0.1. In the high probabil-
ity treatment they found that, again for n = 10 colors, subjects (on aver-
age) declared indifference when K contained 69 balls of the winning colors.
Hence, m (0.9) = 0.69 < 0.9. For n = 2 colors, subjects (on average) de-
clared indifference when K contained 40 balls of the winning color. Hence,
m (0.5) = 0.4 < 0.5. Thus, subjects exhibited ambiguity aversion for medium
and high probabilities but ambiguity seeking for low probabilities.
Note that to measurem (p), neitherwK (p) norwU (p) nor u (v) need be es-

timated. However, to make the theory predictive, we need to estimate wK (p)
and wU (p). For example, using Prelec (1998) probability weighting functions
we have to estimate wK (p) = e−βK(− ln p)

αK and wU (p) = e−βU (− ln p)
αU . This

involves estimating the four parameters αK , βK , αU , βU . By contrast, in
section 5, we shall see that quantum probability gives a parameter-free pre-
diction of m (p); and that this is close to the empirically observed values of
m (p). We shall see that the quantum predictions are m (0.1) = 0.171 05,
m (0.5) = 0.416 67 and m (0.9) = 0.695 45.

4 Elements of Quantum Probability Theory15

4.1 Vectors

For our purposes (as we shall show), it is suffi cient to use a finite dimensional
real vector space Rn (in fact, with n = 2 or n = 4). A vector, x ∈ Rn, is
represented by an n×1matrix (n rows, one column). Its transpose, x†, is then
the 1×n matrix (one row, n columns) of the same elements but written as a
15See Busemeyer and Bruza (2012), Chapter 2 and Appendix B, for a more comprehen-

sive but accessible introduction.
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row.16. The zero vector, 0, is the vector all of whose components are zero. Let
r ∈ R and x,y ∈ Rn with components xi and yi, respectively. Then rx is the
vector whose components are rxi and x+ y is the vector whose components
are xi + yi. y ∈ Rn is a linear combination of x1,x2, ...,xm ∈ Rn if y =∑m

i=1 rixi for some real numbers r1, r2, ..., rm. The inner product of x and y
is x†y =

∑n
i=1 xiyi, where xi, yi are the components of x and y, respectively.

17

If x†y = 0, then x is said to be orthogonal to y and we write x ⊥ y. Note
that x ⊥ y if, and only if, y ⊥ x. The norm, or length, of x is ‖x‖ =

√
x†x. x

is normalized if ‖x‖ = 1.18 X ⊂ Rn is a vector subspace (of Rn) if it satisfies:
X 6= ∅, x,y ∈ X ⇒ x + y ∈ X and r ∈ R,x ∈ X ⇒ rx ∈ X. Let L be the
set of all vector subspaces of Rn. Then {0} ,Rn ∈ L. Let X, Y ∈ L. Then
X ∩ Y ∈ L and X + Y = {x+ y : x ∈ X,y ∈ Y } ∈ L. If X1, X2, ..., Xm ∈
L, then

∑m
i=1Xi = {

∑m
i=1 xi : xi ∈ Xi} ∈ L. The orthogonal complement

of X ∈ L is X⊥ = {y ∈ Rn : y ⊥ x for each x ∈ X}. We have X⊥ ∈ L,(
X⊥
)⊥

= X, X ∩X⊥ = {0}, X + X⊥ = Rn. Let z ∈ Rn and X ∈ L, then
there is a unique x ∈ X such that ‖z− x‖ ≤ ‖z− y‖ for all y ∈ X. x is
called the orthogonal projection of z onto X. Let δii = 1 but δij = 0 for i 6= j.
s1, s2, ..., sm form an orthonormal basis for X ∈ L if si†sj = δij and if any
vector x ∈ X can be represented as a linear combination of the basis vectors:
x =

∑m
i=1 xisi, where the numbers x1, x2, ..., xm are uniquely determined by

x and s1, s2, ..., sm. The choice of an orthonormal basis for a vector space is
arbitrary. However, the inner product of two vectors is independent of the
orthonormal basis chosen. We shall refer to a normalized vector, s ∈ Rn,
as a state vector. In particular, if s1, s2, ..., sn form an orthonormal basis for
Rn, then we shall refer to these as eigenstates. Note that if s =

