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Abstract 

This paper contributes to the literature on the estimation of causal effects by providing 

an analytical formula for individual specific treatment effects and an empirical 

methodology that allows us to estimate these effects. We derive the formula from a 

general model with minimal restrictions, unknown functional form and true 

unobserved variables such that it is a credible model of the underlying real world 

relationship. Subsequently, we manipulate the model in order to put it in an estimable 

form. In contrast to other empirical methodologies, which derive average treatment 

effects, we derive an analytical formula that provides estimates of treatment effects on 

each treated individual. We also provide an empirical example that illustrates our 

methodology.   

Key words: Causality; Real-world relationship; Unique error term; Treatment effect; 

Non-experimental situation 

 JEL Classification: C13, C51 

   

                                                           
* We thank Fredj Jawadi and three referees for constructive comments.  
 
a Federal Reserve Board (Retired), 6333 Brocketts Crossing, Kingstowne, VA, 22315, USA, e-mail: 
swamyparavastu@hotmail.com  
b Leicester University Room Astley Clarke 116, University Road, Leicester LEI 7RH, UK and Bank   
  of Greece, e-mail: sh222@leicester.ac.uk  
c Member, Monetary Policy Council, Bank of Greece, 21 El. Venizelos Ave. 102 50, Athens, Greece 
  and Visiting Professor at Leicester University, e-mail: gtavlas@bankofgreece.gr  
d Department of Mathematics and Statistics (Retired), The American University, Washington, DC 
20016, USA, e-mail: ilchang@american.edu  
e Economic Research Department, Bank of Greece, 21 El. Venizelos Ave. 102 50, Athens, Greece, 
email: hgibson@bankofgreece.gr 
f New York University, Department of Economics, 44 West Fourth Street, 7-90 New York, NY 10012  
   e-mail: wgreene@stern.nyu.edu     
g Department of mathematics, Temple University, Philadelphia, PA 19122, USA,  
   e-mail: mehta1007@comcast.net  
 

mailto:swamyparavastu@hotmail.com
mailto:sh222@leicester.ac.uk
mailto:gtavlas@bankofgreece.gr
mailto:ilchang@american.edu
mailto:hgibson@bankofgreece.gr
mailto:wgreene@stern.nyu.edu
mailto:mehta1007@comcast.net


 

1 

 

1. Introduction    

 

Previous studies have dealt with the issue of estimating the average treatment effect 

on the treated (ATET) or the treatment effects averaged over the entire population 

(ATE).1 These studies have typically relied on the estimation of average treatment 

effects; random assignment to treatment aims to ensure that individuals (or units) 

assigned to the treatment and individuals assigned to control are identical; the average 

outcome among the control individuals serves as the counterfactual for the average 

outcome among the treated individuals. The difference between those two averages is 

an estimate of the central tendency of the distribution of unobservable individual-level 

treatment effects.2  

Estimation of treatment effects is challenging when the treatment assignment 

is not completely random. In this paper, we provide a method that does not require 

either completely random assignment or data on pairs of individuals matched by some 

specific criterion -- one subjected to control and the other subjected to the treatment.3 

Our model has unique coefficients and error term and guards against incorrect 

functional form.4 We provide a precise specification for the treatment effect under the 

condition that individuals are self-selected into treatment. In deriving this 

specification, we use the following definition of the treatment effect: the effect of a 

treatment on a treated individual minus the outcome that would have been observed 

                                                           
1 For textbook expositions, see Greene (2012, pp. 888-896) and Wooldridge (2013, pp. 438-43).  
2 See Holland (1986). 
3 For a short discussion on these issues, see Greene (2012, pp. 893-895). 
4 As we explain below, the coefficients and error term of a linear-in-variables and nonlinear-in-
coefficients model are unique in the sense that they are invariant under the addition and subtraction of 
the coefficient of an omitted regressor times any included regressor on its right-hand side. Swamy, 
Mehta, Tavlas and Hall (2014, 2015) showed that models with nonunique coefficients and error terms 
are misspecified.  
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had the same individual not been treated (the counterfactual).5 Thus, in contrast to 

previous studies, which deal with average treatment effects, our definition is 

individual specific. There are practical difficulties in empirically implementing our 

definition. In what follows we describe these difficulties and provide solutions.     

 An intuitive explanation of the contribution of this paper is as follows. In a 

randomized trial it is relatively easy to calculate the effect of a given treatment. This 

can be done simply by estimating a standard model with a dummy variable for the 

treatment: since we know that the treatment is random, it can be treated as exogenous. 

However, in a real-world situation without randomization it is extremely unlikely that 

the treatment can be assumed to be exogenous. Consider the case of a new cancer 

treatment. Clearly, the treatment would only be given to patients who are severely ill 

and likely to die. The treatment is not random and, therefore, simply adding a dummy 

for treated individuals is likely to be highly misleading and may even lead us to 

conclude that the treatment causes the patients to die from the illness. The empirical 

literature has attempted to deal with this problem by using instrumental variables (in a 

variety of ways). However, the difficulties of weak or irrelevant instruments are well-

known.6 This paper offers a new approach to this problem, based on coefficients that 

vary. Our approach avoids both the misspecification caused by incorrect functional 

forms, and provides coefficients that absorb omitted regressors, measurement errors 

and endogeneity. These varying coefficients may then be decomposed to obtain an 

estimate of the true underlying treatment effect.  

The remainder of the paper consists of four sections. Section 2 consists of 

several parts. It begins by reviewing the concepts needed to define the causal effect of 

                                                           
5 This is what Greene (2012, pp. 888-889) calls “the treatment effect in a pure sense.”  
6 See, for example, Swamy, Tavlas and Hall (2015). 
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a treatment on a treated individual. The section then develops two models that contain 

what we characterize as “unique coefficients and error terms” -- one model for the 

causal effects attributable to the treatment and the other model for the unknown 

values of what “response” the individuals who participated in a treatment would have 

had they not been treated. In this connection, we provide both a formal derivation and 

an intuitive account of our theoretical derivation. Finally, the section discusses the 

issue of identification, presents a possible method of estimation of these models, and 

derives the predictions of the treatment effects. Section 3 provides an empirical 

example to illustrate our method. Section 4 concludes.     

2. Modeling the Effect of a Treatment on the Treated in Non-experimental 

Situations  

2.1 Preparations 

2.1.1 Notation: Let i index treated individuals and let i′  (≠  i) index untreated 

individuals.7 The number of treated individuals is denoted by 1n  and that of 

untreated individuals is denoted by 2n . Let 1n  + 2n  = n , the size of a sample of both 

treated and untreated individuals. Both 1n  and 2n  are known. We assume that the 

individual response to treatment is heterogeneous. The dummy variable C is defined to 

take the value 0 for untreated individual i′  and to take the value 1 for treated 

individual i. For untreated individual i′ , ( *
iy ′ | iC ′  = 0) = *

0iy ′  is the unobserved true 

value of the observed outcome ( 0iy ′ ) of no treatment; *
0iy ′  plus measurement error ( *

0iu ′

) is the observed value, 0iy ′ . For treated individual i, ( *
iy | iC  = 1) = *

1iy , 1iy  = *
1iy  + 

                                                           
7 Most empirical studies use a treatment dummy to derive the impact of the treatment; the dummy 
variable takes the value 1 for the treated individuals and 0 for the untreated individuals. 
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*
1iu  where *

1iy  is the (unobserved) true value of the observed outcome ( 1iy ) of a 

treatment and *
1iu  is measurement error.   

2.1.2 Potential outcome notation: Pratt and Schlaifer (1988, pp. 28 and 35) used 

Neyman’s potential-outcome notation to state causal laws.8 Potential outcomes can 

be recognized through the subscripts that are attached to counterfactual events (see 

Pearl 2010, p. 3). Symbolically, potential outcomes are denoted by xiY , which shows 

the value that outcome Y would take for individual i had the treatment X been at level 

x.      

2.1.3 Counterfactuals: The symbol *
1iy ′  denotes a value of what the outcome would 

have been had individual i′  been treated. The symbol *
0iy  denotes a value of what the 

outcome would have been had individual i not been treated. The variables *
1iy ′  and 

*
0iy  are the unobserved counterfactuals implicit in the true values *

0iy ′  and *
1iy , 

respectively. Both the values of 0iy ′   (the effects of no treatment on the untreated 

individuals) and 1iy  (the effect of treatment on the treated individual) are observed but 

they both cannot be observed for the same individual since 1iy refers to a treated 

individual and 0iy ′  refers to an untreated individual.  

2.1.4 Treatment effects in a pure sense: *
1iy ′  - 

*
0iy ′  and *

1iy  - *
0iy .  

In the treatment effect on the untreated, defined by *
1iy ′  - 

*
0iy ′ , 0

*
iy ′  is the unobserved 

true value; it differs from the observed value 0iy ′  by a measurement error, and the 

counterfactual *
1iy ′  has no observations for all untreated individuals i′  = 1, …, 2n . In 

                                                           
8 In doing so, Pratt and Schlaifer (1988) followed Rubin (1974, 1978).   
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the treatment effect on the treated, defined by *
1iy  - *

0iy , *
1iy  is the unobserved true 

value, it differs from the observed value 1iy  by a measurement error, and the 

counterfactual *
0iy  has no observations for all treated individuals i = 1, …, 1n .   

2.1.5 The purpose of the paper: I n  S e c t i o n  2 . 2  b e l o w , we d e r i v e  the 

models of *
1iy  and *

0iy  that give the predictions of their dependent variables, 

respectively. Following Greene (2012, p. 888), we believe that an accurate estimate of 

the treatment effect *
1iy  - *

0iy  on the treated is more useful than an accurate estimate 

of the treatment effect *
1iy ′  - 

*
0iy ′  on the untreated.9 That is, it is more natural to ask, 

what is the treatment effect on a treated individual, rather than ask, what would have 

been the treatment effect on an untreated individual?10 In the following subsections, 

we derive an analytical formula for *
1iy  - *

0iy .  

