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Abstract

We show that rank dependent expected utility theory can explain the St. Pe-
tersburg paradox. This complements recent work by Blavatskyy (2005), Camerer
(2005), Rieger and Wang (2006) and Pfiffelmann (2011).
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1. Introduction

The St. Petersburg paradox runs as follows. Consider the lottery, L, that pays 2n with
probability 2−n, n = 1, 2, 3, .... The value of this lottery is infinite, yet people are prepared
to pay only a (small) finite sum for it. This motivated Bernoulli (1738) to propose the
logarithmic utility function, u (x) = lnx, x > 0. Blavatskyy (2005) showed that the St.
Petersburg paradox reemerges under standard parametrizations of cumulative prospect
theory (Tversky and Kahneman, 1992). Camerer (2005) showed that the St. Petersburg
paradox can be solved using loss aversion, with the reference point taken to be the price an
individual is prepared to pay and by putting an upper bound on the amount that can be
paid out. General results are given by Rieger and Wang (2006).1 However, the example we
give here falls outside their general results.2 Since standard probability weighting functions
overweight the small probabilities of large outcomes, one might expect the St. Petersburg
paradox to reemerge under rank dependent expected utility theory (Quiggin, 1982, 1993).
Here we show that this is not the case: Rank dependent expected utility theory resolves
the St. Petersburg paradox in its original form.

2. Setup

The key to rank dependent expected utility theory is the monotonic transformation of the
cumulative probability distribution of ranked outcomes. We give definitions and examples
below.

Definition 1 : By a probability weighting function we mean a strictly increasing function
w : [0, 1]

onto→ [0, 1] , w (0) = 0, w (1) = 1.

Example 1 : The Prelec probability weighting function (Prelec, 1998) is given by w(0) =

0, w(p) = e−β(− ln p)
α

, p > 0, α > 0, β > 0.

The Prelec probability weighting function is a popular probability weighting function.
It is parsimonious, fits the evidence and has an axiomatic foundation.3 If α < 1, then this

function overweights (low) probabilities in the range
(

0, e−β
1

1−α

)
and underweights (high)

probabilities in the range
(
e−β

1
1−α

, 1

)
; in fact, lim

p→0
w(p)
p

= ∞ and lim
p→1

1−w(p)
1−p = ∞. For

β = 1, the Prelec function overweights probabilities in the range (0, e−1) and underweights
probabilities in the range (e−1, 1), e−1 ' 0.367 88, which is consistent with the evidence.

1See Pfiffelmann (2011) for a critical evaluation and a proposed new probability weighting function.
2For example, their first condition states that, for α > 0, lim

x→∞
u(x)
xα ∈ (0,∞). However, limx→∞

ln x
xα = 0.

3See al-Nowaihi and Dhami (2011) and Wakker (2010).
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Definition 2 (Rank dependent utility): Consider the lottery L that pays xi with prob-
ability pi, where x1 < x2 < x3 < ... , pi ≥ 0,

∑∞
i=1 pi = 1. Let u : R → R be a strictly

increasing utility function. Let the probability weighting function be w. Consider the
decision weights

πi = w
(∑∞

j=i
pj

)
− w

(∑∞

j=i+1
pj

)
, i = 1, 2, 3, ....

Then, the rank dependent expected utility of the lottery L to the decision maker is given
by

RDU (L) = Σ∞i=1πiu (xi) .

Note that, since w : [0, 1]
onto→ [0, 1] is strictly increasing, it transforms a cumulative

distribution into another cumulative distribution. Hence, the decision weights, πi, are
probabilities.

Example 2 (The St. Petersburg paradox): Consider the identity probability weighting
function w (p) = p. Then πi = pi. Consider the identity utility function u (x) = x. Set
xi = 2i and pi = 2−i, i = 1, 2, 3, ... . Then Definition 2 gives the infinite expected value
E (L) = Σ∞i=1πiu (xi) = Σ∞i=1 2−i2i = Σ∞i=11 = ∞. Although this lottery has an infinite
expected value, people are prepared to pay only a (small) finite amount of money for it.