∑n
i=1 sisi,

then s is a state vector if, and only if, ‖s‖ = 1, equivalently, if, and only if,
s†s =

∑n
i=1 sisi = 1. Let X ∈ L. Let s1, s2, ..., sm form an orthonormal basis

for X. Extend s1, s2, ..., sm to an orthonormal basis, s1, s2, ..., sm, ..., sn, for
Rn (this can always be done). Then sm+1, ..., sn form an orthonormal basis
for the the orthogonal complement, X⊥, of X. Let z =

∑n
i=1 zisi ∈ Rn.

Then
∑m

i=1 zisi is the orthogonal projection of z onto X and
∑n

i=m1 zisi is
the orthogonal projection of z onto X⊥.

16More generally, in Cn, x† is the adjoint, of x. For example, in C2, if x =
[
r1e

iθ1

r2e
iθ2

]
,

where r1, θ1, r2, θ2 are real and i =
√
−1, then x† =

[
r1e
−iθ1 r2e

−iθ2
]
.

17More generally, in Cn, x†y =
∑n
i=1 x

∗
i yi, where, if x = reiθ, r, θ ∈ R, then x∗ = re−iθ.

18In Dirac notation, x = |x〉, x† = 〈x|, x†y = 〈x|y〉, ‖x‖ =
√
x†x =

√
〈x|x〉.
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We will represent the state of the known Ellsberg urn (K) by a normalized
vector in R2 and the unknown Ellsberg urn (U) by a normalized vector in
R4.

4.2 State of a system, events and quantum probability
measures

The state of a system (physical, biological or social) is represented by a
normalized vector, s ∈ Rn, i.e., ‖s‖ = 1. The set of events is the set,
L, of vector subspaces of Rn. {0} is the impossible event and Rn is the
certain event. X⊥ ∈ L is the complement of the event X ∈ L. If X, Y ∈
L then X ∩ Y is the conjunction of the events X and Y ; X + Y is the
event where either X occurs or Y occurs or both (if X, Y ∈ L then, in
general, X ∪ Y /∈ L). Recall that in a σ-algebra of subset of a set, the
distributive law: X ∩ (Y UZ) = (X ∩ Y ) ∪ (X ∩ Z), and its dual19, holds.
However, its analogue for L: X ∩ (Y + Z) = (X ∩ Y ) + (X ∩ Z), and its
dual20, fails to hold in general. Consequently, the law of total probability
also fails to hold in general. The failure of the distributive laws to hold
in L has profound consequences. This non-distributive nature of L is the
key to explaining many paradoxes of human behaviour. F : L → [0, 1] is
additive if F (

∑m
i=1Xi) =

∑m
i=1 F (Xi), where Xi ∈ L and Xi ∩Xj = {0} for

i 6= j. A quantum probability measure is an additive measure, P : L → [0, 1],
P ({0}) = 0, P (Rn) = 1. If a number can be interpreted as either a classical
probability or a quantum probability, then we shall simply refer to it as a
probability. Otherwise, we shall refer to it as either a classical probability or
a quantum probability, whichever is the case.

4.3 Random variables and expected values

Let L be the set of all vector subspaces of Rn. A random quantum variable is
a mapping, f : Rn → R satisfying: {ϕ ∈ Rn : f (ϕ) ≤ r} ∈ L for each r ∈ R.
A random quantum variable, f , is non-negative if f (ϕ) ≥ 0 for each ϕ ∈

Rn. For two random quantum variables, f, g, we write f ≤ g if f (ϕ) ≤ g (ϕ)
for each ϕ ∈ H. A random quantum variable, f , is simple if its range is
finite. For any random quantum variable, f , and any ϕ ∈ Rn, let f+ (ϕ) =

19X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z)
20X + (Y ∩ Z) = (X + Y ) ∩ (X + Z)
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max {0, f (ϕ)} and f− (ϕ) = −min {0, f (ϕ)}. Then, clearly, f+ and f− are
both non-negative random quantum variables and f (ϕ) = f+ (ϕ)− f− (ϕ),
for each ϕ ∈ Rn. We write this as f = f+ − f−.
Let f be a simple random quantum variable with range {f1, f2, ..., fn}.