2.1.6 What is causality? Previous researchers have set-forth various definitions of 

causality. In this section, we show how our specification of a treatment effect relates 

to several of those definitions. Our aim here is not to provide a comprehensive 

discussion of the causality literature. 

• First, Basmann (1988, p. 99) revealed that co m m o n  to all of the 

generally accepted meanings of “causality” is the notion that causality is a 

property of the real world and is not an algebraic property of the 

mathematical representations of parts of the real world. An insight that follows 

from this notion is that real-world relationships do not contain specification 

errors. This insight suggests that statistical causation requires the need to 

                                                           
9 Greene (2012, p. 888) pointed out that “The natural, ultimate objective of an analysis of a 
‘ treatment’ or intervention would be the effect of treatment on the treated.”  
10 Greene (2012, p. 894) pointed out that the desired quantity is not necessarily the ATE, but ATET.  
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derive estimates within an environment free of specification errors. With 

regard to the definition of treatment effects, the notion requires that, to 

measure causal effects, we should take the difference between the real-world 

relations for the outcome of a treatment and the potential outcome of no 

treatment on the same individual. In what follows, we empirically implement 

this definition.  

• Second, to show statistical causation, Skyrms (1988) proved that positive 

statistical relevance needs to continue to hold when all relevant pre-existing 

conditions are controlled-for.11 Intuitively, the relevant pre-existing conditions 

can be thought of as all the factors that might affect a relationship but which 

cannot be captured (for example, omitted variables). For example, the typical 

empirical counterpart to household consumption function is derived from a 

utility function. We don’t know how to measure the utility function, but it 

governs the actual structure of the consumption function. We control for such 

pre-existing conditions.  

To be specific, we follow generally accepted meanings of causality. We 

follow Basmann’s clarification that causal relations should be free of specification 

errors and Skyrms’ explanation of the definition of statistical causation which stresses 

the need to control for pre-existing conditions. To account for Skyrms’ (1988, p. 59) 

                                                           
11 Skyrms distinguished among different types of causation such as deterministic, probabilistic, and 
statistical. He argued that the answers to questions of probabilistic causation given by different 
statisticians depended on their conceptions of probability. Three major concepts of probability are: 
rational degree of belief, limiting relative frequency, and propensity or chance. Skyrms (1988, p. 59) 
recognized that not all would agree with the subjectivistic gloss he put on the causal approaches of 
Reichenbach, Granger, Suppes, Salman, Cartwright and others. As Skyrms pointed out, “statistical 
causation is positive statistical relevance which does not disappear when we control for all relevant pre-
existing conditions.” We consider this definition of statistical causation here. Skyrms further clarified 
that “Within the Bayesian framework … ‘controlling for all relevant pre-existing conditions’ comes to 
much the same as identifying the appropriate partition … which together with the presence or absence 
of the putative cause (or value of the causal variable) determines the chance of the effect.”   
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and Basmann’s (1988, p. 99) insights on these issues, we derive real-world relations -- 

that is, relations free of all specification errors -- under the insight that causality is a 

property of the real world. Skyrms’ insight leads to the conclusion that all irrelevant 

variables need to be eliminated from a relation. To find such a relation, we start with a 

general nonlinear mathematical model with unknown functional form, in which the 

dependent variable satisfies the normalization rule (that the coefficient on the 

dependent variable equals unity), and the arguments of the mathematical function 

include all the determinants of the dependent variable and all the relevant pre-existing 

conditions. We express this model as linear in variables and nonlinear in coefficients. 

These coefficients are the partial derivatives of the function with respect to its 

arguments. It can be verified that this linear-in-variables and nonlinear-in-coefficients 

model has the correct functional form. These partial derivatives keep the values of all 

relevant pre-existing conditions constant. Specifically, we: (i) follow Basmann’s 

(1988) notion of causality because it is not restrictive (it necessitates the absence of 

specification errors); (ii) follow Skyrms’ (1988) elucidation of statistical causation; 

(iii) work with the partial derivatives of some deterministic real-world (i.e., 

misspecification-free) relationships to control for all relevant pre-existing conditions 

and use the frequentist probability to measure causal effects; and (iv) work with the 

misspecification-free models of *
1iy  and *

0iy  to evaluate *
1iy  - *

0iy .12    

Finally, in articulating a definition of causality, we also take account of the 

insights provided by Zellner (1979) and Pratt and Schlaifer (1988). Zellner adopted 

Feigl’s definition according to which causality is ‘predictability according to a law or 

set of laws.’ Pratt and Schlaifer defined a law with factors and concomitants and 

                                                           
12 The list of these misspecifications is given in Section 2.2.6 below.  
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provided the conditions under which the laws can be observed in data.13 In what 

follows, we develop both a set of laws and the necessary additional variables -- which 

we call coefficient drivers -- needed to empirically implement the laws.14 

2.2 The Correctly Specified (or Misspecification-free) Models of *
1iy , 1iy , and *

0iy   

2.2.1 Mathematical functions: To generate the predictions on *
1iy , 1iy , and *

0iy , 

we begin with their real-world relationships expressed in terms of the following 

mathematical equations.      

*
cy η = * *

1 ,( ,..., )
cc c c Lf x x
ηη η η                                                                                                 (1)               

where (0,1)c∈ , ( , )i iη ′∈ . Since equation (1) is a mathematical equation, it does not 

contain an error term. 

Henceforth, * *
1 ,( ,..., )

cc c c Lf x x
ηη η η  will be written more compactly as (.)cf η . The 

precise functional form of this function is unknown; * *
1 ,, ...,

cc c Lx x
ηη η  are the arguments 

of (.)cf η . These arguments  are of three types: (i) observed and (ii) unobserved 

                                                           
13 In his causal analyses, Pearl (2000) used the Bayesian interpretation of probability in terms of 
degrees of belief about events, recursive models, and in many cases finitely additive probability 
functions. Pearl’s (2000, p. 176) Bayesian view of causality is that “[i]f something is real, then it 
cannot be causal because causality is a mental construct that is not well defined.” This view is not 
consistent with Basmann’s (1988) view, which is also the view that we adopt in this paper.    
14 The principle of causal invariance (Basmann 1988, p. 73): Causal relations and orderings are 
unique in the real world and they remain invariant under mere changes in the language we use to 
describe them. Examples of models that do not satisfy this principle are those that are built using 
stationarity producing transformations of observable variables (see Basmann 1988, p. 98). A related 
principle is that causes must precede their effects in time. Pratt and Schlaifer (1988, pp. 24-25) pointed 
out an interesting exception to this principle which is: “Whether or not a cause must precede its effect, 
engineers who design machines that really work in the real world will continue to base their designs on 
a law which asserts that acceleration at time t is proportional to force at that same time t.” The reason 
why we consider real-world (misspecification-free) relationships is that they satisfy the principle of 
causal invariance. They do not disappear when we control for all relevant pre-existing conditions 
(Skyrms 1988, p. 59). We build misspecification-free models with these properties. If we do not 
estimate *

1iy  - *
0iy  from the misspecification-free relations of *

1iy  and *
0iy , then according to 

Basmann (1988), our estimate of the treatment effect *
1iy  - *

0iy  will not be an estimate of the causal 
effect of a treatment on the treated ith individual.       
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determinants of *
cy η  and (iii) all relevant pre-existing conditions; the number cL η  of 

all these arguments is an unknown integer dependent on c and η , since the number 

of the arguments of types (ii) and (iii) is unknown. Why include type (iii) of 

arguments in (.)cf η ? The answer is provided by Skyrms’ (1988, p. 59) definition that 

mathematical causation is positive mathematical relevance which does not disappear 

when we control for all relevant pre-existing conditions. To control for these 

conditions, we first include them directly into (.)cf η  as its arguments and take the 

partial derivatives of (.)cf η  with respect to its type (i) and type (ii) arguments that 

keep the values of these conditions constant. In this way, we control for all relevant 

pre-existing conditions.  

Next, we use these partial derivatives as the coefficients of equation (2) below. 

There are no relevant arguments excluded from (.)cf η . Therefore, there is no need to 

introduce an error term into (.)cf η  to represent nonexistent omitted variables. 

Alternatively stated, all the variables constituting the econometrician’s error term are 

treated as the arguments of (.)cf η . This is done to avoid all incorrect functional 

forms of (.)cf η . The symbols 1 2, , ..., Kβ β β  may be used to denote the constant 

features of (.)cf η . We do not treat any features of (.)cf η  as constant parameters 

because, as Goldberger (1987) pointed out in the context of the Rotterdam school 

demand models, the treatment of any particular features of (.)cf η  as constants may 

be questioned.                

2.2.2 Minimally restricted relations: The only restriction that we have imposed on 

equation (1) is the normalization rule that the coefficient of *
cy η  is equal to unity.  