Example 3 (Bernoulli’s resolution, 1738, of the St. Petersburg paradox): As in Example
2 but now take the utility function to be u (x) = lnx. We then get the finite expected
utility EU (L) =

∑∞
i=1

1
2i

ln 2i =
∑∞

i=1
i
2i

ln 2 = 2 ln 2 ' 1. 386 3.4 The certainty equivalent
of this is e2 ln 2 = 4.5

3. The St. Petersburg paradox under rank dependent expected
utility theory

Take the probability weighting function to that of Prelec (Example 1) with α = 1
2
and

β = 1, i.e., w(p) = e−(− ln p)
1
2 . These values are consistent with the empirical evidence.

For instance, Bleichrodt and Pinto (2000) find that α = 0.53 and β = 1.08. Taking the
probabilities to be pi = 2−i, i = 1, 2, 3, .... , as in Example 2, we get πi = w

(∑∞
j=i pj

)
−

w
(∑∞

j=i+1 pj

)
= w

(∑∞
j=i

1
2j

)
− w

(∑∞
j=i+1

1
2j

)
4Let ui = i

2i then
ui+1
ui

= 1
2

(
1 + 1

i

)
→ 1

2 < 1 as i → ∞. Hence, by D’Alembert’s ratio test,
∑n

i=1
i
2i

converges as n → ∞. Thus, we can set S =
∑∞

i=1
i
2i . Hence, 2S =

∑∞
i=1

i
2i−1 =

∑∞
i=0

i+1
2i =

∑∞
i=0

i
2i +∑∞

i=0
1
2i = S + 2. Hence, S = 2.

5Note that the monies allocated to evaluating the St. Petersburg lottery are separated from total
wealth. Thus some form of mental accounting is used (Thaler, 1999). This is implicit in much of the
literature.

2



= w
(

1
2i−1

)
− w

(
1
2i

)
= e−[− ln( 1

2i−1 )]
1
2 − e−[− ln( 1

2i
)]

1
2

= e−(ln 2)
1
2 (i−1)

1
2 − e−(ln 2)

1
2 (i)

1
2 , i =

1, 2, 3, ....
As in Examples 2 and 3, take the outcomes to be xi = 2i, i = 1, 2, 3, ... . Consider

the lottery L that pays 2i with probability 2−i, i = 1, 2, 3, .... , as in the original St.
Petersburg paradox. As in Example 3, take the utility function to be u (x) = lnx, as in
the original St. Petersburg paradox. From Definition 2, we get that the rank dependent
expected utility of L is RDU (L) = Σ∞i=1 πiu (xi) = Σ∞i=1

[
e−(ln 2)

1
2 (i−1)

1
2 − e−(ln 2)

1
2 (i)

1
2

]
ln 2i

= Σ∞i=1

[
e−(ln 2)

1
2 (i−1)

1
2 − e−(ln 2)

1
2 (i)

1
2

]
i ln 2 = (ln 2)

[
Σ∞i=1ie

−(ln 2)
1
2 (i−1)

1
2 − Σ∞i=1ie

−(ln 2)
1
2 (i)

1
2

]
= (ln 2)

[
Σ∞i=1 (i− 1 + 1) e−(ln 2)

1
2 (i−1)

1
2 − Σ∞i=1ie

−(ln 2)
1
2 (i)

1
2

]
= (ln 2)

[
Σ∞i=1 (i− 1) e−(ln 2)

1
2 (i−1)

1
2 + Σ∞i=1e

−(ln 2)
1
2 (i−1)

1
2 − Σ∞i=1ie

−(ln 2)
1
2 (i)

1
2

]
= (ln 2)

[
Σ∞i=0ie

−(ln 2)
1
2 (i)

1
2 + Σ∞i=1e

−(ln 2)
1
2 (i−1)

1
2 − Σ∞i=1ie

−(ln 2)
1
2 (i)

1
2

]
= (ln 2) Σ∞i=1e

−(ln 2)
1
2 (i−1)

1
2 .