Let Xi = {ϕ ∈ Rn : f (ϕ) = fi}. Then Xi ∈ L, Xi ∩ Xj = {0} for i 6= j
and

∑n
i=1Xi = Rn. Then the expected value of the simple random quantum

variable, f , is E (f) =
∑n

i=1 fiP (Xi). The expected value of the non-negative
random quantum variable, g, is
E (g) = sup {E (f) : f ≤ g is a simple random quantum variable}. Note that
E (g) may be infinite. If f = f+ − f− is an arbitrary random quantum vari-
able such that not both E (f+) and E (f−) are infinite, then the expected
value of f is E (f) = E (f+) − E (f−). Note that E (f) can be −∞, finite
or ∞. However, if both E (f+) and E (f−) are both infinite then E (f) is
undefined (because ∞−∞ is undefined).

4.4 Transition amplitudes and probabilities

Supposeϕ,χ ∈ Rn are two states (thus, they are normalized: ‖ϕ‖= ‖χ‖=1).
ϕ→ χ symbolizes the transition from ϕ to χ. Then, by definition, the am-
plitude of ϕ→ χ is given by A (ϕ→ χ) = ϕ†χ. Its quantum probability is
P (ϕ→ χ) = (ϕ†χ)2.21

Consider the state ϕ ∈ Rn (‖ϕ‖=1). The occurrence of the event X ∈ L
causes a transition, ϕ → ψ. The new state, ψ (‖ψ‖=1), can be found as
follows. Let π be the orthogonal projection of ϕ onto X (recall subsection
4.1). Suppose that π 6= 0 (if π = 0, then π and X are incompatible, that is,
if X occurs then the transition ϕ → ψ is impossible). Then ψ = π

‖π‖ is the
new state conditional on X.

4.5 Born’s rule

We can now give the empirical interpretation of the state vector. Consider
a physical, biological or social system. On measuring a certain observable
pertaining to the system, this observable can take the value vi ∈ R with
probability pi ≥ 0,

∑n
i=1 pi = 1. To model this situation, let s1, s2, ..., sn form

an orthonormal bases for Rn. Take si to be the state (eigenstate) where the
21In Cn, P (ϕ→ χ) = (ϕ†χ) (ϕ†χ)∗. However, as we are working in Rn, (ϕ†χ) =

(ϕ†χ)∗.
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observable takes the value (eigenvalue) vi for sure. Consider the general state
s =

∑n
i=1 sisi. If the act of measurement gives the value vi for the observable,

then this implies that the act of measurement has caused the transition s→
si. The probability of the transition s→ si is P (s→ si) = (s†si)2 = s2i = pi.
Thus, in the representation of the state of the system by s =

∑n
i=1 sisi, s

2
i is

the probability of obtaining the value vi on measurement22

4.6 Feynman’s first rule (single path)23

Let ϕ, χ, ψ be three states. ϕ→ χ→ ψ symbolizes the transition fromϕ to
χ followed by the transition from χ to ψ. The amplitude of ϕ→ χ→ ψ is
then the product, A (ϕ→ χ→ ψ) = A (ϕ→ χ)A (χ→ ψ) = (ϕ†χ) (χ†ψ),
of the amplitudes of ϕ → χ and χ → ψ. The quantum probability of the
transition, ϕ → χ → ψ, is then P (ϕ→ χ→ ψ) = (A (ϕ→ χ→ ψ))2 =
((ϕ†χ) (χ†ψ))2 = (ϕ†χ)2 (χ†ψ)2, i.e., the product of the respective proba-
bilities. This can be extended to any number of multiple transitions along a
single path.