 

10 

 

2.2.3 Available data for estimation of (1): We assume that 1iL  > K + 1 < 0iL ′ , K + 1 

< 1n  and 2n . Data on *
1cx η , …, *

c Kx η  are available. These data may contain 

measurement errors, i.e., 1cx η  = 1
*
cx η  + 1

*
cην , …, c Kx η  = *

c Kx η  + *
c Kην , where the 

variables without an asterisk are observable, the variables with an asterisk are  true 

and unobservable, and the *ν ’s are measurement errors.15 We call 1cx η , …, c Kx η  “the 

included arguments of (.)cf η ”.16 Also available are data on 0iy ′  for 2n  untreated 

individuals and on 1iy  for 1n  treated individuals. For treated individuals with c = 1, 

1iy  is observed with measurement error and a non-constant proxy, denoted by 1 1
*
i ,Kx + , 

for the treatment variable is used as an additional included argument of 1 (.)if .17 Let 

1 1i ,Kx +  = 1 1
*
i ,Kx +  + *

1 , 1i Kν +  where the variable without an asterisk is observable, the 

variable with an asterisk is true and unobservable, and the *
1 , 1i Kν + ’s are measurement 

errors. No data on 2
*
c ,Kx η + , …, 

c

*
c ,Lx

ηη  are available and hence they can only be treated 

as omitted arguments.18 , 19  

                                                           
15 We do not treat measurement errors as random variables until we make some stochastic assumptions 
about them.   
16 The reason for assigning this label to them is that they are included as regressors in our regressions 
below.   
17 Data on 1 1

*
i ,Kx +  are not available in some experiments like medical experiments. In these cases, what 

all we know is whether an individual is treated or not (see Greene 2012, pp. 893-894). In these cases it 
is possible to obtain analytical expressions but not numerical measures for the treatment effects.     
18 The reason why we attach this label to them is that they are actually omitted from our regressions 
below. 
19 Unobserved treatment variable: In the absence of data on 1 1i ,Kx + , the coefficient of a dummy 
variable is used to measure treatment effects, as in the Heckman and Schmierer’s (HS) (2010) model. 
Greene (2012, pp. 251-254, 893) elaborated on this practice by commenting that though a treatment 
can be represented by a dummy variable, measurement of its effect cannot be done with multiple linear 
regression.   
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2.2.4 Correctly specified models for 1iy  and the counterfactual *
0iy  for the same 

individual i: 

Without misspecifying its functional form, (1) can be expressed as  

*
cy η  = * * * * * * *

0 , 1 , 1
1 2

cLK

c c j c j c K c K c g c g
j g K

x x x
η

η η η η η η ηα α α α+ +
= = +

+ + +∑ ∑                                                (2) 

where for   = 1, …, cL η , the coefficient of *
cx η  is equal to * */c cy xη η∂ ∂   unless *

cx η  is 

discrete, in which case this partial derivative is approximated by * */c cy xη η∆ ∆   with the 

right sign where *
cy η∆  and *

cx η∆   are small differences in the values of *
cy η  and  *

ηcx , 

respectively, and the intercept *
0cηα  is equal to *

cy η  - * *

1

cL

c j c j
j

x
η

η ηα
=
∑ . This *

0cηα  is the 

error of approximation that results from approximating (.)cf η  by * *

1

cL

c j c j
j

x
η

η ηα
=
∑ . 

Equation (2) is obtained from *
cy η = * *

1 ,( ,..., )
cc c c Lf x x
ηη η η  - * *

1

cL

c j c j
j

x
η

η ηα
=
∑  + * *

1

cL

c j c j
j

x
η

η ηα
=
∑

where *
0cηα  = * *

1 ,( ,..., )
cc c c Lf x x
ηη η η  - * *

1

cL

c j c j
j

x
η

η ηα
=
∑ . From this it follows that equation (2) 

without *
0cηα  will have the correct functional form when *

0cηα  = 0. For our further 

analysis of (1), it is convenient to express it in the form of model (2) that is linear in 

variables but nonlinear in coefficients. We avoid the use of any incorrect functional 

form of (1) by defining the coefficients of (2) as the partial derivatives of (.)cf η  with 

respect to its arguments. The coefficient *
, 1ηα +c K  is zero for untreated individuals. It 

follows that the problem of estimating (.)cf η  with unknown functional form is solved 

by changing it to that of estimating certain partial derivatives of (.)cf η .  
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 Equation (2) is linear if its coefficients are constant and nonlinear otherwise. 

How do we ensure that *
, 1c Kηα +  is the causal effect of *

, 1c Kx η +  on *
cy η  holding the values 

of all arguments of (.)cf η  other than *
, 1c Kx η +  constant? This constancy condition is 

true because *
, 1c Kηα +  is the partial derivative of *

cy η  with respect to *
, 1c Kx η + . In the 

definition of this partial derivative, not only the values of all determinants of *
cy η  other 

than *
, 1c Kx η +  but also the values of all relevant pre-existing conditions are held 

constant. This is a standard way to eliminate the false relationship between *
cy η  and 

any of its determinants (see Skyrms 1988, p.59). For example, suppose that the 

relation of *
cy η  to *

1cx η  is false. Then the partial derivative of *
cy η  with respect to *

1cx η  is 

zero because the values of all relevant pre-existing conditions are held constant. Also, 

we do not impose on (1) any restriction that makes it lose the causal invariance 

property of real-world relations described in Section 2. These precautions are taken to 

ensure that the partial derivatives used as the coefficients of (2) are the truths, 

meaning the properties of the real-world relationship in (1).   

Treated individual i: We now apply the specification in (2) to the particular group of 

treated individuals. From (2) it follows that  

*
1iy  = 

1
* * * * * * *
1 0 1 1 1 , 1 1 , 1 1 1

1 2

iLK

i ij ij i K i K ig ig
j g K

x x xα α α α+ +
= = +

+ + +∑ ∑                                                     (3) 

where 1iy  = *
1iy  + *

1iu , 1iy  is observed, *
1iy  is the unobserved true value, *

1iu  is 

measurement error, the treatment regressor *
1 , 1i Kx +  is added to the list * *

1 1 1 ,,...,i i Kx x  but 

not to the list 
1

* *
1 , 2 1 ,,...,

ii K i Lx x+ , since equation (3) is for a treated individual. The 

coefficients of (3) are the truths about the real-world relationship in (1). Note that the 
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set of variables denoted by ∑ 𝑥1𝑖𝑖∗ 𝑎1𝑖𝑖∗
𝐿1𝑖
𝑖=𝑘+2  are unobserved and need to be 

eliminated. To eliminate those unobserved variables, we regress each of these 

variables on all observed variables as follows.      

   

1
* * * *
1 1 0 1 1

1

K

ig ig ij igj
j

x xλ λ
+

=

= +∑  (g = K+2, …, 1iL )                                                                 (4)  

where * * *
1 1 1/igj ig ijx xλ = ∂ ∂  if *

1ijx  is continuous and * *
1 1/ig ijx x= ∆ ∆  with the right sign 

otherwise and *
1 0igλ  = 1* * *

1 1 11

K
ig ij igjj

x x λ+

=
−∑ . This definition makes equation (4) exact.  

Model of *
1iy  with unique coefficients and error term: Substituting the right-hand 

side of equation (4) for *
1igx  in (3) gives  

1 11
* * * * * * * *
1 1 0 1 0 1 1 1 1 1

2 1 2
( )

i iL LK

i i ig ig ij ij igj ig
g K j g K

y xα λ α α λ α
′+

= + = = +

= + + +∑ ∑ ∑                                                (5) 

where 
1

* *
1 0 1

2

iL

ig ig
g K

λ α
= +
∑  and (

1
* * *
1 1 1

2

iL

ij igj ig
g K

α λ α
= +

+ ∑ ) are the unique error term and 

coefficients, respectively (see Swamy et al. 2014, p. 199). The formula 
1

* *
1 1

2

iL

igj ig
g K

λ α
= +
∑  

measures omitted-regressors bias of the coefficient of *
1ijx . For j = 1,…, K + 1, the *

1ijα

’s are the partial derivatives of (1) with c = 1 and η  = i .  

 Equations (1) for c = 1 and iη =  and (5) are the two forms of the same real-

world relation in (1).  

 Recall, the variables *
1iy  and *

1ijx , j = 1, …, K + 1, in equation (5) are the true 

values and are not the observed values. To express (5) in terms of the observed 

values, we insert measurement errors at the appropriate places in (5). Doing so gives  
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1iy  = 1 0iγ  + 
1

1 1
1

K

ij ij
j

x γ
+

=
∑                                                                                          (6) 

where  

1 0iγ  = *
1 0iα  + 

1
* *
1 0 1

2

iL

ig ig
g K

λ α
= +
∑  + *

1iu  −  
1

2

* * * *
1 1 1 1

2
( )

iL

ij ij igj ig
x S g K

v α λ α
∈ = +

+∑ ∑                                   (7)  

1ijγ  = (1
1*

1 * * *
1 1 1

21

)( )
iL

ij
ij igj ig

g Kij

v
x

α λ α
= +

− + ∑  if 1x S∈                                                                (8)  

       = 
1

* * *
1 1 1

2
( )

iL

ij igj ig
g K

α λ α
= +

+ ∑  if 2x S∈ ,                                                                          (9) 

1S  is the set of all continuous regressors of equation (6) and 2S  is the set of all 

regressors of (6) that take the value zero with positive probability. In equations (7) 

and (8), -
1

2

* * * *
1 1 1 1

2
( )

iL

ij ij igj ig
x S g K

v α λ α
∈ = +

+∑ ∑  and (-
1*

1 * * *
1 1 1

21

)( )
iL

ij
ij igj ig

g Kij

v
x

α λ α
= +

+ ∑  are the 

measurement-error biases of 1ijγ  if 2x S∈  and 1x S∈ , respectively.20 These 

measurement-error biases are not unique.         

What would have been the outcome, denoted by *
0iy , had the ith individual not 

been treated? We determine this outcome by setting the treatment *
1 , 1i Kx +  equal to 

zero in (3). Doing so gives 

 *
0iy  = 1iy  - * *

1 , 1 1 , 1i K i Kx α+ +  - *
1iu   

       = 
1

* * * * *
1 0 1 1 1 1

1 2

iLK

i ij ij ig ig
j g K

x xα α α
= = +

+ +∑ ∑                                                                           (10)  

                                                           
20 One result that can be derived from (6)-(9) is the following: Consider two competing models of the 
same dependent variable with unique coefficients and error terms. Let each of these models be written 
in the form of (6) and let some continuous regressors be common to these two models. Of the pair of 
coefficients on a common regressor in the two models, the one with smaller magnitudes of omitted-
regressor and measurement-error biases will be closer to the common true partial derivative component 
of the pair. This correct conclusion could not be drawn from the J test of two separate families of 
hypotheses on a misspecified model (see Greene 2012, p. 136).       
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where *
0iy  = 1iy  - * *

1 , 1 1 , 1i K i Kx α+ +  - *
1iu  = 0iy  - *

0iu  , *
0iy  is the unobserved true value, *

0iu  

is measurement error, and 0* * * * * *
1 0 0 1 1 1 , 1 1 , 11

iL
i i i i i K i Ky x xα α α+ +=
= − +∑  

.   