We want to show that the partial sums (ln 2) Σn
i=1e

−(ln 2)
1
2 (i−1)

1
2 converge, as n→∞, and

find lower and upper bounds for (ln 2) Σ∞i=1e
−(ln 2)

1
2 (i−1)

1
2 . Let f (x) = (ln 2) e−(ln 2)

1
2 (x−1)

1
2 ,

then (ln 2) Σ∞i=1e
−(ln 2)

1
2 (i−1)

1
2 = Σ∞i=1f (i). By a version of Maclaurin’s integral test we

have Σn−1
i=1 f (i) +

∫∞
x=n

f (x) dx < Σ∞i=1f (i) < Σn
i=1f (i) +

∫∞
x=n

f (x) dx.6 In particular,
for n = 2, we get f (1) +

∫∞
x=2

f (x) dx < Σ∞i=1f (i) < f (1) + f (2) +
∫∞
x=2

f (x) dx. Hence,
0.693 15+

∫∞
x=2

f (x) dx < Σ∞i=1f (i) < 0.301 48+0.693 15+
∫∞
x=2

f (x) dx. Elementary calcu-

lus gives7
∫
f (x) dx = −2

[
1 + (ln 2)

1
2 (x− 1)

1
2

]
e−(ln 2)

1
2 (x−1)

1
2 and, hence,

∫∞
x=n

f (x) dx =

2
[
1 + (ln 2)

1
2 (n− 1)

1
2

]
e−(ln 2)

1
2 (n−1)

1
2 . In particular,

∫∞
x=2

f (x) dx = 2
(

1 + (ln 2)
1
2

)
e−(ln 2)

1
2

= 1. 594 1. Hence, 2. 287 3 < Σ∞i=1f (i) < 2. 588 7, i.e., 2. 287 3 < RDU (L) < 2. 588 7.
Let CE (L) be the certainty equivalent of the lottery L under rank dependent expected
utility. Then, since the utility function is logarithmic, we get ln (CE) = RDU (L).
Hence, CE (L) = eRDU(L). The bounds on RDU (L) derived above then give e2. 287 3 <
CE (L) < e2. 588 7, i.e., 9. 848 3 < CE (L) < 13. 312. Hence, a crude estimate of CE (L)

is CE (L) ' 9. 848 3+13. 312
2

' 11. 58. We can get an arbitrarily high degree of accuracy by
taking n to be suffi ciently large. For example, n = 18 gives 11. 438 < CE (L) < 11. 697

and CE (L) ' 11. 568.

4. Summary

We have addressed the St. Petersburg paradox using rank dependent expected utility the-
ory with the Prelec probability weighting function. For the latter, we used the parameter
values α = 1

2
and β = 1. These are consistent with the parameter estimates α = 0.53 and

6It is easy to give a rigorous proof. The intuition behind the proof can be seen by sketching a diagram.
7Differentiate −2

[
1 + (ln 2)

1
2 (x− 1)

1
2

]
e−(ln 2)

1
2 (x−1)

1
2 to get f (x).
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β = 1.08 of Bleichrodt and Pinto (2000). We have used the logarithmic utility function as
in Bernoulli (1738) and as is common in much of the literature. These assumptions give a
certainty equivalent close to 11. 58 for the St. Petersburg lottery. According to Camerer
(2005) “... when asked how much they would pay to buy such a gamble, people routinely
report sums around $20”. However, Pfiffelmann (2011) states “According to a number of
experiments, the maximum an individual is willing to pay for this gamble is around $3”.
Thus our figure of 11. 58 is well within the reported range for the sums people are willing
to pay. This suggests that rank dependent expected utility theory has the potential to
easily explain the St. Petersburg paradox.
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