4.7 Feynman’s second rule (multiple indistinguishable
paths)

Suppose that the transition from ϕ to ψ can follow any of two paths:
ϕ→ χ1 → ψ or ϕ→ χ2 → ψ. Furthermore, and this is crucial, assume that
which path was followed is not observable. First, we calculate the amplitude
of ϕ→ χ1 → ψ, using Feynman’s first rule. We also calculate the amplitude
of
ϕ → χ2 → ψ, using, again, Feynman’s first rule. To find the amplitude
of ϕ → ψ (via χ1 or χ2) we add the two amplitudes. The amplitude of
ϕ → ψ is then (ϕ†χ1) (χ1†ψ) + (ϕ†χ2) (χ2†ψ). Finally, the probability of
the transition ϕ→ ψ (via χ1 or χ2) is ((ϕ†χ1) (χ1†ψ) + (ϕ†χ2) (χ2†ψ))2 =
(ϕ†χ1)

2 (χ1†ψ)2 + (ϕ†χ2)
2 (χ2†ψ)2 + 2 ((ϕ†χ1) (χ1†ψ) (ϕ†χ2) (χ2†ψ)).

22More generally, if we use Cn, then s∗i si, is the probability of obtaining the value vi on
measurement.
23See Busemeyer and Bruza (2012), section 2.2, for the Feynman rules.
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4.8 Feynman’s third rule (multiple distinguishable paths)

Suppose that the transition from ϕ to ψ can follow any of two paths:
ϕ → χ1 → ψ or ϕ → χ2 → ψ. Furthermore, and this is crucial, assume
that which path was followed is observable (although it might not actually
be observed). First, we calculate the quantum probability of ϕ→ χ1 → ψ,
using Feynman’s first rule. We also calculate the quantum probability of
ϕ→ χ2 → ψ, using, again, Feynman’s first rule. To find the total quantum
probability of ϕ → ψ (via χ1 or χ2) we add the two probabilities. The
quantum probability of ϕ→ ψ is then (ϕ†χ1)

2 (χ1†ψ)2 + (ϕ†χ2)
2 (χ2†ψ)2.

Comparing the last expression with its analogue for Feynman’s second
rule, we see the absence here of the term 2 ((ϕ†χ1) (χ1†ψ) (ϕ†χ2) (χ2†ψ)).
This is called the interference term. Its presence or absence has profound
implications in both quantum physics and quantum decision theory.
The Feynman rules play a role in quantum probability theory analogous

to the rule played by Bayes’law and the law of total probability in classical
theory.

4.9 An illustration

We give a simple example where it is clear which Feynman rule should be
used. Consider an Ellsberg urn containing two balls. One ball is marked 1
and the other ball is marked 2. If a ball is drawn at random then, in line
with the heuristic of insuffi cient reason, we assign probability 1

2
to ball 1

being drawn and probability 1
2
to ball 2 being drawn. Call this initial state

s. Let the state where ball 1 is drawn be s1 and let s2 be the state if ball 2 is
drawn. Now, suppose a ball is drawn but returned to the urn. This should
not change the initial state of the urn. Both classical reasoning and quantum
reasoning should yield this result.

4.9.1 Classical treatment

Consider the transition s → s. This can occur via one of the two paths:
s → s1 → s or s → s2 → s : either ball 1 is drawn then returned to the urn
or ball 2 is drawn then returned to the urn. The classical treatment gives
a probability 1

2
to the transition s → s1. Since returning ball 1 restores the

original state of the urn, the classical probability of the transition s1 → s is
1. Hence, the classical probability of the transition s→ s1 → s is 1

2
× 1 = 1

2
.
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Similarly, the classical probability of the transition s → s2 → s is also 1
2
.

Hence, the classical probability of the transition s → s via either paths
s→ s1 → s or s→ s2 → s is 1

2
+ 1

2
= 1.

4.9.2 Quantum treatment

We use R2. Let s1 =

[
1
0

]
be the state if ball 1 is drawn and let s2 =

[
0
1

]
be the state if ball 2 is drawn. Take the initial state of the urn be s =√

1
2
s1 +

√
1
2
s2 =

 √1
2√
1
2

. Let us check to see if this is a reasonable assign-
ment. s1 and s2 form an orthonormal basis for R2. ‖s‖ =

√
s†s = 1. Hence,

s is a state vector. The amplitude of the transition s → s1 is s†s1 =
√

1
2
.