The treatment causal effect (TCE) on the ith treated individual: *
1iy  - *

0iy  = ( 1iy  - 

*
1iu ) – ( 0iy  - *

0iu ) = {(
1

* * * * * * *
1 0 1 1 1 , 1 1 , 1 1 1

1 2

iLK

i ij ij i K i K ig ig
j g K

x x xα α α α+ +
= = +

+ + +∑ ∑  + *
1iu ) - *

1iu } – {( *
1 0iα  

+ * *
1 1

1

K

ij ij
j

x α
=
∑ + 

1
* *
1 1

2

iL

ig ig
g K

x α
= +
∑  + *

0iu ) - *
0iu } = * *

1 , 1 1 , 1i K i Kx α+ +                                           (11) 

Thus, to derive the TCE, equations (3) and (10) enable us to derive the TCE in 

equation (11). However, equation (11) is an analytical equation. To estimate the TCE 

in equation (11), we need to complement equation (6) with additional equations.  

2.2.5 In what sense are the coefficients and error term of (5) unique? The 

arguments, * *
1 1 1 , 1,...,i i Kx x + , included in both (3) and (5) are called “the included 

regressors” and the arguments 
1

* *
1 , 2 1 ,,...,

ii K i Lx x+  included in (3) but not in (5) are called 

“omitted regressors.” These regressors are not unique.21 The coefficients and error 

term of (5) have the correct functional forms and as a result, are unique in the sense 

that they are invariant under the addition and subtraction of the coefficient of any 

omitted regressor times any included regressor on the right-hand side of equation 

(3).22 It can be shown that the error term of (5) is the unique function 
1

* *
1 0 1

2

iL

ig ig
g K

λ α
= +
∑  

(with the correct functional form) of the ‘sufficient sets’ ( *
1 0igλ , g = K + 2, … , 1iL ) of 

omitted regressors, a concept due to Pratt and Schlaifer (1988, p. 34). The uniqueness 

                                                           
21 A proof of this statement follows from Pratt and Schlaifer’s (1988, p. 34) statement that “… some 
econometricians require that … [the included regressors] be independent of ‘the’ excluded variables 
themselves. We shall show … that this condition is meaningless unless the definite article is deleted 
and can then be satisfied only for certain ‘sufficient sets’ of excluded variables …” 
22 A proof of this statement is given in Swamy et al. (2014, pp.217-219). 
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of its coefficients and error term means that (5) possesses the causal invariance 

property.  

2.2.6 What specification errors is the TCE free from? (i) We have ensured that the 

unknown functional forms of (3) and (4) did not become the source of specification 

errors. (ii) By ensuring that the coefficients and error term of (5) are unique, the 

specification errors resulting from non-unique coefficients and error terms are not 

allowed to occur. (iii) Pratt and Schlaifer (1988, p. 34) pointed out that the 

requirement that the included regressors be independent of the excluded regressors 

themselves is “meaningless”. The specification error introduced by making this 

meaningless assumption is avoided by taking a unique function of certain ‘sufficient 

sets’ of omitted regressors as the error term of (5). (iv) The specification error of 

ignoring measurement errors when they are present is avoided by placing them at the 

appropriate places in (5) to obtain equation (6). The TCE in (11) is derived from 

equations (3) and (10) which are free of specification-errors (i)-(iv). It should be noted 

that when we state that (3), (6), (10) and (11) are free of specification errors, we mean 

that they are free of specification-errors (i)-(iv). Using (1)-(5) we have derived a real-

world relationship in (6) that is free of specification-errors (i)-(iv). Thus, our approach 

affirms that any relationship suffering from anyone of these specification errors is 

definitely not a real-world relationship.  

2.2.7 Specification errors and omitted-regressor biases: It would be useful to refer 

to a highly-influential paper by Yatchew and Griliches (YG) (1984). Those authors 

considered a simple binary choice model with any two regressors (X1 and X2 ) with 

nonunique coefficients and error term and omitted from it one (X2 ) of its two 

regressors. YG showed that even if the omitted regressor is uncorrelated with the 
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included regressor, the coefficient on the included regressor will be inconsistent. In 

addition, they showed that if the disturbances in the underlying regression are 

heteroscedastic, then the maximum likelihood estimators that assume 

homoscedasticity are inconsistent and the covariance matrix is inappropriate. What is 

important here is that not only the omission of a regressor from the YG model, but 

also the omitted regressors implicit in the YG’s mean-zero error term, introduce 

omitted variables’ biases. Furthermore, the YG results are subject to the four 

specification errors discussed in the previous section. As noted, our approach, using 

equations (1)-(6), avoids these specification errors.   

2.2.8 The available data are not adequate to estimate TCE: There are practical 

difficulties in estimating the TCE, * *
1 , 1 1 , 1i K i Kx α+ + , because the partial derivative *

1 , 1+i Kα  

in (6) is corrupted by omitted-regressor and measurement-error biases. These omitted-

regressor biases arise as a direct consequence of using the equations in (4) to remove 

*
1igx , g = K + 2, …, 1iL , from (3) and measurement-error biases arise as a direct 

consequence of measurement errors in 1cx η  = 1
*
cx η  + 1

*
cην , …, 1+c ,Kx η  = 1+

*
c ,Kx η  + 1+

*
c ,Kην . 

Unless these biases are eliminated from 1 , 1+i Kγ  we cannot obtain consistent estimate of 

*
1 , 1+i Kα . We will show below what additional data are needed for this removal.     

2.3 Variable Coefficient Regression  

The model for xiY  is the same as model (6) for 1iy . Rewrite this model as    

xiY = 1iy  = 1′ix 1iγ (i = 1, …, 1n )                                                  (12)  

where 1ix  = 1 1 1 , 1(1, , ..., )i i Kx x + ′  is the (K+2)×1 vector of regressors, 1iγ  = 

1 0 1 1 1 . 1( , , ..., )i i i Kγ γ γ + ′  is the (K+2)×1 vector of coefficients. We characterize this model 

as “the correctly specified model” Because the model is derived from the real-world 
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relationship in (1) without making any specification error. Similarly, equation (10) is 

the correctly specified model of the counterfactual ( *
0iy ). In equation (11), it is shown 

that TCE = *
1iy  - *

0iy  = * *
1 , 1 1 , 1i K i Kx α+ +  . To estimate this TCE, we use (8) or (9) which 

shows that *
1 , 1i Kα +  = 1 . 1i Kγ +  - its omitted-regressor and measurement-error biases. We 

first estimate 1 . 1i Kγ +  and decompose it into an estimate of *
1 , 1i Kα +  and an estimate of 

1 . 1i Kγ + ’s omitted-regressor and measurement-error biases.    

2.3.1 Parameterization of the variable coefficient regression: Equation (12) is 

estimated subject to the restrictions equations (7)-(9) imposed on its coefficients. To 

make such estimation feasible, we assume that for j = 0, 1, …, K + 1,    

 1ijγ  = 1 0 1 1 1
1

p

j ih jh ij
h

zp p ε
=

+ +∑                                                                                       (13)                                                                                                          

where the 1ihz ’s are observable and are called “the coefficient drivers”, some of which 

may be common to different coefficients of (12), and the p ’s are unknown fixed 

parameters.23 , 24 The error term 1ijε  is treated as a random variable.25   

 A key justification for equation (13) is that it facilitates separate estimation of 

each component of the coefficients of (12), as will be obvious from equation (20) 

below. For each j, given the proportion of measurement error 
*
1

1

ij

ij

v
x

 in (8), the 

                                                           
23 We call the coefficients of (12) “the random coefficients” but not “random parameters.” The reason 
is that there are only coefficients and no parameters in (12). We call the coefficients of (13) “the fixed 
parameters” to distinguish them from those of the fixed-coefficient versions of (12). We do not use the 
word “random parameters,” since it creates confusion between (12) and its fixed coefficient versions.    
24 The definition of coefficient drivers differs from the definition of instrumental variables. The latter 
variables do not explain variations in the coefficients of (12) as do coefficient drivers. The coefficient 
on any regressor in (12) is partly dependent on the coefficient drivers in (13). In instrumental variable 
estimation, first the instrumental variables are used to transform both the dependent variable and the 
explanatory variables and then the transformed variables are used to estimate the coefficients on the 
regressors.         
25 The functional form of (13) is different from that of (8) or of (7) and (9). We will correct this mistake 
in equation (21) below. 
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coefficient drivers in (13) should split into 2 sets so that one set explains most of 

variation in the bias-free component ( *
1ijα ) and the other set explains most of variation 

in omitted-regressor bias component (
1

* *
1 1

2

iL

igj ig
g K

λ α
= +
∑ ) in (8). These sets may or may not 

be non-overlapping. We will make use of these conditions in equation (20) below.  

 Note that if (1) is nonlinear, then the *
1α ij ’s are functionally dependent on the 

*
1ijx ’s and *

1igx ’s including *
1 , 1i Kx + . This introduces correlations between 1ix  and 1iγ . In 

the presence of these correlations we proceed as follows:             

Admissibility condition: The vector 1iZ  = ( 1 0 1 1 1, ,...,i i ipZ Z Z )′  in equation (13) is an 

admissible vector of coefficient drivers if, given 1iZ , the value that the coefficient 

vector of (12) would take in unit i, had 1iX  = ( 1 1 1 , 1,...,i i KX X + )′  been 1ix  = 

1 1 1 1( ,..., )i iKx x + ′  is independent of 1iX  for all i.26    

 It is shown in (8) or (9) that the first component of the coefficient of each 

nonconstant regressor in (12) keeps the values of all relevant pre-existing conditions 

constant. Skyrms (1988, p. 59) argued that this “comes to much the same as 

identifying the appropriate partition, … , [(or σ -field)] which together with … (or 

value of the causal variable) [ 1 , 1i Kx + ] determines the chance of the effect.” We show 

below that this partition is less adequate than the partition implied by equations (13) 

for our purposes.   

                                                           
26 A similar admissibility condition for covariates is given in Pearl (2000, p. 79). He [Pearl (2000, p. 
99)] also gives an equation that forms a connection between the opaque English phrase “the value that 
the coefficient vector of (12) would take in unit i, had 1iX  = ( 1 1 1 , 1,...,i i KX X + )′  been 1ix  = 

1 1 1 1( ,..., )i iKx x + ′ ” and the physical processes that transfer changes in 1iX  into changes in 1iy .                
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It should be understood that the coefficient drivers in (13) are not the same as the 

regressors in (12). The coefficient drivers explain variations in the components of the 

coefficients of (12), whereas the regressors of (12) in conjunction with its coefficients 

explain variation in the dependent  variable 1iy . We discuss the selection of 

coefficient drivers below.  

We use the following matrix notation: 1iz  = (1, 1 1 1 )i ipz ,...,z ′  is ( 1) 1p + × , 1 j′p  = 

1 0 1 1 1( )j j jp, ,...,p p p  is 1 ( 1)p× + ,  1Π  is a (K+2)× ( p +1) matrix having 1 j′p  as its jth 

row, and 1iε  = ( 1 0 1 1)i iK,...,ε ε + ′ is the ( 2) 1K + ×  error vector, and 1ijγ  = 1 1′j izp  + 1ijε  is a 

scalar.  

Substituting the right-hand side expressions of the (K+2) equations in (13) for 

the (K+2) coefficients in (12), respectively, gives the result which, in matrix form, can 

be written as27   

1iy  = 1 1 1 1 1Πi i i ix z x′ ′+ ε  (i  = 1, …, 1n )28                                                                      (14) 

                                                           
27 A clarification is called for here. In (12), the number of the vectors of K + 2 coefficients increases 
with the number of individuals in the cross-sectional sample. So many coefficients are clearly not 
consistently estimable. But in (14) below, the number of unknown coefficients ( 1Π ) is only (K+2)× (

p  + 1). This number does not increase with 1n . So the trick that makes our estimation procedure yield 
a consistent estimator of 1Π  is to include the same set of coefficient drivers across all the coefficient 
equations in (13) and impose appropriate zero restrictions on the elements of 1Π  if different sets of 
coefficient drivers are needed to estimate different components of the coefficients of (12).    

28 Any variables that are highly correlated with 1ix  will also be correlated with both the regression 

part, 1 1 1Π′i ix z , and the random part, 1 1′i ix ε , of the dependent variable, 1iy , of equation (14). 
Furthermore, this equation is the end result of the sequence of equations (1)-(6), and (13) that is used to 
avoid specification errors (i)-(iv) of Section 2.2.6. These two sentences together prove that the 
avoidance of specification errors (i)-(iv) leads to the nonexistence of instrumental variables. There is no 
contradiction between this result and HS’s (2010, p. 1356) instrumental variables approach because in 
this paper, no use is made of their threshold crossing model which assumes separability between 
observables Z that affect choice and an unobservable V. Their instrumental variable is a function of Z.     
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Suppose that the admissibility condition on the coefficient drivers given in this 

section is not sufficient for the existence of the conditional expectation E( 1iy | 1 1,i ix z ). 

Then we make    

Assumption I: For all i, let g( 1 1, )i ix z  be a Borel function of ( 1 1, )i ix z , E| 1iy | < ∞ , 

and E| 1iy g( 1 1, )i ix z | < ∞ .  

Under this assumption, the conditional expectation  

E( 1 1 1| ,i i iy x z ) = 1 1 1Π′i ix z                                                                                            (15) 

exists (see Rao 1973, p. 97).  

Assumption II: For i = 1, …, 1n , given 1iz , 1iε  is conditionally independent of 1ix , 

and given 1iz  and 1ix , the 1iε ’s are conditionally distributed with means zero and 

constant covariance matrix ( | ),′i i i iE z xε ε1 1 1 1  = 2
1 1Δε εσ .   

Cross-sectional data for treated individuals:  

1iy , 1ix , and 1iz , i = 1, …, 1n .                                                                        (16)                               

The number of observations in (16) is adequate to estimate all the unknown 

parameters of equation (14) if 1n  ≥  (K+2)(p+1) + ( 2)( 3) / 2K K+ +  + 5 – r where r 

is the number of restrictions on the p ’s. With this condition, at least 4 degrees of 

freedom will remain unutilized after estimating all the unknown parameters of (14).  

2.3.2 Identification of model (14): Let ⊗  denote a Kronecker product and let vec(.) 

denote a column stack. Then (K+2)× ( p +1) matrix 1Π  is identified if the  matrix 

having ( 1 1′ ′⊗i iz x ) as its ith row has full column rank. Even though the error vector 1iε  
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is not identifiable, the inner product 1 1′ εi ix  is identifiable, since 1 1′ εi ix  = 1iy  - ( 1 1′ ′⊗i iz x

) 1vec( )Π . The variance-covariance matrix 2
1 1ε εσ ∆  is consistently estimable from 

feasible best linear unbiased predictors of 1 1′ εi ix . A necessary condition for the 

identifiability of both 1Π  and 2
1 1ε εσ ∆  is that the information matrix for model (14) is 

positive definite.               

2.3.3 Identification of model (12): Because of the presence of more than one 

component in each coefficient of (6), we need the following identification condition: 

Model (12) is said to be identifiable on the basis of 1iy , 1ix  and 1iz , i = 1, …, 1n , if 

the components of its coefficients are accurately estimable.    

2.4 Estimation of Model (14) Under Assumptions I and II  

Applying an iteratively rescaled generalized least squares (IRSGLS) method and the 

feasible best linear unbiased predictor to (14), we obtain the estimates of ( 2
1 1 1Π Δ, ε εσ ) 

and the predictions of 1iε ’s.29 Let these estimates and predictions be denoted by 

2
1 1 1(Π Δ )ˆˆ ˆ, ε εσ ′  and the 1iε̂ ’s, respectively. Inserting these into (13) gives the estimates 

of the coefficients of (12). Therefore, the estimated versions of (12) and (13) can be 

written as  

 1ˆ iy = 1 0γ̂ i +
1

1 1
1

γ̂
+

=
∑
K

ij ij
j

x                                                                                                   (17)  

 1γ ijˆ = 1 0 1 1 1
1

p p ε
=

+ +∑
p

j ih jh ij
h

ˆˆ ˆz                   (18)  

                                                           
29 The formulas for these estimators and predictors are given in Chang, Hallahan, and Swamy (1992) 

and Chang, Swamy, Hallahan and Tavlas (2000). The sampling properties of 2
1 1 1(Π Δ )ˆˆ ˆ, ε εσ ′  are 

studied in Swamy, Tavlas, Hall and Hondroyiannis (2010).   
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An iteratively rescaled generalized least squares method when applied to equation 

(14) gives the estimates of p ’s and ε ’s in equation (18) and these estimates, in turn, 

give the estimates of the coefficients of (17).  

2.5 Estimation of a Component of a Coefficient of (12) by Decomposition  

2.5.1 Estimation of treatment effects: In this section, we estimate the TCE, 

* *
1 , 1 1 , 1i K i Kx α+ + , derived in (11). If 1 , 1i Kx +  is observed, then we use it in place of *

1 , 1i Kx + . 

We use (18) to estimate, *
1 , 1i Kα + , which is an unobserved bias-free component of 

1 , 1i Kγ + , the coefficient of the treatment variable, 1 , 1i Kx + , in (17).      

Theorem: In model (6) which does not contain specification-errors (i)-(iv) discussed 

in Section 2.2.6, the coefficient, 1 , 1i Kγ + , on the continuous treatment variable, 1 1i ,Kx + , is 

equal to   

(1- 1 1D*
i ,K+ ) 1 1A*

i ,K+  + (1- 1 1D*
i ,K+ ) 1 1B*

i ,K+                                                              (19)   

where 1 1D*
i ,K+  = 

*
1 , 1

1 , 1

( )i K

i K

v
x

+

+

 = the proportion measurement error in the treatment variable, 

1 1A*
i ,K+  = *

1 , 1α +i K  = bias-free component, 1 1B*
i ,K+  =

1
* *
1 , 1 1

2

λ α+
= +
∑

iL

ig K ig
g K

 = omitted-regressor 

bias component, and [- 1 1D*
i ,K

ˆ
+ 1 1A*

i ,K
ˆ

+ - 1 1D*
i ,K

ˆ
+ 1 1B*

i ,K
ˆ

+ ] = measurement-error bias 

component of 1 , 1i Kγ + . It can be seen from (19) that bias-free component and bias 

components of 1 , 1i Kγ +  are not additively separable.   

Proof: See equation (8) for the continuous *
1 , 1i Kx +  treatment variable.                 Q.E.D.  
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The choice of regressors to be included in (12) is entirely dictated by the 

partial derivatives of (1) we want to learn. In this paper, we want to learn only about 

*
1 , 1i Kα + . Therefore, we reduce (12) to 1iy  = 1 0iγ  + 1 1ix  1 1iγ  and consider (13) only for 

1 0iγ  and 1 1iγ .   

Selection of drivers: If in the real world a causal relationship exists that determines a 

particular variable -- say, interest-rate spreads -- then if one of the variables -- say, x -- 

in that relationship changes, the interest-rate spread will also change. This 

circumstance implies that the partial derivative of the interest-rate spread with respect 

to x is nonzero. Consequently, if we had a method of obtaining consistent estimates of 

this partial derivative, we would be able to infer that there is a real-world relationship 

between the interest-rate spread and variable x even though we may not know the 

exact functional form and all the variables that comprise the relationship. Moreover, 

our method of obtaining consistent estimates would apply if we allow for 

measurement error. 