The amplitude of the transition s1 → s is s1†s =
√

1
2
. Hence, by Feyn-

man’s first rule (single path), the amplitude of the transition s → s1 → s
is A (s→ s1 → s) = A (s→ s1)A (s1 → s) = 1

2
, in agreement with our in-

tuitive reasoning. Similarly, the amplitude of the transition s → s2 → s
is A (s→ s2 → s) = 1

2
. We now compare the results from applying Feyn-

man’s second rule with the results from applying Feynman’s third rule. Since
P (s→ s) = (A (s→ s))2 = (s†s)2 = (1)2 = 1, the correct rule is the one
that gives this result.

Feynman’s second rule (multiple indistinguishable paths) Here we
add the amplitudes of the transitions s → s1 → s and s → s2 → s to
get the amplitude of the transition s → s : A (s→ s) = A (s→ s1 → s) +
A (s→ s2 → s) = 1

2
+ 1

2
= 1. Hence, the quantum probability of the tran-

sition s → s, through all paths, is P (s→ s) = (A (s→ s))2 = (1)2 = 1, in
agreement with our intuitive analysis.

Feynman’s third rule (multiple distinguishable paths) Here we cal-
culate the quantum probabilities of the transitions s → s1 → s and s →
s2 → s. This gives P (s→ s1 → s) = (A (s→ s1 → s))2 =

(
1
2

)2
= 1

4
and

P (s→ s2 → s) = (A (s→ s2 → s))2 =
(
1
2

)2
= 1

4
. Then we add these quan-

tum probabilities to get P (s→ s) = P (s→ s1 → s) + P (s→ s2 → s) =
1
4
+ 1
4

= 1
2
. This is a contradiction, since P (s→ s) = (A (s→ s))2 = (s†s)2 =
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(1)2 = 1.

5 Quantum decision theory and the Ellsberg
paradox

We now give a quantum treatment of the thought experiment of subsection
2.2

5.1 Known urn

We have an urn, K, with two balls, one labeled “1”and the other labeled
“2”.
The observable here is the label on the ball.
Let b1 be the state where ball 1 is drawn (so label 1 is observed for sure).
Let b2 be the state where ball 2 is drawn (so label 2 is observed for sure).
A particularly simple representation of b1 and b2 is (there are others, of

course)

b1 =

[
1
0

]
,b2 =

[
0
1

]
.

Clearly, {b1,b2} forms an orthonormal basis for R2, (bj†bk = δjk, where
δjj = 1 and δjk = 0 for j 6= k).24

Suppose ball 1 is drawn from K with probability p, so ball 2 is drawn
with probability q = 1− p. By Born’s rule (subsection 4.5), the initial state
of urn K is given by25

s =
√
pb1 +

√
qb2.

5.2 Unknown urn

Starting with urn K, construct urn U as follows. In the first round draw a
ball at random from K and place it in U . Replace that ball in K with an

24{b1,b2} also forms an orthonormal basis for C2.
25It can be easily verified that the more general specification s =

√
1
ne

iθ1b1 +√
n−1
n eiθ2b2, where θ1 and θ2 are real and i =

√
−1, changes none of our results. So

we have elected to simplify the exposition by working with Rn rather than Cn.
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identically labeled ball. In the second round draw a second ball at random
from K and place it in U . Thus U contains two balls. Both could be labeled
“1”, both could be labeled “2”or one could be labeled “1”and the other
labeled “2”. A ball is drawn at random from U . If ball 1 is drawn, then the
subject wins the sum v > 0. But wins nothing if ball 2 is drawn.
Let s1 be the state where ball 1 is drawn in round one and ball 1 is drawn

again in round two (each with probability p).
Let s2 be the state where ball 1 is drawn in round one (probability p)

then ball 2 is drawn in round two (probability q).
Let s3 be the state where ball 2 is drawn in round one (probability q)

then ball 1 is drawn in round two (probability p).
Let s4 be the state where ball 2 is drawn in round one then ball 2 is drawn