To implement a parametric method for estimating consistent estimates of the 

partial derivative in question, two assumptions are needed. First, we assume that the 

stochastic coefficients of the relationship we seek to uncover are themselves 

determined by a set of stochastic linear equations; the set of exogenous variables in 

these equations are what we have above called coefficient drivers. Second, we assume 

that some of these drivers are correlated with the misspecification in the model -- that 

is the drivers “absorb” the specification errors -- and some are correlated with the 

variation emanating from the (true) nonlinear form. With this assumption, we can 

simply remove the bias from the coefficients by removing the effect of the coefficient 
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drivers that are correlated with the misspecification. For a valid driver, we need 

variables that are correlated with the misspecification. 

The next step is the selection of the coefficient drivers in (13). The first point 

to understand is what constitutes a ‘good’ driver set; this issue is discussed in detail in 

Hall Tavlas and Swamy (2016). The basic idea presented there is that the varying 

coefficient ij1γ  will always capture the necessary variation in order to fully explain the 

dependent variable. This is because of the presence of the error term in the driver 

equation. However, to successfully decompose the coefficient into the bias free part 

and the biased part, the drivers must explain a large amount of the variation in the 

coefficient. Therefore, the first requirement for a good driver set is that it explains 

most of the variation in the coefficient. This result, however, can always be achieved 

by simply including a large number of drivers in the equation. Yet, such a prcedure 

would not allow a useful decomposition. Consequently, the second requirement is that 

the drivers must be individually relevant in explaining the movement in the 

coefficient -- that is, they must be statistically significant. There are several 

approaches that can be used for this purpose. We would suggest starting from the 

relevant theory in terms of selecting a large set of possible drivers by asking what 

variables might capture omitted variables measurement errors and non-linearities. 

Once a driver set is selected, there are then several options to select a suitable sub-set 

for actual use. This procedure amounts to using objective criteria to select relevant 

drivers. The procedure could include the following elements: 

1. Adopt a dynamic modelling approach of general to specific, nesting down 

from the large set of drivers to a parsimonious, smaller set. 
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2. Adopt information criteria such as AIC, SBC, and pick the driver set 

which minimizes the criteria.  

3.  Hall, Tavlas, Swamy and Tsionas (2016) suggest a version of the 

stochastic search variable selection (SSVS) approach of George, Sun and 

Ni (2008), which performs well in monte carlo experiments. (See also 

Jochmann, Koop and Strachan (2010).) 

The model can then be used in standard ways to either test an individual theory or to 

test between theories.  

Equations (18) and (19) imply that   

    1 , 1i Kγ +  = 1 1 0 1 1 1 1 1
1

p

,K , ih ,K ,h i ,K
h

ˆˆ ˆzp p ε+ + +
=

+ +∑  = [(1- 1 1D*
i ,K

ˆ
+ ) 1 1A*

i ,K
ˆ

+  + (1- 1 1D*
i ,K

ˆ
+ ) 1 1B*

i ,K+ ]      (20)       

This equation reconciles the discrepancies between the functional forms of the 

quantities on either side of its second equality sign. We have the values of all the 

terms on the left-hand side of the second equality sign in equation (20). From these 

values, it can be shown that 1 1A*
i ,K

ˆ
+  and 1 1B*

i ,K
ˆ

+  are equal to 1
1 1(1-D )*
i ,,K

−
+ × 1 1 0( ,K ,p̂ +  + 

1

1 1 1 )ih ,K ,h
h G

ˆz p +
∈
∑  and 1

1 1(1-D )*
i ,,K

−
+

2

1 1 1 1( + )ih ,K ,h ij
h G

ˆˆz p ε+
∈
∑  for some groupings 1G  and 2G  of 

the coefficient drivers, respectively. If these equalities hold, then we will not be 

committing specification errors (i)-(iv).  

 Although we do not have the values of 1 1D*
i ,K

ˆ
+  and 1G , we can only make some 

reasonable assumptions about them.  
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Assumption III: For all i: (i) The measurement error *
1 , 1i Kv +  forms a negligible 

proportion of 1 , 1i Kx + . (ii) Alternatively, 
*
1 , 1

1 , 1

( )i K

i K

v
x

+

+

× 100 = the percentage point which 

the experimenter chooses using his prior information.  

Assumption III does not imply that measurement error is always absent. It implies that 

the measurement error must be relatively small compared to the variation in the true 

variable..  

Under Assumption III, an estimate of the TCE on the ith treated individual is  

 1 , 1i Kx +
1

1 1(1-D )*
i ,,K

ˆ −
+ 1 1 0( ,K ,p̂ +  + 

1

1 1 1 )ih ,K ,h
h G

ˆz p +
∈
∑                                                             (21) 

It is convenient to display the estimates in (21) for all 1n  treated individuals as kernel 

density estimates. The standard error of the estimate in (21) can be calculated from 

those of the 1
1 1(1-D )*
i ,,K

ˆ −
+ p̂ ’s involved in (21).     

  To recapitulate; equation (1) is the unknown true real-world relationship. In 

(14), the observable variables are combined in a known functional form. We go from 

(1) to (14) avoiding four specification errors stated in Section 2.2.6. We go from (1) to 

(21) making very weak assumptions: (i) The coefficient of the dependent variable of 

(1) is equal to -1; (ii) equation (2) with variable coefficients gives a good 

approximation to (1) even when the true functional form of the latter is unknown; 

equation (2) has the correct functional form if its approximation error *
0cηα  is equal to 

zero; we try to reduce the magnitude of *
0cηα  using (18); (iii) equation (4) not only 

maintains the correct relationship between omitted and the included regressors but 

also makes the coefficients and the error term of (5) unique; (iv) Assumptions I and II 
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can hold; (v) equation (13) and Assumption III lead to very accurate estimates of TCE 

for every sample individual if *
1 , 1i Kx +  in (11), 

*
1 , 1

1 , 1

( )i K

i K

v
x

+

+

 and 1G  in (21) are known.30 

These conditions are weaker than the conditions imposed by other studies on the 

TCEs.   

It is important to understand that this methodology will give potentially 

different treatment effects for each individual. The reason for this is that when we 

split the driver set into the set correlated with the nonlinearity and the set related to 

misspecification, if there are any variables in the first set beyond the constant then 

each individual’s bias free effect will be driven by different driver variables and, 

hence, have different values.  

Throughout this paper only one individual i is considered. All equations in our 

paper refer only to individual i. All these equations contain only the variables for 

individual i. These are the equations used to estimate individual level treatment 

effects. There is no aggregation across individuals, and we have only considered 

individual level data. Consequently, the equations in our paper must allow the 

estimation of only individual level treatment effects. The only time this methodology 

would give rise to a common treatment effect for all individuals would be when the 

set of variables associated with nonlinear effects is empty except for a constant and, 

hence, the underlying model is linear for all individuals. 

 

2.5.2 Some intuition 

                                                           
30 We consider below the cases where these quantities are unknown.  
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An intuitive account of the above derivations may be helpful at this point. We 

began by specifying equation (1), which we called a “real world” relationship. 

Equation (1) contains the following attributes. First, we did not impose a specific 

functional form on the relationship in equation (1); the functional form is unknown. 

Yet, it is general enough so that it can capture any functional relationship. Second, 

equation (1) contains all the determinants of *
cy η , that is, both the observed and 

unobserved determinants. Thus, there are no omitted variables in equation (1). Third, 

equation (1) is stated in terms of true values of the variables so that there are no 

measurement errors. Fourth, equation (1) includes all relevant pre-existing conditions 

-- that is, conditions (such as omitted variables) that may help determine the actual 

structure of (1), but which cannot be specified precisely. 

Next, we approximated equation (1) with equation (2), which is linear in 

variables but nonlinear in coefficients. This relationship can capture any linear or 

nonlinear relationship.31 Equation (3) is a particular case of equation (2); specifically, 

it applies the specification in (2) to the particular group of treated individuals. Note 

that the set of variables represented by ∑ 𝑥1𝑖𝑖∗
𝐿1𝑖
𝑖=𝑘+2  are unobserved. To eliminate 

these variables, we regressed each unobserved variable on all the observed variables. 

We did this in equation (4). This equation does not contain any mis-specified 

functional forms and it is exact. Therefore, there is no need for an error term.  

We then substituted the two determinants of each omitted variable on the 

right-hand-side of equation (4) into equation (3). This substitution gave equation (5). 

                                                           
31 Swamy and Mehta (1975) originated the theorem stating that any nonlinear functional form can be 
exactly represented by a model that is linear in variables, but that has varying coefficients. The 
implication of this result is that, even if we do not know the correct functional form of a relationship, 
we can always represent this relationship as a varying-coefficient relationship and thus estimate it. 
Granger (2008) subsequently confirmed this theorem. 



 

30 

 

The latter equation is a real-world relationship because its coefficients and its error 

term are unique. 

The concept of uniqueness plays an important role in this paper, and we 

defined it explicitly above. Intuitively, uniqueness can be thought of as follows. Any 

mis-specified equation has error term, the purpose of which is to capture mis-

specifications. For example, every time a relevant regression is omitted from a 

regression, the omitted variable is put into the error term, thereby changing the 

composition of the error term, while, at the same time, changing the coefficients on 

the included variables through omitted variable bias.32 Such a relationship, therefore, 

is not unique. Equation (5), in contrast, possesses the property of uniqueness, as we 

discussed above. 

In equation (6), we took account of the fact that the observed dependent 

variable and the observed regressors are not measured accurately. Thus, to obtain 

equation (6), we substituted measured values for the true values. Equation (6) contains 

an intercept and the coefficients of the included regressors. The components of the 

intercept are provided in equation (7). Equation (8) presented the components of the 

coefficient on an included continuous regressor, while equation (9) gave the 

components of the coefficient on a regressor that takes the value of zero with positive 

probability. 

Equation (10) is a counterfactual to equation (3). Whereas (3) referred to the 

effect of a treatment on individual i, equation (10) gives the effect of non-treatment on 

the same individual. Therefore, the difference between equations (3) and (10) gives 

the treatment effect, which, recall, is the difference between the effect of the treatment 

                                                           
32 This bias depends on a linear specification. It also depends on a non-zero correlation between the 
omitted regressor and the included regressors. 
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on individual i and the effect of non-treatment on the same individual, that is, the 

counterfactual. Equation (11) gave the difference between equations (3) and (10). 

Equation (11) is causal, since equations (3) and (10) are real-world relationships. In 

equation (11), 𝑥1𝑖,𝑘+1∗  is the true value of the unobserved treatment variable. Since this 

variable is unobserved, we subsequently (e.g., in equation (21)) used its observed 

counterpart, 𝑥1𝑖,𝑘+1. 

In equation (11), however, we still needed to determine 𝑎1𝑖,𝑘+1∗ . Note that this 

coefficient is the bias-free component of 𝛾1𝑖,𝑘+1 in equations (8) or (9), and also 

appears in equation (6); recall, j goes from 1 to K+1 in equations (6), (8) and (9) since 

𝑎1𝑖,𝑗∗  in these equations goes from j=1 to j=K+1. We are specifically interested in 

j=K+1. 

To repeat, we need to estimate  𝑎1𝑖,𝑘+1∗  in equation (11) to derive the TCE. To 

accomplish this, we use equation (6), which has 𝛾1𝑖,𝑘+1 as a coefficient. In turn, the 

coefficient 𝛾1𝑖,𝑘+1 has three components, as shown in equations (8) and (9). To 

estimate the components, we need to estimate the coefficients of equation (6), and 

then decompose them into their components. For this purpose, we use equation (13), 

in which the γ coefficient in equation (6), or its equivalent in equation (12), are 

expressed as functions of coefficient drivers. 

 

2.5.3 Does Assumption III make the treatment effect theories untestable? 

Though not directly, we have already started addressing this question in footnote 20. 

From this footnote it follows that for the tests of hypotheses based on misspecified 

models the actual Type I error will be different from the stated one and the Type II 

error will be very large. The likelihood functions play an important role in the tests of 
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hypotheses. Statisticians pointed out that the likelihood functions are model based and 

these models can never be wholly trusted if they are misspecified. Even though the 

conventional models are misspecified, model (12) is not. It is free of specification-

errors (i)-(iv). For this reason, statisticians’ objections do not apply to the likelihood 

function based on model (12). However, the estimate in (21) involving certain 

unknown values may get distorted by our guesses of them and these distortions will 

affect the Type I and Type II errors of tests of hypotheses about the TCEs on treated 

individuals.      

2.5.3 The number of components of the coefficients of (6): If all the non-constant 

regressors of (6) belong to 2S , then the number of components in its intercept is as 

large as K + 4 and the number of components in the coefficient ( 1ijγ ) of each non-

constant regressor ( 1ijx ) is 2. If (7)-(9) hold, then the number of components in the 

intercept of (6) is (3 + the number of non-constant regressors that belong to 2S , the 

number of components in the coefficient of each x 1S∈  is 3, and the number of 

components in the coefficient of each x 2S∈  is 2. It should be noted that the intercept 

of (6) contains too many components if all the non-constant regressors of (6) belong 

to 2S . The number of components in the intercept of (6) is larger by the number of 

measurement-error biases if some of the non-constant regressors of (6) belong to 2S  

than if all non-constant regressors of (6) belong to 1S . The difficulty of estimating the 

components of the intercept of (6) increases with the number of its components. For 

this reason, the difficulty of estimating measurement-error biases is greater if they are 

the components of the intercept of (6) than if they are the components of the 

coefficients of x’s ∈ 1S .       
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2.5.4 Several virtues of the regressions in (12) and (13): Under Assumption I, we 

do not risk attributing to the TCE in (11) that should be attributed to factors that 

motivate both the treatment and the outcome.  

It follows from equations (3) and (10) that the TCE in (11) is for treated 

individual i and is not incorrect because of the missing counterfactual ( 0iy ) for 

individual i. The reason is that for the same treated individual i, we could develop two 

correctly specified exact mathematical models, model (3) for the treatment outcome 

*
1iy  and model (10) for the counterfactual *

0iy  which is what would have been the 

outcome had individual i not been treated. Because the TCE is different for different 

treated individuals we do not average the estimate of (11) across either the entire 

population or the population of treated individuals. For presentation purposes, we rely 

on kernel density estimates of the TCE for different treated individuals. Thus, we 

could overcome the complication created by the fact that the treated individuals 

cannot also be untreated individuals.  

As mentioned by Greene (2012, p. 895), other researchers dealt with this 

complication by considering either pairs of individuals matched by a common 

observation vector ix  or paired individuals with similar propensity scores, ( )iF x  = 

Prob( iC  = 1| ix ); in either type of pair, one is untreated with iC  = 0 and the other is 

treated with iC  = 1. It can be seen from (3) and (10) that specification errors arise if 

*
1iy  - *

0iy  is replaced by the average value of  [ ( | 1)i iy C =  - ( | 0)i iy C′ ′ = ] for pairs of 

individuals matched by some criterion.       

It follows from (3) and (10) that since we do not use these misspecified 

pairings, our method of estimating the TCE in (11) does not need the overlap 

assumption: For any value of x , 0 < Prob( iC  = 1| x ) < 1. With this assumption, we 
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can expect to find, for any treated individual, an identical-looking individual who is 

not treated (see Greene 2012, p. 889). By developing two different models for 1iy  and 

0iy  in this paper, we have anticipated Greene (2012, p. 889) who said that a step in 

the model-building exercise will be to relax the assumptions that the same regression 

applies to both treated and untreated states and that this regression’s disturbance is 

uncorrelated with the treatment variable. In our specification of (3) and (10) we have 

taken this step.   

In our approach based on (3), (10), (11) and (15) there is no need for 

identification by functional form (e.g., relying on bivariate normality) and 

identification by exclusion restrictions (e.g., relying on instrumental variables). 

Greene (2012, p. 889) calls these identification methods fragile assumptions. Our 

method also does not require computing 1iy  - 0iy ′  for pairs of individuals (i, i′ ) 

matched by a common ix  or, alternatively, by similar propensity score. If these are 

what Greene (2012, p. 889) calls “certain minimal assumptions … necessary to make 

any headway at all” to estimate treatment effects, then our method does not need 

them.   

A regression analysis of treatment effects presented in Greene (2012, 890) is 

based on  

 iy  = ix β′  + iCδ + iε                                                                                                 (22) 

where iC = 1 if individual i is treated and = 0 if individual i is not treated, iy  = 0iy  + 

iC ( 1iy   - 0iy ) and δ is the treatment effect. The individuals themselves decide 

whether or not they will receive the treatment.  

 Greene (2012, p. 890) models program participation as  
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*
iC  = iw′γ  + iu , 

iC  = 1 if *
iC  > 0, 0 otherwise                                                                                    (23)  

where iu  and iε  are correlated.                                                                                  

Equations (22) and (23) are not free from specification errors (i)-(iv).       

It is shown in the econometric literature that iC  in (23) represents simply an 

endogenous variable in a linear equation. The parameterization in (23) is very 

different from that in (13). The approach utilizing (13) has the virtue of greater 

generality and of avoiding specification-errors (i)-(iv). The problem of the 

endogeneity of the treatment variable 1 , 1i Kx +  in (3) and (10) does not arise because 

they are exact mathematical equations.  The conditional expectation in (15) implies 

that the treatment variable in equation (14) which has several error terms is 

exogenous. This equation does not have iC  as its explanatory variable. We make the 

admissibility condition for the coefficient drivers and Assumption I.      

 As Greene (2012, p. 892) pointed out, there are studies casting some 

skepticism on the normality assumption about the error terms of selection models. 

Fortunately, this circumstance does not apply to either the unique error term of (5), 

which has a nonzero mean, or the error term of (14), which is heteroscedastic.  

Underlying the mathematical equations in (3) and (10) there is no assumption 

that the same equation applies to both treated and untreated. This is a strong 

assumption.  Equations (3) and (10) are for the same treated individual. Equation (11) 

is equal to (3) minus (10). The mathematical formula for the TCE in (11) is novel. 

This exact analytical measure of the treatment effect on the treated makes our study 

analytically complete even when data on 1 , 1+i Kx  are not available.               
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Selection on some unobservables created a problem for Greene’s (2012, p. 

891) study.  This problem is nothing but the familiar problem of the missing 

counterfactual *
0iy  that led to Greene’s (2012, p. 891) inability to estimate an off-

diagonal element of an error covariance matrix. It is not encountered in this paper.     

Note that the non-constant proxy 1 1i ,Kx +  for the treatment variable in (3) is 

different from the binary 0/1 treatment dummy iC  used in (20). If it were not 

different, then the variable 1 0ix  ≡  1 for the intercept in (14) would be exactly collinear 

with 1 1i ,Kx +  = iC  ≡  1 because the dependent variable of (14) is 1iy  for all i. To avoid 

this collinearity, data on the non-constant proxy 1 , 1i Kx +  are assumed to be available. 

Even if data on this proxy are not available, then this non-availability is no hindrance 

to the derivation of the formula in (11).   

3. An Example using the ECB’s Securities Market Program 

In response to the global financial crisis, which erupted in 2007 with the 

collapse of the U.S. subprime market, and then intensified in September 2008 with the 

failure of Lehman Brothers, and the outbreak of the euro-area’s sovereign debt crisis 

in late-2009 and early-2010, the ECB’s Governing Council adopted a number of non-

standard measures to support financial conditions and credit flows to the euro-area 

economy over-and-above what could be achieved through reductions in key interest 

rates.33 Among those measures was the Securities Market Program (SMP). The SMP 

was launched in May 2010 as a response to drying up of some secondary markets for 

government bonds. The aim of the program was to improve the functioning of the 

monetary-policy transmission mechanism by providing depth and liquidity in 
                                                           
33 Asset purchase programs were a part of the ECB’s overall response to the two crises. For detailed 
review of the ECB’s responses, see Cour-Thimann and Winkler (2013).   
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segments of the sovereign-bond market that had become dysfunctional. The program 

can, therefore, be thought of as a treatment for the malaise that was facing the 

financial system at the time.  