again in round two (each with probability q).
Urn U contains two balls labeled 1 if it is in state s1. It contains one ball

labeled 1 and the other labeled 2 if it is either in state s2 or in state s3. In
state s4 both balls are labeled 2. We represent these states by:

s1 =


1
0
0
0

 , s2 =


0
1
0
0

 , s3 =


0
0
1
0

 , s4 =


0
0
0
1

 .
Clearly, {s1, s2, s3, s4} forms an orthonormal basis for R4.26
Let s give the initial state of urn U (unknown composition). Then Born’s

rule leads to:27

s = ps1 +
√
pqs2 +

√
pqs3 + qs4.

Suppose the ball 1 was drawn from urn U . To find the state of urn U
conditional on this information, we first project s onto the subspace spanned
by {s1, s2, s3}, then normalize. This gives

w =

√
p

p+ 2q
s1 +

√
q

p+ 2q
s2 +

√
q

p+ 2q
s3.

26In the language of tensor products, s1 = b1 ⊗ b1, s2 = b1 ⊗ b2, s3 = b2 ⊗ b1,
s4 = b2 ⊗ b2.
27Again, It can be easily verified that the more general specification s = 1

ne
iθ1s1 +√

n−1
n eiθ2s2 +

√
n−1
n eiθ3s3 +

n−1
n eiθ4s4, where θi are real and i =

√
−1, changes none of

our results.
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To arrive at the state where ball 1 is drawn, we must follow one of the
three paths:

1. s→ s1 → w,

2. s→ s2 → w.

3. s→ s3 → w.

The relevant transition amplitudes are:
A (s→ s1) = s†s1 = p, A (s1 → w) = s1†w =

√
p

p+2q
, A (s→ s1 → w) =

A (s→ s1)A (s1 → w) =
√

p3

p+2q
(Feynman’s first rule, single path).

A (s→ s2) = s†s2 =
√
pq, A (s2 → w) = s2†w =

√
q

p+2q
, A (s→ s2 → w) =

A (s→ s2)A (s2 → w) =
√

pq2

p+2q
(Feynman’s first rule, single path).

A (s→ s3) = s†s3 =
√
pq, A (s3 → w) = s3†w =

√
q

p+2q
, A (s→ s3 → w) =

A (s→ s3)A (s3 → w) =
√

pq2

p+2q
(Feynman’s first rule, single path).

We shall treat the paths s→ s2 → w and s→ s3 → w as indistinguish-
able from each other but both distinguishable from path s→ s1 → w. Our
argument for this is as follows. The path s→ s1 → w results in urn U
containing two balls labeled 1. This is clearly distinguishable from paths
s→ s2 → w and s→ s3 → w, each of which result in urn U containing one
ball labeled 1 and one ball labeled 2. From examining urn U , it is impossible
to determine whether this arose by selecting ball 1 first (path s→s2 → w),
then ball 2 (path s→s3 → w), or the other way round.
To find the amplitude of the transition s → w, via s2 or via s3, we

add the amplitudes of these two paths. Thus, A (s→ w), via s2 or s3 is

A (s→ s2 → w)+A (s→ s3 → w) = 2
√

pq2

p+2q
(Feynman’s second rule, multi-

ple indistinguishable paths). The probability of this transition is
(

2
√

pq2

p+2q

)2
=

4pq2

p+2q
. The probability of the transition s→s1 → w is

(√
p3

p+2q

)2
= p3

p+2q
. To

get the total probability of the transition s→ w, via all paths, we add these
two. This gives P (s→ w) = p3

p+2q
+ 4pq2

p+2q
= 5p3−8p2+4p

2−p .
Thus, if the probability of drawing ball 1 from the known urn K is p,

then the quantum probability of drawing ball 1 from the unknown urn U is
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Q (p) =
5p3 − 8p2 + 4p

2− p .

In particular, we get

Q (0.1) = 0.171 05,

Q (0.5) = 0.416 67,

Q (0.9) = 0.695 45.

The following results are easily established.

Q (0) = 0, Q (1) = 1.

Q (p) +Q (1− p) < 1 for all 0 < p < 0.

lim
p→0

Q (p) = 0, lim
p→0

Q (p)

p
= 2, lim

p→1

Q (p)

p
= 1.

p < 0.4⇒ Q (p) > p : ambiguity seeking,

p = 0.4⇒ Q (p) = p : ambiguity neutral,

p > 0.4⇒ Q (p) < p : ambiguity averse.

5.3 Quantum probabilities are matching probabilities

If p is the probability of drawing ball 1 from the known urn K, then Q (p)
is the quantum probability of drawing ball 1 from the unknown urn U . Let
u be the utility function of a subject participating in the Ellsberg thought
experiment outlined in subsection 2.2. Normalize u so that u (0) = 0. She
wins the sum of money, v > 0, if ball 1 is drawn from the unknown urn
U , but zero if ball 2 is drawn from that same urn. Hence, her projective
expected utility (in the sense of La Mura, 2009) is

Q (p)u (v) . (2)

Now construct a new known urn K1 from which ball 1 is drawn with
probability Q (p). Her projective expected utility is
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Q (p)u (v) . (3)

Hence, from (2) and (3), Q (p) is the matching probability for p in our thought
experiment (recall subsection 2.3.3).

5.4 Evidence

Dimmock et al. (2015) report the results of their experiments outlined in
the Introduction, Table 1. In that table, the second column gives the means
across 666 subjects of the observed matching probabilities for 0.1 , 0.5 and
0.9. The third column gives the sample standard deviations. The fourth
column gives the theoretical predictions of our model.
Our theoretical predictions for m (0.5) and m (0.9) are in excellent agree-

ment with the average of observations. Our theoretical prediction for m (0.1)
is not statistically significantly different from the average of observed values.
For m (0.1), z = 0.22−0.17105

0.25
= 0.195 8 < 1.96. For such a large sample, the

t-distribution is practically normal. Based on the normal test, the evidence
does not reject the theoretical prediction m (0.1) = 0.171 05 at the 5% level
of significance.
Thus expected utility theory can explain stylized fact 1 (insensitivity:

ambiguity seeking for low probabilities but ambiguity aversion for high prob-
abilities) if we replace classical probabilities with quantum probabilities to
get what La Mura (2009) called projective expected utility. Similarly, prospect
theory can explain insensitivity if we take the reference point to be the sub-
ject’s wealth just before the experiment (a common choice), so that the sub-
ject is always in the domain of gains, and if we replace decision weights with
quantum probabilities.

6 Summary and conclusions

We have set up a simple quantum decision model of the Ellsberg paradox.
We found its predictions to be in excellent agreement with the evidence. Our
derivation is parameter free. It only depends on quantum probability theory
in conjunction with the heuristic of insuffi cient reason. To our mind, this
suggests that much of what is normally attributed to probability weighting
might actually be due to quantum probability. In particular, many appar-
ent paradoxes may be explained by projective expected utility theory (where

28



classical probabilities are replaced with quantum probabilities), or explained
by prospect theory if we replace decision weights with quantum probabili-
ties. Even when no paradox is involved, projective prospect theory (if we may
use this expression when decision weights are replaced with quantum proba-
bilities) may provide a more parsimonious representation than the standard
forms of prospect theory.
We have modelled the known urn, K, in R2 and the unknown urn, U ,

separately in R4. We can model them together in the tensor product of K
and U , K ⊗U , which will be in R8. We can then reproduce the work in this
paper in K ⊗ U . More interestingly, we could use an entangled state vector.
The entanglement could come from a subject choosing one of the urns as the
reference point. This idea has been suggested several times in the literature
but has not been carried out as far as we know (Chow and Sarin 2001, 2002)
and not in a quantum context. This could shed light on stylized facts 4
(salience) and 5 (anonymity). According to anonymity (Curley et al., 1986
and Trautmann et al., 2008) ambiguity aversion does not occur if subjects are
assured that their choice is anonymous. Here, psychological game theory may
help. People are known to care about the opinion of others, in particular,
they fear negative evaluation (Khalmetski et al., 2015).
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