In this section we examine the effects of the SMP on spreads on euro-area 

sovereigns bonds for five euro-area stressed countries -- Greece, Ireland, Italy, 

Portugal and Spain. There are thus five individuals, in the sense defined in our 

theoretical discussion above. Our data are monthly and cover the period from January 

2004 through January 2013.34 Previous studies have generally used dummy variables 

in an attempt to capture the effects of the program, with the exception of De Pooter, 

Martin and Pruitt (2015), who approximate SMP purchases based on data available 

from Barclays as a counterparty to the ECB, and Eser and Schwaab (2013) and 

Ghysels et al (2014) who use actual SMP purchases. We also use the actual amounts 

of sovereigns purchased under the program. These data are confidential, but were 

made available to us for use by the ECB. In contrast to most previous papers, we use 

monthly (rather than daily or intraday) data. There are two reasons why we use 

monthly data: (1) the confidential data on actual SMP purchases that were made 

available to us by the ECB are monthly; and (2) the use of monthly data allows us to 

control for the fundamental determinants of sovereign bond spreads. 

3.1 Program description 

The SMP initially focused on the purchase of Greek, Irish and Portuguese 

government bonds; from August 2011, Spanish and Italian government bonds were 

also purchased. The impact of the program should thus have been felt most in 
                                                           
34 We start our estimation well before the beginning of the SMP program as we believe the longer 
sample period is helpful in determining the other parameters of the model and hence gives us a more 
accurate set of parameters to remove the omitted variable bias. We choose to use monthly data as most 
of the fundamental driver variables are only available at a monthly frequency.  
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sovereign debt markets in the stressed countries, causing the prices of sovereigns in 

these countries to rise and, thus, spreads (compared to the German bund) to fall. A 

total of 240 billion euros was spent during the course of the SMP transactions. Figure 

1 shows the 10 years bond spreads for our five countries -- Greece, Ireland, Italy, 

Portugal, and Spain. It also delineates two periods during which purchases were being 

made and the timing of the Draghi announcement (in July 2012) that the ECB would 

do whatever was necessary to preserve the euro. As shown in the figure, the SMP 

took place at a time of rising spreads. Therefore, any simple correlation analysis 

would find that the effect of the SMP was to raise, rather than lower, spreads. Thus, 

finding the correct treatment effect is a matter of finding the unbiased coefficient in 

the presence of serious omitted variables’ and measurement errors. This is precisely 

what we claim our technique is able to do. 

The basic relationship we are interested in evaluating (based on (12)) is 

itititit xy 10 γγ +=                               (24) 

where ity  is the spread on sovereign bonds in country i for period t and itx  is the SMP 

expenditure in country i in period t. This equation is our basic varying parameter 

equation (12). As discussed earlier in this paper, each of the coefficients of (24) 

comprises a bias free component which we want to study. This component is 

corrupted by an effect for measurement error and omitted variable bias. We need to 

uncover the unbiased coefficient which will then be our estimate of 
it

it
x

y
∂

∂ , that is 

the partial derivative of spreads with respect to the amount of purchases under the 

SMP. 

To estimate (24) we proceed as follows. Our data sample includes five 

countries: Greece, Ireland, Portugal, and Spain. Our monthly data cover the period 



 

39 

 

from 2004M1 through 2014M7. We use the following equations for the coefficients -- 

that is, these are the empirical counterpart to (13), the coefficient driver equations, 

where the coefficient drivers are chosen as a set of fundamental variables which are 

widely thought to determine the soverign spreads 

  

ititj

itjitjitjitjitjjitj

NEWS
DEBTDGDPPOLGBRP

εp

ppppppγ

++

+++++=

6

543210         (25) 

where RP is relative prices between the country in question and Germany, GB is the 

government fiscal balance relative to GDP for country i, POL is an indicator of 

political stability for country i, DGDP is the growth rate of GDP for country i, Debt is 

the stock of government debt relative to GDP for country i and NEWS is a measure of 

news effects with respect to the fiscal deficit of country i.35 Detailed data definitions 

and sources are provided in Annex 1. 

Estimation of equation for 1 0iγ  and 1 1iγ (i.e., the constant and the coefficient on 

SMP purchases in equation (24)) yields the following results. 

)3.8(
01.0

)0.3()4.2()6.0()2.0()6.13()3.1(
03.04.5509.0007.05.9796.10

itit

itititititit

NEWS

DEBTDGDPPOLGBRP

ε

γ

+−

+−−−+−=

 

)4.0()006.0()7.0()4.0()2.0(
000001.00000001.008.00009.00003.01 itititititit NEWSDEBTDGDPPOL εγ +++++−=

   

where the figures given in parentheses below each coefficient estimate are standard 

errors. Some variables had to be excluded from the second equation in order to 

                                                           
35 NEWS is calculated from updates to forecasts of the general government balance found in the EC’s 
Spring and Autumn forecasts. 
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estimate the above equations, because the SMP was only applied for a few months in 

each country resulting in an over-parameterization of the second equation. Since a 

number of these coefficients are insignificant, we successively restricted the driver 

equations based on the significance of variables following a general to specific 

methodology. The following model emerged. 

)4.8()1.4()1.1()9.12()4.1(
01.003.014.04.8363.10 itititititit NEWSDEBTPOLRP εγ +−+−+−=

 

)23.0(
0002.01 itit εγ +−=

 

As is evident, the effect of the SMP is constant and equal to - 0.0002. Thus, 

our estimate of the unbiased (meaning, free of omitted-regressor and measurement-

error biases) effect of the SMP on spreads is -0.0002  SMP expenditureit× , as in (11). 

As there are no country specific variables in the second equation above, this implies 

that, in this case, the effect of the SMP programme is the same for each country. If 

there had been any variables remaining in the second equation then our estimate of the 

bias free effect in each country would have been potentially different for each 

country. 

To put the results into context, the largest amount spent on the program in any 

country in any single month was 47,590 million euros. Such a purchase would have 

lowered the spread by 9.5 percentage points (i.e., - .0002 x 47,590) or 950 basis 

points. In other periods, where the purchases were less, the effect would have been 

correspondingly less. To put this into context, Eser and Schwaab (2013) give a range 

of possible effects for an expenditure of 1 billion euros ranging from -1 basis point to 

-21 basis points. At the upper end, an expenditure of 47.5 billion euros would have 
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reduced spreads by 997.5 basis points.36 Ghysels et al. (2014) report a long-run effect 

of the SMP within a range of 0.1 to 7 basis points for an expenditure of 100 million 

euros; thus a purchase of 47,950 million would have led to a 3,360 basis points fall in 

spreads, well above our findings that have been based on a varying-coefficient 

methodology and the actual purchases under the SMP. 

 

4. Conclusions  

The problem of estimating a general function with unknown functional form 

can be solved without introducing a single specification error by changing this 

problem to the problem of estimating a corresponding relationship which is linear in 

variables but nonlinear in coefficients. Using this solution, we showed that the causal 

effects of a treatment on the treated individuals can be estimated. For this estimation, 

we use a real-world (i.e., misspecification-free) relationship between the treatment 

and its effect. The treatment’s effect depends on the definition of causality used. In 

our definition, causality is treated as a property of the real world. To measure the 

causal effect of a treatment on the treated individuals, we take the difference between 

the two real-world relations, one for the effect of a treatment on a treated and another 

for the potential outcome of no treatment on the same individual. Obtaining pairs of 

treated and untreated individuals matched by similar propensity scores leads to 

specification errors.           

                                                           
36 It is difficult to make a comparison with the results of De Pooter, Martin and Pruitt (2015) because 
they define their SMP variable as a percentage of outstanding debt rather than the absolute value of 
purchases. As far as we can discern, their result seems to yield a similar order of magnitude to our 
measure. 
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Annex 1: data sources and information 

 

Spreads (in percentage points). 10-year benchmark on each country’s government 10-year bond yield 
minus the 10-year benchmark German government bond yield – ECB Statistical Data Warehouse – 
monthly average. 
 
Covered-bond price indices. Euro area covered-bond price indices for bonds with any maturity and for 
those with greater than 10 years to maturity. Source: Thomson-Reuters DataStream. 
 
Ratings. We take the ratings of each of the major credit rating agencies - Fitch, Moody’s, and Standard 
& Poor’s (S&Ps) – and construct a single series based on the agency that moved first. Ratings are 
mapped to a cardinal series running from 1 (AAA) to 22 (default). 
 
Relative prices. Log difference of the monthly seasonally adjusted harmonised index of consumer prices 
(HICP) between each of the five countries and Germany – Thomson-Reuters DataStream. 
 
Debt-to-GDP ratio. The ratio of the general government debt to GDP – quarterly data interpolated to 
monthly – Thomson-Reuters DataStream. 
 
Political stability. We use the IFO World Economic Survey Index of Political Stability which takes values 
of between 0 and 10. A rise in the index implies greater stability. 
 
Fiscal news.  We construct real-time fiscal data, using the revisions to forecast general government 
budget balances published in the European Commission Spring and Autumn forecasts. Thus, for 
example, the revision to the Spring 2006 forecast is the forecast 2006 deficit/GDP ratio in the Spring 
compared to the forecast for 2006 made in the Autumn of 2005. This procedure allows us to generate a 
series of revisions (in percentage points), which, when cumulated over time, provides a real time 
cumulative fiscal news variable. We interpolate the series in such a way that news does not appear in 
the variable before it actually came out. 
 
Economic activity. The rate of change of real GDP is interpolated to a monthly frequency – Thomson-
Reuters DataStream. 
 
SMP and CBPP. ECB. 
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